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ABSTRACT. The concept of statistical summability (C, 1) has recently been introduced by Moricz
(2002). In this paper, we use this notion of summability to prove the Korovkin type approximation
theorem for functions of two variables. Finally we construct an example by Bleimann, Butzer and Hahn
operators to show that our result is stronger than those of previously proved by other authors for ordinary
convergence and statistical convergence.

Keywords: statistical convergence, A-statistical convergence, statistical A—summability, statistical summability (C, 1),
positive linear operator, Korovkin type approximation theorem.

O teorema do tipo aproximac¢ao de Korovkin para fungoes de duas variabilidades pela
sumabilidade estatistica

RESUMO. O conceito de sumabilidade estatistica (C, 1) foi introduzido recentemente por Moricz (2002).
Usamos a nogio de sumabilidade nesse artigo para provar o teorema de aproximagio de Korovkin para
funcoes de duas variabilidades. Construimos um modelo pelos operadores de Bleimann, Butzer and Hahn
para mostrar que nossos resultados sio mais fortes do que aqueles provados por outros autores para
convergéncia ordindria e convergéncia statistica.

Palavras-chave: convergéncia estatistica, A-convergéncia estatistica, A-summabilidade estatistica, sumabilidade
estatistica (C, 1), operador linear positivo, teorema do tipo aproximagio de Korovkin.

Introduction

The concept of statistical convergence for
sequences of real numbers was introduced by Fast
(1951) and further studied by many others (FRIDY
1985; MOHIUDDINE; AIYUB, 2012;
MOHIUDDINE; ALGHAMDI, 2012;
MOHIUDDINE et al., 2010, 2013a).

Let kN and K, ={k$n:k€ K}, Then the
natural density of K is defined by
O(K) =lim,n"' | K, | if the limit exists, where |K |
denotes the cardinality of K,-

A sequence x = (x,) of real numbers is said to be
statistically convergent to L provided that for every
>0 the set K, :={keN:|x, —L[>¢&} has natural
density zero, i.e. for each £>0,

1
lim;|{k$n:|xk—L|Zg}|:()_

In this case we write st—limx = L. Note that if
x=(x,) is
convergent but not conversely. The idea of statistical
convergence of double sequences has been

convergent then it is statisically

introduced by Moricz (2003), Mursaleen and Edely
(2003) and further studied by Mohiuddine
et al. (20122, b and d; 2013b), Mursaleen and
Mohiuddine (2009).

Let A=(a"k ),n,ke N, be an infinite matrix and

x=(x,) be a sequence. Then the (transformed)

sequence, Ax:= (y,),is defined by

Yn = Zank'xk )
=

where it is assumed that the series on the right
converges for each ne N. We say that a sequence x
is A-summable to the limit £ if y, — ¢ as n — oo,

A matrix transformation is said to be regular if it
maps every convergent sequence into a convergent
sequence with the same limit. The well-known
conditions for a matrix to be regular are known as
Silverman-Toeplitz conditions (MADDOX, 1970).
Thatis 4=(a, ) is regular if and only if

| 4ll=sup, D |a, I<ee, )
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lim.a,, = 0 for each ¢ N, 2)
lim, 24, =1. (3)

In Edely and Mursaleen (2009) have given the
notion of statistical A-summability for single
sequences and statistical A-summability for double
sequences has recently been studied in (BELEN
etal.,, 2012).

Let 4= (a”k) be a nonnegative regular matrix and

x=(x,) be a sequence of real or complex sequences.

We say that x is statistically A-summable to L if for
every £>0,

5({116 N:‘yn—L‘Ze})=0.

So, if x is statistically A-summable to L then for
every £>0,

liml‘{nﬁm:‘yn —L‘ 26}=0.
m m

Note that if a sequence is bounded and
A-statistically convergent to L, then it is
A-summable to L; hence it 1is statistically
A-summable to L but not conversely [see Edely and
Mursaleen (2009)].

If 4=(C,1), the Cesaro matrix, then statistical
A-summability is reduced to statistical summability
(C, 1) due to Moricz (MORICZ, 2002).

For a sequence x=(x,), let us

-

n+l
statistically summable (C, 1) if st -1jm,.¢, = L. In

n

write

n .
t, Zk:()xk' We say that a sequence x = (x,) is

this case we write L = C,(st)- limx.

In the following example we exhibit that a
sequence is statistically summable (C, 1) but not
statistically convergent. Define a sequence 4 = (u,) by

lifk=m>—mm*—m+1,---,m*—1;
u, =4-mifk=m*,m=234; “4)

0 otherwise.

Then

n+l ®)

_ S—Hifn:mz7m+s;s:0,1,2,---,m71;m:2,3,---;
0 otherwise.

Mursaleen and Mohiuddine

It is easy to see that [y, ¢ =0 and hence

n

st-limpset, =0, le. wu=(u,) Is statistically

summable (C, 1) to 0. On the other hand
st -liminfs.u, =0 and st-limsup, _u, =1,
since the sequence (%)~ is statistically convergent
to 0. Hence 4 = (u,) is not statistically convergent.
Let 7=[0,) and C (I) denote the space of all

continuous real valued functions on I. Let
C,(I)={feC(): f is bounded on [}.C(I) and
C,(I) are equipped with norm

| £ “C(I): SU%) | f(x)].

Let H, (I) denote the space of all real valued

tunctions f on I such that

| £ ()= f(x)[< w(fﬂﬁ—ﬁb,

where:
@ is the modulus of continuity, i.e.

a(f;8)=sup{| f(s)— f(X)[| s —x[< 3.

s,xel

It is to be noted that any function fe H (1) is

continuous and bounded on 1.

The following Korovkin type theorem [see
Korovkin (1960)] was proved by Cakar and Gadjiev
(1999).

Theorem 1: Let (L,) be a sequence of positive

linear operators from H,(I) into Cy([). Then for
al feH, ()

’1113.} | L,(f3x)= f(x) ||cB(1): 0

if and only if

hm ” Ln (ﬁ;x)_g/ ”CB([): 0(l = 07152)9

n—>o0

where:
X X o
x)=1,g,(x)=—, g, (x)=(—)".
g (x)=1,g,(x) Iix 8,(x) (1+x)

Erkus and Duman (2005) have given the
st ,-version of the above theorem for functions of
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two variables. Quite recently, Korovkin type of
approximation theorems have been proved in
Alotaibi and Mursaleen (2012), Alotaibi et al. (2013),
Anastassiou et al. (2011), Belen and Mohiuddine
(2013), Braha et al. (2014), Demirci and Karakus
(2011, 2013), Dirik and Demirci (20102 and b),
Edely et al. (2010), Mohiuddine (2011),
Mohiuddine and Alotaibi (20132 and b),
Mohiuddine et al. (2012c), Mursaleen and Alotaibi
(2011, 2012, 2013), Mursaleen and Ahmad (2013),
Mursaleen and Edely (2009), Mursaleen and
Kilicman (2013), Mursaleen et al. (2012) for
functions of one and two variables by using almost
convergence, statistical convergence, A-statistical
convergence, statistical A-summability and weighted
statistical of single and double
sequences. In this paper, we use the notion of
statistical summability (C, 1) to prove a Korovkin
type approximation theorem for functions of two
variables with the help of test functions
o ) ()
I+x 1+y 1+x I+y

convergence

Main result

Let 7=[0,00) and K =1IXI. We denote by
C,(K) the space of all bounded and continuous real

valued functions on K equipped with norm

”f”CB(K):: sup | f(x,»)], f € Cyx(K).
(x,y)eK

Let H (K) denote the space of all real valued

functions f on K such that

[fs.)-f(x. ) €0 (f; \/(—) sy

1+s 1+x 1+ 1+y

where:

kL . . -
@ is the modulus of continuity, 1.e.

o'(f; 8) = sup 1/ (0= FE (s =) +(1=y)" <5}

(s.1).(x.¥)EK

It is to be noted that any function fe g  (K) i

bounded and continuous on K, and a necessary and
sufficient condition for fe 7  (K) is that
@

lim@ (f;0)=0.
50

We prove the following result:

Theorem 2: Let 4=(q,, ) be nonnegative regular

summability matrix. Let (7,) be a sequence of

positive linear operators from H _(K) into C,(K).

Then forall re g ,(K)

Cl(St)_lgmnllTk(f;xa)’)_f(xa)’)HcB(K):0 (5)

if and only if

G (St)_llgmwll T, (1;x,y)-1 ||CB(K):O (6)
. s X

Cl(St)_IELm%”Tk(m;x»)’)_rll%(mzo (7)
, t

Cl (St)_}»l_llll ” Tk(l X, ¥) = +y ”CB(K) 0 (8)
. S 2 S

CL(St)_]lcl_l;Ii”Tk((m) +(1+t) ix,¥) o

—((%)H( z
+x

m)') HcB(m:

Proof.: Since each of the functions fo(x, y)=1,

i) =——, fi(x,p)= ,ﬁ(xy) ( -’ (ﬁ)z

(6) (9) follow

belongs o H . (K), condltlons
2

immediately from (5). Let frepn (k) and
(x,y)e K be fixed. Then for g>0 there exist

6,0, >0 such that | f(s,t)— f(x,y)|< & holds for

all  (s,)e K satisfying |5 __x s and
l+s 1+x
‘L_ y |<5 Let
I+t 1+y
KO)={snNekK: |(———— LI
@=iGne \/(1+ 1+x) (1+t 1+y)

<& =min{s,.,})

Hence

\f(s,l‘)—f(x,y)|:\ f(sat)_f(xvy)‘/’(K(E)(Sat)

+ ‘ f(sat)_f(xzyﬂZK\K(ﬁ)(SaI)
SE+2NY g ks (551) (10)

where:
%, denotes the characteristic function of the set D

and y | £ e,k - Further we get

(— o

2 l+s 1+x

X (S0 <

~(m‘m> (1n
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Combining (10) and (11), we get

l+x 1+t 1+y

After using the properties of f, a simple
calculation gives that

IT.(f:x,0) - f(x,0) e+ M
‘+‘]Tk(fl1:x5y)_fi(xay)‘
+|T,(f:%0) = LW |+ T (f35x,9) = f;(6,0) [}

T (fo3 %) =Jo(x. )

where:

M : _8+N+ﬂ.
52

. 1 m
Now replacing T, (5x, %) by EZFOT,((-;X,J’) and

then by B, (:;x,7) and taking sup,, , we get

)eK ’

1B, %) =1 o) e = 6 +M U B foivt) ~o o)l
HIB,, (fi:x.9) = [iGe ) e oy H 1B, (Fx. ) = £, ) ey e
+11 B, (f:%60) =[50 M |l (13)

For a given r>0 choose £>0 such that e <.
Define the following sets

D= {m<ni| B, (f1x.0) = f@) e, 2 7

Dy = fm <l B, (fyi w0 = £y ey = 5,
D, = tm <l B, (hix.0 = £ 0=
Dy = m < nd B (fi5.0 = £ (63 o2
D= m <l B, (fy:%.0 = D) ey 2 G-
Then from (13), we see that
DcDuD,uD,UD, and therefore

8(D)<8(D,)+8(D,)+38(D,)+8(D,). Hence conditions
(6)—(9) imply the condition (5).

This completes the proof of the theorem.

For m=0 in the above theorem, we have the

following special case which is two variables version
of Theorem 1:

Corollary 2: Let 4=(q,) be nonnegative regular
summability matrix. Let (7,) be a sequence of

positive linear operators from f7 (k) into C,(K).

Then forall re g (k)

Mursaleen and Mohiuddine

£1E11|| T.(f3%.9) = [V ey =0 (14)

if and only if

,I(HEHT(I x,y)=1]lc O (15)

1im||Tk( X, Y)— ||CB(K) 0 (16)

}Lm”||T( J’)—THCB(K):O (17)
X2 Y 2 _

11rn||T(( ) +(*) J/)—((m) +(m) )HCB(KTO (18)

Statistical rate of convergence

In this section, using the concept of statistically
summable (C, 1) we study the rate of convergence
of positive linear operators with the help of the
modulus of continuity. Let us recall, for fe p (k)

R X
f(saf)‘f(x:)’)ga’(fa\/(m—m) (m ﬁ))
where:

@ (f;0)=sup { f(5.0)~ f(x, 0 (s —x) + (7~ y)’ <5}

(s.1)(x.y)eK
We have the following result:
Theorem 3: Let (7,) be a sequence of positive

linear operators from f (k) into C,(K). Assume

that
C, (s)=limee | T, (f0) = o Ny iy = 05 (19)
C, (st)~limu—o o (f; 6,)=0, (20)
where:
=T @) e, With w =y (s.1) = (r __)
)

Thenforall re g (k)

C(s)lim 1T (/) = f lleyis= 0

Proof.: Let fe H ,(K) be fixed and (x,y)e K
be fixed. Using lirearity and positivity of the
operators 7, forall n€ N, we have

(5.0 = SIS T f (.0 = f(x,0) %)
+‘ f(x:y)H ];c(ﬁ):‘xay)_‘fo(xay)‘
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ety
<T (&' (f;0 5 ); X, ¥)
+”f||c (K)|Tk(fo;x>y)_fo(xay)|
e I e
sn«me e A
+||f||cB(1<)|Tk(fo;xay)_fo(xayﬂ
oy
< (f:6)T,((1+ 1+s 1+x 1+t 1+y )%, 7)

52
+| f||CB(1<)|Tk(fo;xay)_fo(xay)|

<o (30T (fo3x.3) = fo(x, )]
+”f||CB(1<)|Tk(fo;xa)")_fo(x,y)|+a)*(f;5)

L@O(f39) 2t
5 k(((? E) +(1+t T): X,¥))-
Hence

” Tk(f)_fHCB(K)SHJ[HCB(K)”Tk(fo)_fo ”CB(K)
+a)*(f;§)”Tk(fo)_f0 ”cB(K)

WUJWTwmmmmmfm

Now if we choose §.=§

T ﬂ” T,(y) ”CB(K) >

then

||Tk(f)_f||CB(K)S”f“CB(K)”Tk(fO)_fO ||CB(K)
+@" (f;0) | T, (fo)— fo “CB(K) +20°(f30,).

Therefore

I Tk(f)_chg(K)gM{” L) -/ ”CB(K) +a)*(f;§n)
| T.(fo) = fo ”CB(K) +(o*(f;5n)}

where:
M=max{2,||f||CB(K)}. Now, for a given r>0,

choose € >0 such that £ > r. Let us write

E={k<n{|T,(fsx. )= f D) e, 27}

By = th S I T ()= fy 5 ) ey 02 S

E, :={k£n:a)"(f;5n)2§},

Ep=tksn: 0 (ST, (s x00 = fy (e ¢ 2 23

3K
Then ECE UE,UE, and therefore
O(E)<O(E)+O(E,))+S(E,). Using conditions

(19) and (20) we conclude

CI(SZ)_EE: I T.()~f ”CB(K): 0

This completes the proof of the theorem.

Example and the concluding remark

We show that the following double sequence of
positive linear operators satisfies the conditions of
Theorem 2 but does not satisfy the conditions of
Corollary 2 and Theorem 2 of (ERKUS; DUMAN,
2005).

Example 1: Consider the following Bleimann
et al. (1980) (of two variables) operators:

Sy £ £

Bn(f;x’y)f(ux) "(+y) S 0 J+1 n-k+l
2n)

nin) ;4

e

where:
feH,(K), K=[0,00)x0,00) and neN.

Since

(1+x)" = i["?jx’,

=0\ J

it is easy to see that

B, (fo:%,3) = 1= fi(x, ).

Also by simple calculation, we obtain

n X

B,(fsx.y)=—— ()=

n+l 1+x 1+x

= fi(x,y), and

B,(fyix.y)=—— (=) > 2= f,(x.y).
n+l 1+y I+y
Finally, we get
) _nn-1) x n x
Bllse = o G ey G
n(n .oy
(n+l)‘(l+y)
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_n .y
+(n+1)2 (1+y)

- (%)2 () = fi(x ).
+x 1+y

Now, take 4=C(1,1) and define u = (u,) by (4).
Let the operator L,:H,(K)— Cy(K) be defined by

L,(f;x,y)=+u, )B,(f;x,).

It is easy to see that the sequence (L) satisfies

the conditions (6), (7), (8) and (9). Hence by
Theorem 2, we have

C(sn)=tim [| L, (/%) =/ @)l e, = 51~ 1im

1 m
12 L300 = () |y = 0.

On the other hand, the sequence (Z,) does not

satisty the conditions of Corollary 2 and Theorem 2
of (EDELY et al., 2010), since (u,) as well as (r ) is

neither  convergent nor  statistically  (nor
A-statistically) convergent. That is, Corollary 2 and
Theorem 2 of (ERKUS; DUMAN, 2005) do not
work for our operators [, . Hence our Theorem 2 is

stronger than Corollary 2 and Theorem 2 of
(ERKUS; DUMAN, 2005).

Conclusion

Korovkin type approximation theorems have
recently been proved for different types of
summability methods, e.g. staitistcal convergence,
A-statistical convergence, Statistical A-summability

etc. In this paper, we have proved such
approximation theorem for functions of two
variables with the help of test functions

| y ( x
T+x 714y 1+x
of statistical summability (C, 1). Through an
example, we have also justified that our result was
stronger than those of previously proved for
ordinary convergence and statistical convergence.

2 (1 B4 )? by using the notion
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