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ABSTRACT. In this paper, on a general finite interval, the inverse problem of recovering the potential
function for a fractional diffusion equation with new spectral parameter, called the nodal point, is given.
Furthermore, using Mittag Leffler function, asymptotic formulas for nodal points and nodal length for a

fractional diffusion equation are also found.
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O Inverse Nodal problema para a equagao de difusao fracionaria

RESUMO. Neste trabalho, em um intervalo finito geral, o problema inverso de recuperar a fungio
potencial para uma equagio de difusdo fraciondria com novo parimetro espectral, chamado de ponto nodal,
¢ dado. Além disso, usando a fungio de Mittag Leftler, férmulas assintdticas para os pontos nodais e
comprimento nodal para a equagio de difusdo fracioniria também sio encontrados.

Palavras-chave: cilculo fraciondrio, equacio de difusio fraciondria, problema nodal inversa, funcio Mittag Leftler,

férmulas assintdticas.

Introduction

Fractional calculus is 'the theory of derivatives
and integrals of any arbitrary real or complex order
which unify and generalize the notions of integer-
order differentiation and n— fold integration' Kilbas
et al. (2006), Podlubny (1999). It has been in the
minds of mathematicians for 315 years and still
contains many questions. Firstly, the idea of this area
appeared in a letter by Leibniz to L' Hospital in 17
century, Podlubny (1999). In the following three
hundred years a lot of mathematicians contribute to
the fractional calculus: Johann Bernoulli, John
Wallis, L. Euler, J. L. Lagrange, P. S. Laplace,
S. F. Lacroix, J. B. J. Fourier, N. H. Abel,
J. Liouville, S. S. Greatheed, A. Morgan,
B. Riemann, W. Center, H. Holmgren,
A. K Griinwald, A. V. Letnikov, H. Laurent,
O. Heaviside, G. H. Hardy, H. Weyl, E. L. Post,
H. T. Davis, A. Erdélyi, H. Kober, A. Zygmund,
M. Riesz, I. M. Gelfand, G. E. Shilov,
I. N. Sneddon, S. G. Samko, T. J. Osler, E. R. Love,
and many others Boumenir and Tuan, (20102 and b),
Chechkin et al. (2003), Freiling and Yurko (2001)
and Gorenflo et al. (2002). Fractional diftusion
equations have been investigated in a lot of different
physical situations. These equations are widely
applicable because many scenarios exist in which
they find relevance. Furthermore, inverse spectral

analysis involves the problem of restoring a linear
operator from some of its spectral parameters Isakov
(1993, 2006), Levitan and Gasymov (1964), Levitan
and Sargsjan (1975), Levitan (1987), Jaulent and Jean
(1972). Currently, inverse problems are being
studied for certain special classes of ordinary
differential operators. In recent years, Hald and
McLaughlin (1989) have taken an inverse problem
approach to the following problem:

L(y)= A, @)
¥'(0)-hy(0)= o0, 2)
¥(1)+ Hy(1)=0. ©)

The inverse nodal problem lies in the use of
nodal points of the eigenfunctions of (1)-(3) as
spectral parameters. Hald and McLaughlin (1989)
and Browne and Sleeman (1996) proved that one
can use the nodal points to determine the potential
function of regular Sturm-Liouville problem. In the
last years, the inverse nodal problem and fractional
calculus for Sturm Liouville problem has been
studied by several authors Browne and Sleeman
(1996), Yang (1997), Cheng et al. (2000),
McLaughlin (1988), Bas (2013), Koyunbakan and
Panakhov (2007), Gasymov and Guseinov (1981).

Tuan (2011) proved that by taking suitable initial
distributions only finitely many measurements on
the boundary were required to recover uniquely the
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diffusion coefficient of one dimensional fractional
diffusion equation. His method was based on
possibility of extracting the full boundary spectral
data from special lateral measurements. The purpose
of our study is to give the inverse problem of
recovering the potential function for the fractional
diffusion differential equation by using nodal datas
Hald and McLaughlin (1989).

Now, let's give the preliminaries and notations
regarding to the fractional calculus Kilbas
et al. (2006), Podlubny (1999).

Preliminaries and notations

1) Definition

A real function

f(r), r>0,

where:

is said to be in space C_, e R, if there exists a

real number p(> ¢), such that

fr)=r" £i(r)
where:

£i(r)e 10, ).

2) Definition

A real function

f(r), r>0,

where:
is said to be in space

cr, me Nu{o}, if f™ec

3) Definition

Let f e Ca
expression two of the most commonly encountered
tools in the theory and applications of fractional
calculus are provided by the Riemann-Liouville
operator RY

and g9?-1, in the following, the

o (- Tk (=) f()dr, (Re(a)>0),
k1 (Z)_{;R;“” f(z), (-n<Re(a)<0; neN),

and the Weyl operator W.* which are defined by

z

Bas

; | we £(2), (n<Re()<0; ne N).

wef(z)= {WIESLDO (t—2)"" f(¢)dr, (Re(ex)>0),
4) Definition

The Caputo derivative of fractional order ¢ of
function f(;) is defined as

L "6
(e —n) | (i

oD f(e)= dt (n-1<a<n). (4)

5) Definition

One and two-parameter function of the
Mittag-Leftler is defined by the series expansion, in
the following form, respectively,

E,(2)=) i
k=0
E,;(2)=) wiwm, (@>0, B>0)

As mentioned above, Vu Kim Tuan obtained
inverse problem for fractional diffusion equation in
Tuan (2011). In the present study, we will define
the inverse problem for the same equation by using
nodal datas. In the following for the operation and
content integrity, firstly we will give the basic
concepts for the equation.

Consider the 1-dimensional fractional diftusion
equation defined by

oDfu ( O=u, (r,t)—q(r)ulr,),0<r<zt>0, (5)
0,¢)~hu(0,1) =0,
ur(ﬂ,t)+Hu( ,1)=0, 6)
u(r,0)=f(r).

where:

ge L(0,z), fe L,(0,7),

and

“Dult),0<ar<1

o )

is the Caputo fractional derivative Tuan (2011).
Here the solution # depends on the lateral

boundary conditions. One may rewrite main four
cases for the direct problem, i.c.
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u,(0,¢)—hu(0,¢)= 0, h # oo,
u(0,¢)= 0, h=oo,

u, (7,t)+ Hu(rr,t)= 0, H # oo,
u(m,t)=0, H = oo,

)

If u(0,¢) = u(z,¢) = 0, it means
h =H =

b

where:
h and H have been fixed, ¢(r,A) is a solution

of the Sturm-Liouville problem at » =0

-¢"(r,A)+q(r)o(r,A)= Ae(r,A), 0<r<rz

»(0,4)=1, @' (0,4)=nh, if h#oo,

(8)

9(0,4)=0  @(0,4)=1  if h=o,

ﬂ’n and ¢(r’ ﬂ'n)

are the eigenvalues and eigenfunctions of the
boundary value problem (8) with the boundary

condition

¢(m, A)+Ho(r,2)=0,  if H#eo
%)

o(r,1)=0, if H =oo.

In all cases, ¢, shows the L,(0,7) norm of

o(r,2,). The normalized eigenfunctions

1
lf//n (7") = —¢(I",ﬂn )’ ||y/n 2 = 1’
a}’l
where:
a, =|e(r.4,)

Therefore, the generalized Fourier series of any
initial condition f e L, (0, r) is obtained by

fr)=2c,0lr.4,)

n=0

where:

cn=<f,wn>:<f,¢(l;,/1n)>. 0
o (24

n n

By virtue of the seperation of variables method
one can find the solution in the following form

ulr.t)= YT, ()plr.4, )

nz0

where:
T,(c) 1s a solution of the fractional differential

equation founded below:

DT (t)=—AT,(t) T(0)=c

The solution can be written as follows:
Tn (t) = CnEa (_ ﬂ’nta)‘

Take into account of the separation of variables
method the solution u’/ =u of (6) in the series form

“(F,f)ZZCnEa(—lnfa)(D(V,ﬁn) 11)

ur(r’t):ZCnEa(_ ﬂnfa)(/’/(’”aﬂn)- (12)

n=0

Lemma: For each fixed ¢ >0 the series (11) and
(12) converge uniformly on [0,71-1
Proof: Let #h#o. The asymptotic formulas,

Levitan and Gasymov (1964), Levitan and Sargsjan
(1975), Levitan (1987), for the solution ¢(r, 4, )

@(r,A)=cosAr+ O(\/%j (13)

by differentiating the last equation, we get

o(r,2)=— 1sinﬂr+hcosﬁr+0(\lﬁj (14)

and the eigenvalues

\/Z:n+£+0(l), 7= oo (15)

n n

where:

c :},[h +H +;J'q(r)dr}
0
Which yield

olr.2,)=00).  ¢(r.2,)=0@). relo.zl (6
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Let h=o. Then the asymptotic formulas,
Levitan and Gasymov (1964), Levitan and Sargsjan
(1975), Levitan (1987), for the solution ¢(,, 4, ) and

its derivative have the following form

o 2)= Sinjgr +o@

@' (r,A) = cos Ar+ O[\/%j

(17)

For the eigenvalues we have, Levitan and
Gasymov (1964), Levitan and Sargsjan (1975),
Levitan (1987),

ol 2) = Smf;” . o@

o'(r, /’L)—cosfr+0[

(18)

)

-

Consequently,

olri)=0[ 2] o) =00)

n

relo,z]. (19)

The Mittag-Leftler function is bounded Kilbas
et al. (2006),

C ar
‘Ea (z)‘ < ek - <U< ‘arg(z)‘ <, (20)
therefore,
‘Ea(— /1,,;“] < 1+j 2 0<arg(t) < p < min{zz,% —%} 1)

For ¢t >0, we get

o 1

E, (- 2:%)= O(nz} 22)

We have now, by the Cauchy-Schwartz
inequality,
ZCI, ,l( ) r /'L# S /1)
n=N n=N (23)

< CZ c, quz
n=N nzN 1

Let N choose large enough and ;¢ [0,7] Hence,
the series (11) converge uniformly on [o 7]

Similarly, for the series (12) we have

Bas

chEa(— lnt“)(p'(r,/l” < Z‘c ‘ Z‘E r A, )

n=N n=N n=N (24)
ezl L
if N is chosen large enough and re|0,7]

Consequently, the series (12) converge uniformly
on o, 7]

The uniform convergence of the series (11) and
(12) on [0, z] allows us to represent the readings at
the boundary points =0 and r=x as series of
Mittag-Leftler functions. We consider
Mittag-Leftler function series expansions which can
be summarized in the following cases Tuan (2011).

Forh=coandr=0, u,(0,¢)=3,s0c,E,(-4,:%)
Forh#eandr=0, u(0,£)=30c,E (— ﬂ”t”’)

ForH=ccandr =7, u,(7,t)= n>0(/nEa( A, z")(p’( )
ForH #eoandr=xz, u(r,t)= Mc,,Ea( A" )(p( A,).

(25)

Results

Let 2 <A <A,..—e be the eigenvalues of the
problem (5) and

0<n <...<rj” <m j=1,2,.,n-1

where:

be nodal points of n-th ecigenfunction. It is
shown that the set of all nodal points {rjf’} is dense in
[0, 7] In fact, judicious choice of one nodal point }/'j"
for eachy | n>1 also forms a dense set in [0, 7]

Using (11) and (13), and we may write

gt )

and then we obtained

ulr,t) =S¢, E, (- 2,1 )[cosﬁr + 0[\/%]} <M.

n=0

Approximately, we rewrite last equation as follows:

u(r,t)—Zc"Ea (— ﬂnt“)(cosﬁr

n=0

<M.

By virtue of (23), u(r,t) vanishes in the intervals

whose end points are solutions of the following
inequality
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D ¢,E, (— Ate )(cos \/Zr)< M

n=0

cosvAr < M <0
chEai— At° )

n=0

If we consider,

and equations (21) and (22) then ¢, and

n

E, (— At a) are bounded, respectively.

cosvAr < 02
JAr = arccos/?

the expanding arccos(’

! 24 +1 .
ﬂr:(J_Ej e (l), (]=1,2,...,n—1)

_(j—;);z' 0t +1 [1

0 —) (j=L2,n=1,n=12,..)

N RN T W7
= U=i)m + r+l +O[l}
/ n 20%n n
The nodal length is
1= =

Theorem: Suppose that 4 is integrable at

fractional diftusion equation. Then 4 and q_]’-q are

uniquely determined by any dense set of nodal
points.
Proof: For j o, consider the second problem

with 7 and g. Furthermore, let the nodal points rj”,

r.” satisty rf’ = r." and form a dense set in [0, z]

Considering solutions of (5)-(6) as u, for (n,q)
and #, for (h q

7 —u ] = {

=b—§+l

n=0

Sk, ><¢;a,,—¢,,a,;ﬂ

. (26)
—/h]%@’n-

Recalling =
(26) from 0 to r

r/ then integrating both sides of
and using the boundary

conditions

“Nn-7)p, (007, Hq G+ 7, - A,)0,3,dr 27)

PAHAS

n=0

where:
/Tn = A, are uniformly bounded in » and the ¢ @,
are uniformly bounded in 77 and r e [0, 7]

We now select a subsequence of nodes from the
dense set. If the subsequence tends to zero, then the

right side of (27) is equal to zero. Then we obtain
the following equations:

> e, E, (- 2,0 - 7)o, (0)7,(0) =

n=0

> eE, (- 4,:%)9,0007,(0)% 0

n=0

hence we get h=1.

For Hs#o, similarly, to get that pg=5#,

integrating both sides of (26) from r' to 7 and

select a subsequence that tends to ¥

Y e.E 40t - i1)o, 7. (x)= [la -7+ 7 - 2 )par (28)

according to this results, we can say g =f. Since
h=h, H=H.
Now we take a sequence r accumulating at an

arbitrary re [0, 7] and using the above method,

)M@—%@ﬂw

>
20 .

J

0=[lg-7+7 - 2lpp.dr.
0

using the asymptotic formulas of 4 and /Tn ,
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T)dT—h— H—f“.q drﬂq)”qznds
and h=h

sequence rjf’ accumulating at an arbitrary re (o,ﬂ-).

Thus

-7 Jito)-

considering H =H, and taking a

o) o =0

for all 7. It is clear that q—jq(r)dr is uniquely

determined by a dense set of nodes.
Corollary: For the fractional inverse nodal

problem, the potential ¢ is uniquely determined by
a dense set of nodes and the constant

cz;[h+H+;jq(r)drj.
0

Since h=# and
]-a Thus the proof is

Proof: Suppose that c=c.

H=H it follows that T":

obvious for ¢ =g almost everywhere on (0, 7).

Conclusion

In this paper, we have extended the scope of the
inverse nodal problem by proving the uniqueness
theorem for the fractional diffusion equation. We
obtain the uniqueness of the potential function for
the diffusion equation by using nodal data and
fractional calculus.
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