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ABSTRACT. In this paper, on a general finite interval, the inverse problem of recovering the potential 
function for a fractional diffusion equation with new spectral parameter, called the nodal point, is given. 
Furthermore, using Mittag Leffler function, asymptotic formulas for nodal points and nodal length for a 
fractional diffusion equation are also found. 
Keywords: fractional calculus, fractional diffusion equation, inverse nodal problem, Mittag Leffler function, asymptotic 

formulas. 

O Inverse Nodal problema para a equação de difusão fracionária 

RESUMO. Neste trabalho, em um intervalo finito geral, o problema inverso de recuperar a função 
potencial para uma equação de difusão fracionária com novo parâmetro espectral, chamado de ponto nodal, 
é dado. Além disso, usando a função de Mittag Leffler, fórmulas assintóticas para os pontos nodais e 
comprimento nodal para a equação de difusão fracionária também são encontrados. 
Palavras-chave: cálculo fracionário, equação de difusão fracionária, problema nodal inversa, função Mittag Leffler, 

fórmulas assintóticas. 

Introduction 

Fractional calculus is 'the theory of derivatives 
and integrals of any arbitrary real or complex order 
which unify and generalize the notions of integer-
order differentiation and −n  fold integration' Kilbas 
et al. (2006), Podlubny (1999). It has been in the 
minds of mathematicians for 315 years and still 
contains many questions. Firstly, the idea of this area 
appeared in a letter by Leibniz to L' Hospital in 17th 

century, Podlubny (1999). In the following three 
hundred years a lot of mathematicians contribute to 
the fractional calculus: Johann Bernoulli, John 
Wallis, L. Euler, J. L. Lagrange, P. S. Laplace,  
S. F. Lacroix, J. B. J. Fourier, N. H. Abel,  
J. Liouville, S. S. Greatheed, A. Morgan,  
B. Riemann, W. Center, H. Holmgren,  
A. K. Grünwald, A. V. Letnikov, H. Laurent,  
O. Heaviside, G. H. Hardy, H. Weyl, E. L. Post,  
H. T. Davis, A. Erdélyi, H. Kober, A. Zygmund,  
M. Riesz, I. M. Gel'fand, G. E. Shilov,  
I. N. Sneddon, S. G. Samko, T. J. Osler, E. R. Love, 
and many others Boumenir and Tuan, (2010a and b), 
Chechkin et al. (2003), Freiling and Yurko (2001) 
and Gorenflo et al. (2002). Fractional diffusion 
equations have been investigated in a lot of different 
physical situations. These equations are widely 
applicable because many scenarios exist in which 
they find relevance. Furthermore, inverse spectral 

analysis involves the problem of restoring a linear 
operator from some of its spectral parameters Isakov 
(1993, 2006), Levitan and Gasymov (1964), Levitan 
and Sargsjan (1975), Levitan (1987), Jaulent and Jean 
(1972). Currently, inverse problems are being 
studied for certain special classes of ordinary 
differential operators. In recent years, Hald and 
McLaughlin (1989) have taken an inverse problem 
approach to the following problem: 

 
( ) ,yyL λ=  (1)
( ) ( ) ,000 =−′ hyy  (2)

( ) ( ) .011 =+′ Hyy  (3)
 
The inverse nodal problem lies in the use of 

nodal points of the eigenfunctions of (1)-(3) as 
spectral parameters. Hald and McLaughlin (1989) 
and Browne and Sleeman (1996) proved that one 
can use the nodal points to determine the potential 
function of regular Sturm-Liouville problem. In the 
last years, the inverse nodal problem and fractional 
calculus for Sturm Liouville problem has been 
studied by several authors Browne and Sleeman 
(1996), Yang (1997), Cheng et al. (2000), 
McLaughlin (1988), Bas (2013), Koyunbakan and 
Panakhov (2007), Gasymov and Guseinov (1981). 

Tuan (2011) proved that by taking suitable initial 
distributions only finitely many measurements on 
the boundary were required to recover uniquely the 
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diffusion coefficient of one dimensional fractional 
diffusion equation. His method was based on 
possibility of extracting the full boundary spectral 
data from special lateral measurements. The purpose 
of our study is to give the inverse problem of 
recovering the potential function for the fractional 
diffusion differential equation by using nodal datas 
Hald and McLaughlin (1989). 

Now, let's give the preliminaries and notations 
regarding to the fractional calculus Kilbas  
et al. (2006), Podlubny (1999). 

Preliminaries and notations 

1) Definition  

A real function  
 

( )rf , ,0>r   
 

where: 
is said to be in space αC , ,ℜαε  if there exists a 

real number ( ),α>p  such that  
 

( ) ,prrf =  ( )rf1   
 

where:  
 

( ) ).,0[1 ∞∈Crf   
 

2) Definition  

A real function 
 

( )rf , ,0>r   
 

where: 
is said to be in space  
 
,mCα
 { },0N ∪∈m  if ( )

αCf m ∈   

 

3) Definition  

Let f  αC∈  and ,1?−α  in the following, the 

expression two of the most commonly encountered 
tools in the theory and applications of fractional 
calculus are provided by the Riemann-Liouville 
operator α

zR  
 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )





∈≤<−
>−= +

−
Γ

,N;0Re,
,0Re,1

0
1

nnzfR

dttftz
zfR

n
zdz

d

z

z
n

n α
α

α

α
αα  

 

and the Weyl operator α
zW  which are defined by 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )





∈≤<−
>−= +

−∞
Γ

.N;0Re,
,0Re,11

nnzfW

dttfzt
zfW

n
zdz

d

z
z

n

n α
α

α

υ
αα  

 

4) Definition  

The Caputo derivative of fractional order α  of 
function ( )tf  is defined as  

 

( ) ( )
( ) ( )

( ) ).1(1
1

0
0 nnd

t

f

n
tfD

n

nt

t
C <<−

−−Γ
= −+ ατ

τ
τ

α α
α (4)

 

5) Definition  

One and two-parameter function of the  
Mittag-Leffler is defined by the series expansion, in 
the following form, respectively, 

 

( ) ( )

( ) ( ) ( ).0,0,
0

,

1
0

>>=

=

+Γ

∞

=

+Γ

∞

=





βαβαβα

αα

k
z

k

k
z

k

k

k

zE

zE
 

 
As mentioned above, Vu Kim Tuan obtained 

inverse problem for fractional diffusion equation in 
Tuan (2011). In the present study, we will define 
the inverse problem for the same equation by using 
nodal datas. In the following for the operation and 
content integrity, firstly we will give the basic 
concepts for the equation. 

Consider the 1-dimensional fractional diffusion 
equation defined by 

 
( ) ( ) ( ) ( ) ,0,0,,,,0 ><<−= trtrurqtrutruD rrt

c πα  (5)

( ) ( )
( ) ( )

( ) ( )

0, 0, 0,

, , 0,

,0 .

r

r

u t hu t

u t Hu t

u r f r

π π
− =

+ =

=

 (6)

 
where: 

 
( ) ( ),,0,,0 21 ππ LfLq ∈∈  

 
and  

 
( ) 10,0 << αα tuDt

C   

 
is the Caputo fractional derivative Tuan (2011). 

Here the solution u  depends on the lateral 
boundary conditions. One may rewrite main four 
cases for the direct problem, i.e. 
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( ) ( )
( ) , ,0,0

, ,0,0,0
∞==
∞≠=−

htu

hthutur  

( ) ( )
( ) . ,0,

, ,0,,
∞==
∞≠=+

Htu

HtHutur
π
ππ

 

(7)

 
If ( ) ( ) ,0,,0 == tutu π it means  

,∞== Hh  
 

where: 
h  and H  have been fixed, ( )λϕ ,r  is a solution 

of the Sturm-Liouville problem at 0=r   
 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

, , , , 0

0, 1, 0, , if ,

0, 0 0, 1 if ,

r q r r r r

h h

h

ϕ λ ϕ λ λϕ λ π
ϕ λ ϕ λ

ϕ λ ϕ λ

′′− + = < <
′= = ≠ ∞

′= = = ∞

(8)

 

nλ  and ( )nr λϕ ,   

 
are the eigenvalues and eigenfunctions of the 
boundary value problem (8) with the boundary 
condition 

 
( ) ( )

( ) .if,0,

if,0,,

∞==

∞≠=+′

H

HH

λπϕ

λπϕλπϕ
 (9)

 

 
In all cases, 

nα  shows the ( )π,02L  norm of 

( )., nr λϕ  The normalized eigenfunctions 

 

( ) ( ) ,1   ,,1
2

== nn
n

n rr ψλϕ
α

ψ  

 
where: 

 
( ) .,

2nn r λϕα =  

 
Therefore, the generalized Fourier series of any 

initial condition ( )π,02Lf ∈  is obtained by 
 

( ) ( )nn
n

rcrf λϕ ,
0


≥

=  

 
where: 

 
( )

.
,,,

2
n

n

n

n
n

rff
c

α
λϕ

α
ψ

==  (10)

By virtue of the seperation of variables method 
one can find the solution in the following form 

 
( ) ( ) ( ),,,

0
nn

n

rtTtru λϕ
≥

=  

 
where: 

( )tTn  is a solution of the fractional differential 

equation founded below: 
 

( ) ( ) ( ) .0                      0 nnnnt
C cTtTtTD =−= λα  

 
The solution can be written as follows: 
 

( ) ( ).α
α λ tEctT nnn −=  

 
Take into account of the separation of variables 

method the solution uu f =  of (6) in the series form 
 

( ) ( ) ( )nnn
n

rtEctru λϕλ α
α ,,

0

−=
≥

 (11)

( ) ( ) ( ).,,
0

nnn
n

r rtEctru λϕλ α
α ′−=

≥

 (12)

 
Lemma: For each fixed 0>t  the series (11) and 

(12) converge uniformly on [ ].,0 π   
Proof: Let .∞≠h The asymptotic formulas, 

Levitan and Gasymov (1964), Levitan and Sargsjan 
(1975), Levitan (1987), for the solution ( )nr λϕ ,   

 

( ) 






+=
λ

λλϕ 1cos, Orr  (13)

 
by differentiating the last equation, we get 

 

( ) 






++−=′
λ

λλλλϕ 1cossin, Orhrr  (14)

 
and the eigenvalues 

 

∞→





++= n
n

O
n

c
nn       ,1λ  (15)

 
where: 

 

( ) .
0

2
11









++=  ττ

π

π dqHhc  

 
Which yield 
 

( ) ( ) ( ) ( ) [ ]   .,0    , ,     ,1, πλϕλϕ ∈=′= rnOrOr nn (16)
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Let .∞=h  Then the asymptotic formulas, 
Levitan and Gasymov (1964), Levitan and Sargsjan 
(1975), Levitan (1987), for the solution ( )nr λϕ ,  and 

its derivative have the following form 
 

( )

( ) .1cos,

1sin,








+=′







+=

λ
λλϕ

λλ
λλϕ

Orr

O
r

r
 

(17)

 
For the eigenvalues we have, Levitan and 

Gasymov (1964), Levitan and Sargsjan (1975), 
Levitan (1987), 

 

( )

( ) .1cos,

1sin,








+=′







+=

λ
λλϕ

λλ
λλϕ

Orr

O
r

r
 

(18)

 
Consequently, 
 

( ) ( ) ( ) [ ].,0    ,1 ,    ,1, πλϕλϕ ∈=′





= rOr
n

Or nn
 (19)

 
The Mittag-Leffler function is bounded Kilbas  

et al. (2006),  
 

( ) ( ) ,arg
2

       ,
1

πμαπ
α ≤≤<

+
< z

z

C
zE  (20)

 
therefore, 

 

( ) ( ) .
2

,minarg0    ,
1 






 −≤≤≤

+
<− π

α
ππμ

λ
λ α

α
α t

t

C
tE

n

n (21)

 
For 0>t , we get 
 

( ) .1
2 




=−
n

OtE n
α

α λ  (22)

 
We have now, by the Cauchy-Schwartz 

inequality, 
 

( ) ( ) ( ) ( )

2
4

2

22
2

1

,,

≤≤

−≤−





≥≥

≥≥≥

n
cC

rtEcrtEc

Nn
n

Nn

nn
Nn

n
Nn

nnn
Nn

λϕλλϕλ α
α

α
α

(23)

 
Let  choose large enough and [ ].,0 π∈r  Hence, 

the series (11) converge uniformly on [ ].,0 π  
Similarly, for the series (12) we have 

( ) ( ) ( ) ( )

2
2

2

22
2

1

,,

≤≤

′−≤′−





≥≥

≥≥≥

n
cC

rtEcrtEc

Nn
n

Nn

nn
Nn

n
Nn

nnn
Nn

λϕλλϕλ α
α

α
α

 

(24)
 

 
if N  is chosen large enough and [ ].,0 π∈r  
Consequently, the series (12) converge uniformly 
on [ ].,0 π   

The uniform convergence of the series (11) and 
(12) on [ ]π,0  allows us to represent the readings at 
the boundary points 0=r  and π=r  as series of 
Mittag-Leffler functions. We consider  
Mittag-Leffler function series expansions which can 
be summarized in the following cases Tuan (2011). 

 
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ).,,, and For 

,,, and For 

,0,0 and For 
,0,0 and For 

0

0

0

0

nnnn

nnnnr

nnn

nnnr

tEctrurH

tEcturH

tEcturh

tEcturh

λπϕλπ
λπϕλππ

λ
λ

α
α

α
α

α
α

α
α

−==∞≠
′−==∞=

−==∞≠
−==∞=

≥

≥

≥

≥

(25)

Results 

Let ∞→<< ...210 λλλ  be the eigenvalues of the 

problem (5) and  
 

,...0 1 π<<<< n
j

n rr  1,...,2,1 −= nj   

 
where: 

be nodal points of n-th eigenfunction. It is 
shown that the set of all nodal points { }njr  is dense in 

[ ];,0 π  In fact, judicious choice of one nodal point n
jr  

for each ,ny 1>n  also forms a dense set in [ ].,0 π  

Using (11) and (13), and we may write 
 

( ) ( ) 














+−=
≥ λ

λλ α
α

1cos,
0

OrtEctru nn
n

 

 
and then we obtained  

 

( ) ( ) .1cos,
0

MOrtEctru nn
n

<














+−−
≥ λ

λλ α
α

 

 
Approximately, we rewrite last equation as follows: 
 

( ) ( )( ) .cos,
0

MrtEctru nn
n

<−−
≥

λλ α
α

 

 
By virtue of (23), ),( tru  vanishes in the intervals 

whose end points are solutions of the following 
inequality  
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( )( )

( ) .cos

cos

2

0

0

≤
−

<

<−





≥

≥

α
α

α
α

λ
λ

λλ

tEc

M
r

MrtEc

nn
n

nn
n  

 
If we consider, 
 

( )
2
,,

n

nrf
nc α

λϕ=   

 
and equations (21) and (22) then nc  and 

( )α
α λ tE n−  are bounded, respectively. 

 

2

2

arccos

cos





=

≤

r

r

λ
λ  

 
the expanding 2arccos  
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1
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1
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1
2
1

2

4
2
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2

4
2
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2

4



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
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−
=
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





+++
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n
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j
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j
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n
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π
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The nodal length is 
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
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n
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Theorem: Suppose that q  is integrable at 

fractional diffusion equation. Then h  and 
qq −

π

0

 are 

uniquely determined by any dense set of nodal 
points. 

Proof: For ,∞≠h  consider the second problem 

with h
~  and .~q  Furthermore, let the nodal points ,njr  

n
jr  satisfy =njr

n
jr and form a dense set in [ ].,0 π   

Considering solutions of ( ) ( )65 −  as 
nu  for ( )qh,  

and nu
~  for ( )qh ~,~   

 

[ ] ( )( )

[ ] .~~~

~~~~
0

nnnn

r

nnnnnn
n

rnnnn

qq

tEcuuuu

ϕϕλλ

ϕϕϕϕλ α
α

−+−=









−−=− ′′

≥

′′ 
(26)

Recalling =n
jr  n

jr  then integrating both sides of 

(26) from 0 to n
jr  and using the boundary 

conditions 
 

( )( ) ( ) ( ) [ ] drqqhhtEc nnnn

r

nnnn
n

n
j

ϕϕλλϕϕλ α
α

~~~0~0~

00

−+−=−− 
≥

(27)

 
where: 

nn λλ =~  are uniformly bounded in n  and the 
nnϕϕ ~  

are uniformly bounded in n  and [ ].,0 π∈r   

We now select a subsequence of nodes from the 
dense set. If the subsequence tends to zero, then the 
right side of (27) is equal to zero. Then we obtain 
the following equations: 

 

( )( ) ( ) ( ) ,00~0~
0

=−−
≥

nnnn
n

hhtEc ϕϕλ α
α  

 
( ) ( ) ( ) ,00~0

0

≠−
≥

nnnn
n

tEc ϕϕλ α
α  

 
hence we get .~

hh =   
For ,∞≠H  similarly, to get that ,~

HH =  
integrating both sides of (26) from n

jr  to π  and 

select a subsequence that tends to ,   
 

( )( ) ( ) ( ) [ ] drqqHHtEc nnnn

r

nnnn
n n

j

ϕϕλλπϕπϕλ
π

α
α

~~~~~
0

−+−=−− 
≥

(28)

 
according to this results, we can say .~

HH =  Since 
.~,~

HHhh ==   
Now we take a sequence n

jr  accumulating at an 

arbitrary [ ]π,0∈r  and using the above method,  
 

[ ] ( )( )
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drtEcdruuuu
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nnnnnn
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rnnnn

r
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n
j
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ϕϕϕϕλ α
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~~~

~~~~
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
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
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
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≥

′′
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0

0

0
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drqq

rrrrtEc

rurururu

nnnn

r

nnnn

r

n
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n
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n
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n
jnnn
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n
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n
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n
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n
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n
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n
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ϕϕϕϕλ α
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


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≥
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using the asymptotic formulas of 

nλ  and ,~
nλ    
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( ) ( ) 0~
2
1~

2
1~~1~

000

=



















−−−+++−  dsdqHhdqHhqq nn

rnj

ϕϕττττ
π

ππ  

 
considering ,~

HH =  and hh
~=  and taking a 

sequence n
jr  accumulating at an arbitrary  ( ).,0 π∈r  

Thus  
 

( ) ( )( ) 0~~~
00

=







−−−  dsdqqqq nn

r

ϕϕτττ
π

 

 

for all .r   It is clear that ( ) ττ
π

dqq −
0

 is uniquely 

determined by a dense set of nodes. 
Corollary: For the fractional inverse nodal 

problem, the potential q  is uniquely determined by 
a dense set of nodes and the constant  

 

( ) .
0

2
11









++=  ττ

π

π dqHhc   

 
Proof: Suppose that .~cc =  Since hh

~=  and 

HH
~=  it follows that 

.~
00

qq  =
ππ  Thus the proof is 

obvious for qq ~=  almost everywhere on ( ).,0 π   

Conclusion 

In this paper, we have extended the scope of the 
inverse nodal problem by proving the uniqueness 
theorem for the fractional diffusion equation. We 
obtain the uniqueness of the potential function for 
the diffusion equation by using nodal data and 
fractional calculus. 

References 

BAS, E. Fundamental spectral theory of fractional 
singular Sturm-Liouville operator. Journal of 
Function Spaces and Applications, v. 2013, ID 
915830, p. 1-7, 2013. 
BOUMENIR, A.; TUAN, V. K. An inverse problem for 
the heat equation. Proceedings American 
Mathematical Society, v. 138, n. 11, p. 3911-3921, 
2010a. 

BOUMENIR, A.; TUAN, V. K. Recovery of a heat 
equation by four measurements at one end. 
Numerical Functional Analysis and Optimization, 
v. 31, n. 2, p. 155-163, 2010b. 

BROWNE, P. J.; SLEEMAN, B. D. Inverse nodal 
problem for Sturm-Liouville equation with 
eigenparameter depend boundary conditions. Inverse 
Problems, v. 12, n. 4, p. 377-381, 1996. 

CHECHKIN, A. V.; GORENFLO, R.; SOKOLOV, I. 
M.; GONCHAR, V. Y. Distributed order time-fractional 
diffusion equation. Fractional Calculus Applied 
Analysis, v. 6, n. 2, p. 259-279, 2003. 

CHENG, Y. H.; LAW, C. K.; TSAY, J. Remarks on a new 
inverse nodal problem. Journal of Mathematical 
Analysis and Applications, v. 248, n. 1, p. 145-155, 
2000. 

FREILING, G.; YURKO, V. Inverse Sturm-Liouville 
problems and their applications. Huntington: New 
Science Publishers Inc., 2001. 

GASYMOV, M. G.; GUSEINOV, G. S. Determination 
diffusion operator on spectral data. SSSR Dokl, v. 37, n. 2,  
p. 19-23, 1981. 

GORENFLO, R.; MAINARDI, F.; MORETTI, D.; 
PAGNINI, G.; PARADISI, P. Fractional diffusion: 
probability distributions and random walk models. 
Physica, v. 305, n. 1/2, p. 106-112, 2002. 

HALD, O.; McLAUGHLIN, J. R. Solutions of inverse 
nodal problems. Inverse Problems, v. 5, n. 3, p. 307-347, 
1989. 

ISAKOV, V. Inverse problems for partial differential 
equations. 2nd ed. Springer, Newyork, 2006. 
ISAKOV, V. On uniqueness in inverse problems for 
semilinear parabolic equations. Archive for Rational 
Mechanics and Analysis, v. 124, n. 1, p. 1-12,  
1993. 

JAULENT, M.; JEAN, C. The inverse s- wave scattering 
problem for a class of potentials depending on energy. 
Communications in Mathematical Physics, v. 28, n. 3, 
 p. 177-220, 1972. 

KILBAS, A.; SRIVASTAVA, H. M.; TRUJILLO, J. J. 
Theory and applications of fractional differential 
equations. Amsterdam, London and New York: 
Mathematical Studies, Elsevier (North-Holland) Science 
Publishers, 2006. 

KOYUNBAKAN, H.; PANAKHOV, E. S. A 
uniqueness theorem for Inverse Nodal problem. 
Inverse Problem in Science and Engineering,  
v. 12, n. 6, p. 517-524, 2007. 

LEVITAN, B. M. Inverse Sturm-Liouville problems. 
Utrecht: VNU Science Press, 1987. 

LEVITAN, B. M.; GASYMOV, M. G. Determination of a 
differential equation by two of its spectra. Russian 
Mathematical Surveys, v. 19, n. 2, p. 1-62, 1964. 

LEVITAN, B. M.; SARGSJAN, I. S. Introduction to 
spectral theory: Self adjoint ordinary differential 
operators. Translations of Mathematical Monographs. 
Providence: American Mathematical Society, 1975. 

McLAUGHLIN, J. R. Inverse spectral theory using nodal 
points as data - a uniqueness result. Journal Differential 
Equations, v. 73, n. 2, p. 354-362, 1988. 

PODLUBNY, I. Fractional differential equations: an 
introduction to fractional derivatives, fractional 
differential equations, methods of their solution and some 



The Inverse  Nodal problem for the fractional diffusion equation 257 

Acta Scientiarum. Technology Maringá, v. 37, n. 2, p. 251-257, Apr.-June, 2015 

of their applications. New York, London, Tokyo and 
Toronto: Mathematics in Science and Enginering, 
Academic Press, 1999. 

TUAN, V. K. Inverse problem for fractional diffusion 
equation. Fractional Calculus Applied Analysis, v. 14, 
n. 1, p. 31-55, 2011. 
YANG, F. X. A solution of the inverse nodal problem. 
Inverse Problems, v. 13, n. 1,  p. 203-213, 1997. 

 
 
Received on May 17, 2012. 
Accepted on June 22, 2012. 

 
 
License information: This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

 


