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ABSTRACT. The Standardized Precipitation Index (SPI) is a mathematical algorithm developed for 
detecting and characterizing precipitation departures with regard to an expected regional climate condition. 
Thus, this study aimed to verify the possibility of using the time-independent general extreme value 
distribution (GEV) for modeling the probability of occurrence of both SPI annual maxima (the maximum 
monthly SPI value; SPImax) and SPI annual minima (the minimum monthly SPI value; SPImim) obtained 
from the weather station of Campinas, State of São Paulo, Brazil (1891-2011) and to evaluate the presence 
of trends, temporal persistence and periodical components in these two datasets. The goodness-of-fit tests 
used in this study quantify the agreement between the empirical cumulative distribution and the GEV 
cumulative function. Our results have indicated that such parametric function can be used to assess the 
probability of occurrence of SPImin and SPImax values. No significant serial correlation and no trend were 
detected in both series. For the SPImim, the wavelet analysis has detected a dominant mode in the 4-8 year band. 
Future studies should focus on the development of a GEV model capable of accounting for such feature. No 
dominant mode was found for the annual monthly SPI maximums. 
Keywords: wavelet analysis, Mann-Kendall test, SPI. 

Teoria dos valores extremos aplicada à dados mensais do índice padronizado de 
precipitação 

RESUMO. O Índice Padronizado de Precipitação (SPI) é um algoritmo matemática desenvolvido para 
caracterizar e detectar anomalias de precipitação pluvial em relação a uma condição climática esperada. 
Assim, os objetivos deste estudo foram verificar a possibilidade de utilizar a distribuição geral dos valores 
extremos (GEV; com parâmetros independes do tempo) para modelar a probabilidade de ocorrência dos 
valores mensais máximos (SPImax) e mínimos (SPImin), do referido índice de seca, obtidos a cada ano a 
partir da estação meteorológica de Campinas, Estado de São Paulo, Brasil (1891-2011) e, avaliar a presença 
de tendências, correlação serial e periodicidades em ambas as séries. Os testes de aderência utilizados 
quantificam a concordância entre a distribuição acumulativa empírica e a GEV. Com isso, os resultados 
desses procedimentos indicam que esse modelo paramétrico pode ser usado para estimar a probabilidade de 
ocorrência dos valores de SPImin e SPImax. Não foi observada a presença de tendências e correlações 
seriais em nenhuma das séries. Para o SPImim, a análise de ondaleta detectou um modo dominante na banda 4-8 
anos. Recomenda-se que futuros estudos abordem o desenvolvimento de um modelo GEV capaz de incorporar 
em seu algoritmo essa última característica. Nenhum modo dominante foi observado para o SPImax. 
Palavras-chave: análise de ondaleta, teste de Mann-Kendall, SPI. 

Introduction 

The Standardized Precipitation Index (SPI)1 is a 
mathematical algorithm developed for detecting and 
characterizing precipitation departures with regard 
to an expected regional climate condition. According 
to Wu et al. (2007) the SPI is widely accepted and 
used throughout the world in both operational and 
research modes because it is (conceptually) 
normalized to a location and is normalized in time. 
In Brazil, this drought index is widely used in 
operational mode by governmental agricultural 
                                                 
1 Developed by Mckee, T.B.; Doesken, N.J.; and Kleist, J. 

institutions, such as Empresa Brasileira de Pesquisa 
Agropecuária (EMBRAPA), Instituto Agronômico 
(IAC) and Instituto Nacional de Meteorologia 
(INMET) in order to monitor (possible) drought 
conditions in different regions of the country. A 
review on the qualities and limitations of the SPI as 
well as its association with different types of drought 
can be found in Blain (2012a). 

The aforementioned use of the SPI, associated 
with the fact that both positive and negative 
precipitation departures may cause damage to the 
agricultural production (LEITE et al., 2011), has 
allowed us to assume that evaluating the 
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probabilistic structure of high and low SPI values is 
an opportunity for increasing the knowledge related 
to the probability of occurrence of wet and dry 
events. Moreover, according to Bordi et al. (2007) 
and Hayes et al. (2011), the occurrence of dry or wet 
periods does not depend entirely on low or high 
precipitation totals. It also depends on a negative or a 
positive anomaly of these totals with respect to an 
expected regional climate condition. Consequently, 
after Bordi et al. (2007) have evaluated the nature of 
the tails of both precipitation and SPI distributions 
they indicated that this drought index is better than 
the precipitation for representing extreme wet and 
dry (monthly) events. 

The statistic of extreme values is frequently used 
to evaluate the behavior of the M highest values of 
m random data (WILKS, 2011). As described in 
Coles (2001) and Wilks (2011), a basic result from 
the Theory of Extreme Values (EVT) is the so-called 
Extremal Types Theorem which implies that when 
M is stabilized with suitable sequences, it has a 
limiting distribution that must be one of the three 
types of extreme value distribution, i.e. Gumbel 
(Type I), Fréchet (Type II) or Weibull (Type III). 
These three different types can be combined into a 
single model; the General Extreme Value 
Distribution (GEV). The GEV has all the flexibility 
of its three particular types (BLAIN, 2011a and b; 
CANNON, 2010; COLES, 2001; EL ADLOUNI et 
al., 2007; FURIÓ; MENEU, 2010; NADARAJAH; 
CHOI, 2007; PUJOL et al., 2007). According to 
Wilks (2011) a difficulty associated with the 
application of the EVT is that the M values are often 
drawn from different distribution since they may 
have been generated from different physical 
processes. However, Wilks (2011) states that this 
difficulty does not invalidate this function as a 
candidate distribution to describe the statistics of 
extremes. Empirically the GEV is “[…] often an 
excellent choice even when the assumptions of the 
EVT are not met” (WILKS, 2011, p. 108). It also has 
to be emphasized that the Extremal Types Theorem 
is also applicable to distributions of extreme minima, 
i.e. the lowest of m records (COLES, 2001; FURIÓ; 
MENEU, 2010; WILKS, 2011). 

The GEV is a three-parameter function such 
that, Pr{M ≤ zt} = GEV(zt; μ, σ, ξ). The Greek 
characters represent the time-independent 
parameters of this distribution. Therefore, as 
indicated by Coles (2001), Pujol et al. (2007), 
Nadarajah and Choi (2007), El Adlouni et al. (2007), 
Furió and Meneu, (2010), Cannon (2010) and Blain 

(2011a and b) if a significant trend is found in the 
sample data, the use of this so-called stationary 
approach may no longer be valid. In other words, in 
the presence of a significant time-trend the 
probability structure of the time series does change 
over time (the GEV parameters vary with the time). 
In this sense, Blain (2011c) mentions that the 
evaluation of trends and other non-random 
components should be carried out along with the fit 
of a parametric distribution to a given sample data. 
According to authors such as El adlouni et al. (2007) 
and Zhang et al. (2004) nonstationarity of extreme 
values may be detected by evaluating the presence of 
trends in their time series. In this view, after Bordi 
et al. (2007) have applied a time-independent GEV 
model for assessing wet and dry periods in Sicily-
Italy, they indicated that all statistical methods used 
in their study should be (in future efforts) adapted 
to the presence of climate trends. 

All these statements led to the following 
question. Is a time-independent GEV model suitable 
for assessing the probability of occurrence of 
extreme wet and dry months observed in one of the 
oldest weather stations of Brazil? Thus, the aims of 
this study were (i) to verify the possibility of using a 
time-independent GEV function for modeling the 
probability of occurrence of SPI annual maxima (the 
maximum monthly SPI value; SPImax) and SPI 
annual minima (the minimum monthly SPI value; 
SPImim) obtained from the weather station of 
Campinas, State of São Paulo, Brazil (1891-2011) 
and (ii) to evaluate the presence of trends, temporal 
persistence and periodical components in these two 
sample data. 

Material and methods 

Annual maximums and minimums of monthly 
SPI data were used from the weather station of 
Campinas (22º54’S; 47º05’W; 669m), State of São 
Paulo Brazil, between 1891 and 2011. According to 
Blain (2009, 2012b), the rainfall monthly series 
observed in this location can be considered as 
coming from a 2-parameter gamma distribution as 
well as a 3-parameter Pearson Type-III distribution. 
The shape of these monthly probability functions 
vary from a strongly skewed distribution similar to 
those observed in arid climate (July) to a bell-shaped 
distribution similar to those observed in equatorial 
climate (January). All statistical tests used in this 
study were performed at the 5% level. As described 
in Guttman (1999) the SPI calculation starts by 
determining a probability density function (pdf) 
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capable of properly describing the long-term 
observed precipitation. Once a pdf is chosen, the 
cumulative probability [H(PRE)], associated with a 
given precipitation amount, are obtained from the 
cumulative density function [cdf (x)]. H(PRE) is 
then estimated from the following mixed 
distribution: 

 
)()]/(1[)/()( xcdfNmNmPREH   (1)

 
where m is the number of zeros within a dataset 
composed of N observations. As described in Wu  
et al. (2007) the final step of this equiprobability 
transformation is based on the following rational 
approach proposed by Abramowitz and Stegun 
(1965). 
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co = 2.515517; c1 = 0.802853; c2 = 0.010328; d1= 
1.432788; d2 = 0.189269; d3 = 0.001308  

The SPI categories are shown in Table 1. 

Table 1. The SPI classification system. 

SPI values  Category 
Greater than 2.00  Extremely wet 
1.50 to 1.90 Very wet 
1.00 to 1.00 Moderately wet 
−0.99 to 0.99 Near normal 
−1.00 to −1.00 Moderately dry 
−1.50 to −1.00 Severely dry 
Less than −2.00  Extremely dry 
 

According to Guttman (1999) the Pearson type 
III (PE3) distribution is ‘the best universal model for 
SPI calculations’. Furthermore, Wu et al. (2007) 
have stated that the confidence in SPI results, 
obtained from the gamma 2-parameter distribution, 
can be affected because this probability density 
function has only two free parameters. In this view, 
based on distinct locations of the State of São Paulo, 
Blain (2011d) has indicated that the SPI series 
obtained from the PE3 meets more frequently the 
normality assumption (inherent to the use of this 
probabilistic standardized index) than the SPI series 
obtained from the gamma. Therefore, the SPI values 

were calculated by using the PE3 distribution. This 
last model was estimated as recommended by 
Guttman (1999) and Yue and Hashino (2007). 
Finally, it is worth mentioning that the SPI can be 
calculated for several time scales. However, as 
described in Bordi et al. (2007), time scales greater 
than the monthly scale introduces serial correlations 
into the SPI series. In this sense, Bordi et al. (2007) 
describes such component as ‘an unwished property’ 
for applying the classical EVT. Further information 
can be found in Bordi et al. (2007). As pointed out 
by Coles (2001), an extreme value analysis aims to 
quantify the stochastic variability of a process at 
unusually large levels. The so-called stationary GEV 
function is described as: 
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The cumulative GEV distribution is obtained by 

integrating the Equation 4. The parameters of the 
GEV distribution were estimated using the method 
of maximum likelihood as described in Coles 
(2001), Pujol et al. (2007), Nadarajah and Choi 
(2007) and Furió and Meneu (2010). Hereafter, 
these estimative will be represented by the italic font 
of each parameter; μ, σ, ξ and, for the sake of 
brevity, will be referred to as parameters. After 
estimating μ, σ, ξ, the return periods associated with 
each SPI value may also be calculated (COLES, 
2001). 

The chi-square test (χ2) and the Kolmogorov-
Smirnov test (KS) are frequently used to check the 
fit of a given dataset to a parametric distribution 
(WILKS, 2011). However, as pointed out by Wilks 
(2011) the χ2 test operates more naturally for 
discrete random variable because to calculate it, the 
range of the data must be divided into discrete 
classes. On the other hand, the KS test compares the 
theoretical and the empirical cumulative 
distribution. Consequently, for continuous data, the 
KS test is often more powerful than the χ2 (WILKS, 
2011). Herein, the null hypothesis (H0) of the KS 
test states that the data was drawn from a stationary-
GEV distribution. However, if (and only if) the 
parameters of the theoretical distribution have not 
been estimated from the same data used to evaluate 
the fit of the parametric distribution, the original 
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algorithm of the KS test is applicable (STEINSKOG 
et al., 2007; VLČEK; HUTH, 2009; WILKS, 2011). 
Given that the parameters of the GEV were fitted 
using all available data, the KS test had to be 
modified. Hereafter this adapted method will be 
referred to as Kolmogorov-Smirnov/Lilliefors test 
(KS-L). The statistical simulations required for 
calculating the KS-L test were based on the 
procedure called ‘non-uniform random number 
generation by inversion’. It were generated 
Ns=10000 synthetic data samples. More 
information about the KS-L can be found in Wilks 
(2011). 

Regarding extreme-value statistics, the 
Anderson-Darling test (AD) (ANDERSON; 
DARLING, 1952) is based on the sum of the 
squares of the differences between theoretical and 
empirical distribution with a weight function 
[Ψ(SPI)] which emphasizes the discrepancies in 
both tails (SHIN et al., 2012). This last feature 
cannot be observed in the KS-L algorithm. The 
AD test is based on a class of quadratic function, 
such that 
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where N is the length of the series, G(SPI) is the 
cumulative distribution function, and F(SPI) is the 
empirical distribution.  

As described in Shin et al. (2012) when [Ψ(SPI)] 
= 1, Qn becomes equal to the Cramer von Mises 
test. When Ψ(SPI) ={G(SPI)[1-G(SPI)]}-1; Qn 
becomes equal to the AD test. This last form of 
calculating Ψ(SPI) (and consequently Qn) usually 
leads to a more powerful test by emphasizing the 
tails differences (SHIN et al., 2012). According to 
Haddad and Rahman (2011) the AD test is better 
than other tests, such as Akaike Information 
Criterion and Bayesian Information Criterion, in 
recognizing the parent distribution when this last 
one is a 3-parameter function. As can be noted from 
equation 5 the AD gives equal weights to both upper 
and lower tails of the distribution (SHIN et al., 
2012). However, by following Shin et al. (2012) we 
may assume that studies addressing drought events 
are basically interested in the lower tail of the (SPI) 
distributions. By way of analogy, studies addressing 
wet events are fundamentally interested in the upper 
tail of the (SPI) distributions. In both cases, the use 
of a Ψ(SPI) that gives emphasis to discrepancies at 

either upper or lower tails of the distributions 
becomes an interesting choice. On such a 
background, we describe the modified Anderson-
Darling test (AHMAD et al, 1988), in which, for 
emphasis on the upper tail, Ψ(SPI) is set to be equal 
to [1-G(SPI)]-1 (Equation 6). For emphasis on the 
lower tail, Ψ(SPI) is set to be equal to [G(SPI)]-1 
(Equation 7). 
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As described in Shin et al. (2012) AU + AL = 

AD. As for the KS-L, the statistical simulations 
required for assessing the significance of AU, AL, 
and AD were obtained from the ‘non-uniform 
random number generation by inversion’ (Ns = 
10000). 

Temporal persistence, trends and periodical components 

A cdf summary may conveniently represent the 
probabilistic information obtained from a time series 
(MAIA et al., 2007). However, this convenient way 
is only appropriated in the presence of a non-
significant serial correlation. If the sample data 
exhibits significant auto-correlations such summary 
leads to a loss of information (MAIA et al., 2007). 
Therefore, the run test and the Durbin-Watson test 
(DW) were applied to verify if the time series can be 
considered as being free from temporal persistence 
(p-values above 0.05 indicate that the time series is 
free from significant serial correlations). For the 
same purpose, the significance of the lag-1 auto-
correlation coefficient (r1) was also evaluated. 
Further information regarding the r1 calculation can 
be found in Wilks (2011). 

The Mann-Kendall (MK) test (KENDALL; 
STUART, 1967) was used for evaluating the presence 
of trends in both SPImin and SPImax series. The null 
hypothesis (H0) associated with this widely used 
trend test assumes that the data is independently and 
identically distributed (iid). Under practical 
applications the rejection of such H0 is often taken as 
an evidence of the presence of trend in a given time 
series. By following Chandler and Scott (2011) we 
may assume that this last assumption is reasonable 
since in idd data no trend is present. However, the 
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evaluation of the presence of serial correlation is a 
fundamental step for avoiding a false rejection of H0 
(BLAIN; PIRES, 2011; BURN et al., 2004; 
SANSIGOLO; KAYANO, 2010) (among many 
others). The significance of each MK outcome was 
obtained from a bootstrap procedure considering  
Ns = 10000 trend-free synthetic sample data. Further 
information related to the MK calculation algorithm 
used in this study can be found in Burn et al. (2004). 
Although the significance of each MK statistics can 
also be obtained from the normal cumulative 
distribution function (BLAIN, 2011a; DUFEK; 
AMBRIZZI, 2008) (among many others) the 
bootstrap approach can be applied with any statistical 
test for trend detection (BURN; ELNUR, 2002). 
According to Yue and Pilon (2004) both approaches 
(bootstrap-based and normality assumption) have the 
same power. By following Torrence and Compo 
(1998), we applied the wavelet analysis to decompose 
both SPImax and SPImim series into time-frequency 
space. This spectral analysis has allowed (i) to observe 
the variance peaks in the frequency domain and (ii) to 
verify how those peaks vary in time. Detailed 
explanation of the wavelet technique, including its 
statistical significance testing, can be found in 
Torrence and Compo (1998). The wavelet function 
used in the present study was the Morlet wavelet 
(BEECHAM; CHOWDHURY, 2010; BLAIN 
2012b; PEZZI; KAYANO 2009). According to 
Souza-Echer et al. (2008) the complex Morlet wavelet 
is the most suitable to evaluate variations of 
periodicities in geophysical signals. The 
computational algorithm used for calculating this 
method is available at 
http://paos.colorado.edu/research/wavelets. 

Results and discussion 

The KS-L, AD, AU and AL tests quantify the 
agreement between the empirical cumulative 
distribution and the theoretical cumulative function 
(SHIN et al., 2012; WILKS, 2011). Therefore, these 
tests provide empirical evidences for accepting or 
rejecting the hypothesis that a given theoretical 
distribution may be used to assess the probability of 
occurrence of a given variable. In this view, all the 
goodness-of-fit tests have indicated that the time 
independent GEV model may be used to evaluate 
the probability of occurrence of the SPImax as well 
as the SPImim obtained from the weather station of 
Campinas. The p-values associated with each 
outcome were far from the 5% critical level. 

Regarding dry events, the results obtained from the 
tests were: KS-L = 0.0432 (p-value = 0.94),  
AD = 0.381 (p-value = 0.87), AL = 0.159 (p-value 
= 0.90), and AU = 0.221 (p-value = 0.77). 
Regarding wet events, the obtained outcomes were: 
KS-L=0.027 (p-value > 0.99), AD = 0.098 (p-value 
> 0.99), AL = 0.048 (p-value > 0.99), and  
AU = 0.050 (p-value > 0.99). Thus, we have 
enough empirical evidences to assume that both 
SPImax and SPImim observed during 1891-2011 in 
Campinas were drawn from a GEV distribution 
with the following parameters: μSPImim =-1.32  
[-1.41:-1.21], σSPImim = 0.50 [0.43:0.57], ξSPImim =  
-0.12 [-0.21:-0.02] (Dry events); μSPImax = -1.37 
[1.27:1.47], σSPImax = 0.52 [0.45:0.59], ξSPImax = -0.18 
[-0.30:-0.07] (Wet events); [.] represents the 95% 
confidence interval. 

As described in several studies such as Coles 
(2001), and Wilks (2011), the negative values of ξ 
have defined the third special case of the GEV 
distribution known as Weibull. Since this last 
parameter determines the rate of tail decay, such 
negative values have defined short-tailed (SPI) 
distributions (COLES, 2001). 

In addition, as described in Delgado et al. 
(2010), while μ defines the position of the GEV 
function with regard to the origin, σ defines the 
spread of the distribution. In this view, the 
confidence intervals associated with the estimates 
of σ (dry and wet events) and ξ (dry and wet 
events) overlap. Thus, the spread and the tail 
behavior of both SPImax and SPI min 
distributions were similar to each other. Table 2 
lists a practical application of these stationary GEV 
models. 

Aiming to reveal the effects of arid climate or 
those with a distinct dry season on the SPI values, 
Wu et al. (2007) used a mathematical algorithm 
(which may be seen as a normality test) in order to 
investigate whether the SPI values, obtained from 
different precipitation regimes across the United 
States, represent drought and flood events in a 
similar (probabilistic) way. Based on the same 
mathematical algorithm, Blain (2012b) identified 
that the SPI monthly values, obtained from the 
weather station of Campinas and computed from 
the PE3 function, can be seen as coming from a 
normal distribution with zero mean and unit 
variance. Therefore, from statistical inference theory 
we may assume that the probability of occurring a 
SPI value equal to or lower than -2 in a given month 
is (only) 0.02.  
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Table 2. Probabilities of occurrence of annual maximums and minimums of monthly-SPI values. Campinas, State of São Paulo, Brazil. 
The associated return period (RP) are also shown. 

SPI Pr{Z ≤ SPI} RP (1/Pr{Z ≤ SPI}) SPI Pr{Z > SPI} RP (1/Pr{Z > SPI}) 
-1.0 0.841 1 1.0 0.858 1 
-1.5 0.500 2 1.5 0.537 2 
-2.0 0.201 5 2.0 0.221 5 
-2.5 0.061 16 2.5 0.058 17 
    

In spite of this relative low probability, the 
probability of having at least one extreme dry month 
(SPI ≤ -2.0; Table 1) within a given year rises to 
0.20 (Table 2; weather station of Campinas). By 
analogy, while the return period associated with a 
monthly-SPI value equal to -2.0 is 50 years, the 
return period associated with the probability of 
having at least one extreme dry month within a 
given year is (only) 5 years. Similar conclusions can 
be taken for any other SPI value. From Table 2, the 
return period associated with SPI values between -
2.5 and -1.0 are similar to those related to SPI values 
between 1.0 and 2.5. This feature agrees with Bordi 
et al. (2007). According to these authors, both wet 
and dry SPI values have similar extreme behavior. 

Temporal persistence, trends, and periodical components 

The results obtained through the run and DW 
tests indicate no significant serial correlation in the 
analyzed datasets. Regarding the SPImin, the  

p-values obtained from both tests are, respectively, 
0.78 and 0.56. Regarding the SPImax, the p-values 
obtained from both tests are, respectively, 0.31 and 
0.68. 

These results agree with those obtained from 
the equation 7. The r1 values (-0.0832; SPImin 
and 0.013; SPImax) remained within the 5% 
significance interval. Thus, following Maia et al. 
(2007), we accepted that a cdf summary of both 
SPImin and SPImax series will result in loss of no 
significant information. The MK test indicated no 
significant trend in the SPImin and SPImax series 
(Figure 1).  

By following Coles (2001), Pujol et al. (2007), 
Nadarajah and Choi (2007), Furió and Meneu 
(2010), Cannon (2010) and Blain (2011a, b and c) 
we may interpret this lack of significant trends in 
the SPI series as supporting the use of the time-
independent approach adopted in this study.  
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Figure 1. Annual maximum monthly SPI (wet events) and annual minimum monthly SPI (dry events) obtained from the weather station 
of Campinas, State of São Paulo, Brazil. The Mann-Kendall trend test (MK) and the associated p-value are also shown. Horizontal lines 
represent the mean of each series. 
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As described by Beecham and Chowdhury (2010) 
the dashed line in the Global Wavelet Power (GWP; 
Figure 2b) represents the 95% confidence level. A 
given peak of variance, at any frequency level (f) that 
crosses this dashed line indicates a statistical 
significance for such (T = 1/f) period (BEECHAM; 
CHOWDHURY, 2010). Therefore, Figure 2b shows a 
significant variance peak with a frequency f that may be 
described, approximately, as f = 0.17yr-1. In other 
words, the Figure 2b indicates that the dominant 
mode of temporal variability of the SPImin is 
within the 4-8 year band. Considering the time-
frequency domain, the wavelet power spectrum 
(Figure 2a) showed intermittent concentration of 
energy within this band. 

For instance, there are appreciable powers from 
1900-1920 and from 1995-2002 (the area under the 
cone influence is not considered). Figure 2a also 
presented other (non-significant) variance peaks 
(1940-1960 and 1975-1985). Therefore, we may 
indicate that the Figure 2 provided evidences for 
accepting that the SPImin series has a dominant 
mode in the 4-8 year band. Considering the 2-4 year 
band, Figure 2a also showed other two periods of 
enhanced variance, 1965-1980 and 1995-2002. 
Investigating the physical phenomena that lead to 
such dominant mode is beyond the scope of this 
study. 

However, it is worth mentioning that after 
Torrence and Compo (1998) have applied the 
wavelet analysis to Niño 3 Sea Surface Temperature, 
they verified a concentration of wavelet power 
within the El-Niño Southern Oscillation band (2-8 

years). Thus, future studies should investigate a 
possible coherence between these two signals 
(SPImin and Niño 3 sea surface temperature). 
Finally, it has to be emphasized that the presence of 
a dominant mode indicates the need to consider 
such feature when the probability of occurrence of 
the SPImin values is being assessed. In other words, 
by way of analogy with Bordi et al. (2007), we 
recommend that the GEV model used herein, 
should be (in further studies) adapted to the 
presence of such periodical components. 

The lack of significant variance peaks in the 
spectral analysis, carried out in the frequency 
domain (Figure 3b; GWP), supported the hypothesis 
of no significant periodical component in the 
SPImax signal. In this sense, the wavelet power 
spectrum (time-frequency domain) presented a 
concentration of energy only within localized 
regions of Figure 3a (WPS). Considering the 4-8 
year scale, it was observed significant power only 
between 1900 and 1920. For time scales shorter than 
5 year, there are two significant variance peaks 
(1918-1923 and 1981-1983). Thus, the wavelet 
analysis showed the presence of no dominant mode 
in the SPImax temporal variability. 

Finally, the results found in this study allowed 
stating that future studies should verify the 
possibility of using the GEV function for modeling 
the probability of occurrence of both SPImax and 
SPImim obtained from other regions of interest. In 
this view, the procedures and the results described 
herein may be seen as a reference. 

 

 
Figure 2. (a) Wavelet power spectrum (WPS) of the annual minimum monthly SPI. Campinas, State of São Paulo, Brazil (normalized by 
1/0.311); (b) Global Power Spectrum (GWP - in variance units). 

 
Figure 3. (a) Wavelet power spectrum (WPS) of the annual maximum monthly SPI. Campinas, State of São Paulo, Brazil (normalized by 
1/0.3052); (b) Global Power Spectrum (GWP - in variance units).  
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Conclusion 

The time-independent GEV function can be 
used to assess the probability of occurrence of SPI 
annual maxima and minima (maximum and 
minimum monthly SPI values) obtained from 
Campinas, State of São Paulo, Brazil. 

For the SPI annual minima, the spectral analysis 
has detected a dominant mode in the 4-8 year band. 
This variability was not evenly distributed over the 
analyzed period. Therefore, the evaluation of a 
possible relationship between this dominant mode 
and a non-stationary geophysical process should be 
addressed in future studies. No dominant mode was 
detected for the SPI annual maxima. 
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