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ABSTRACT. Quality control in industrial and service systems requires the correct setting of input factors 
by which the outputs result at minimum cost with desirable characteristics. There are often more than one 
input and output in such systems. Response surface methodology in its multiple variable forms is one of 
the most applied methods to estimate and improve the quality characteristics of products with respect to 
control factors. When there is some degree of correlation among the variables, the existing method might 
lead into misleading improvement results. Current paper presents a new approach which takes the benefits 
of principal component analysis and multivariate regression to cope with the mentioned difficulties. Global 
criterion method of multiobjective optimization has been also used to reach a compromise solution which 
improves all response variables simultaneously. At the end, the proposed approach is described analytically 
by a numerical example. 
Keywords: correlated multi-response optimization, correlated covariates, simultaneous equation systems, principal 

component analysis (PCA), global criterion (GC) method. 

Nova abordagem de análise multivariada híbrido para otimizar múltiplas superfícies de 
resposta considerando as correlações em ambas as entradas e saídas 

RESUMO. Controle de qualidade em sistemas industriais e de serviços requer a configuração correta de 
fatores de entrada pelo qual as saídas são resultados a um custo mínimo com características desejáveis. 
Muitas vezes há mais de uma entradas e saídas em tais sistemas. Metodologia de superfície de resposta, em 
suas múltiplas formas variáveis é um dos métodos mais aplicados para estimar e melhorar as características 
de produtos de qualidade com relação aos fatores de controle. Quando existe algum grau de correlação 
entre as variáveis, o método existente pode levar a resultados enganosos melhoria. Este artigo apresenta uma 
nova abordagem que leva os benefícios da análise de componentes principais e regressão multivariada para 
lidar com as dificuldades mencionadas. Método critério global de otimização multiobjetivo foi também 
usado para alcançar uma solução de compromisso que melhora todas as variáveis simultaneamente. No 
final, o método proposto é descrita analiticamente por um exemplo numérico. 
Palavras-chave: correlacionados otimização multi-resposta, co-variáveis correlacionadas, sistemas de equações 

simultâneas, análise de componentes principais,  método critério global. 

Introduction 

Making decisions about complex problems 
involving process optimization and engineering design 
strongly depends on well identified effective factors. 
From the viewpoint of quality, a process should be 
designed so that the products could satisfy customer’s 
needs. Quality engineering techniques try to find the 
interrelations between input parameters and output 
quality characteristics (also called response variables) as 
well as to improve outputs. 

A common problem in product or process design is 
to determine optimal level of control variables where 
there are different outputs, which are often highly 
correlated. This problem is called multi-response 
optimization (MRO) with correlated responses. 

Several studies have presented approaches addressing 
multiple quality characteristics but few published 
papers have focused primarily on the existence of 
correlation.  

Correlation can also meaningfully affect the 
analysis of MRO problem in another way. Nuisances 
in experiments may be classified into the following 
three categories (MONTGOMERY, 2005).  

‘Known and controllable variables’ that are 
controllable, but their effect is not of interest as a 
factor. For this kind of nuisance, a technique called 
blocking can be used to systematically eliminate its 
effect in the statistical analysis. 

‘Unknown and uncontrollable variables’, that is, 
the existence of the factor is unknown and it may 
even be changing levels while the experiments are 
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conducted. Randomization is the design technique 
used to analyze such a nuisance factor. 

‘Known and uncontrollable variables’, 
especially, it could be measured during the 
experiment runs called covariates. In this case, 
finding individual effect of covariate and their 
interaction with other variables could help 
analysts to improve response values. 

Complex process or system may be affected by 
stochastic covariates which can be correlated. The 
correlation among inputs adds more complexity 
in estimation as well as optimization.  

This paper proposes a methodology that can 
analyze correlated multiple response surfaces 
fitted on control factors and correlated covariates. 
Global criterion (GC) method of vector 
optimization is also applied since there are several 
output characteristics to be optimized. 

The structure of the remaining part of this 
paper is as follows. The next section provides a 
summary of MRO approaches with special focus 
on correlated responses and correlated covariates. 
Afterwards, the required information about the 
proposed methodology is provided. Finally, 
section 4 illustrates the method by a numerical 
example. 

In multiresponse modeling there are often three 
types of variables: Factors, nuisances and responses. 
When a significant degree of correlation exists among 
the variables, the standard methods cannot estimate the 
model precisely and, consequently, the optimization 
results might be unreliable. Modeling and optimization 
of correlated response surfaces have been recently 
heightened by many researchers. Chiao and Hamada 
(2001) considered experiments with correlated 
multiple responses whose means, variances, and 
correlations depended on experimental factors. 
Analysis of these experiments consists of modeling 
distributional parameters in terms of the 
experimental factors and finding factor settings 
which maximize the probability of being in a 
specification region, i.e., all responses are 
simultaneously meeting their respective 
specifications. It is assumed that the 
multiresponse set has a multivariate normal 
distribution and also that each response variables 
is desired to be within a predefined specification 
region. Kazemzadeh et al. (2008) applied 
multiobjective goal programming model to 
provide a general framework for multiresponse 
optimization problems. Shah et al. (2004) used the 
seemingly unrelated regressions (SUR) method for 
estimating the regression parameters where there are 
correlated dependent variables. The method can be 
useful in MRS problem with correlated responses 

and leads to a more precise estimate of the optimum 
variable setting. PCA is a well-grounded statistical 
multivariate technique for dimension reduction and 
making independent components from a set of 
correlated variables. Tong et al. (2005) used PCA to 
convert correlated response variables to ordinary 
response surfaces and also applied a multi-criteria 
decision-making method called TOPSIS to 
aggregate several quality characteristics. Antony 
(2000) used PCA with Taguchi’s method. In this 
method, it is assumed that only those components 
whose eigenvalues are greater than one can be 
selected to form final response variables. Thus, their 
method could not be applied if the problem has 
more than one component with such 
characteristic. Tong et al. (2005) determined the 
optimization direction of each component based 
on corresponding variation mode charts. 
Furthermore, Wang (2007) used TOPSIS to find 
an overall performance index as a criterion for 
optimizing the multiple quality characteristics.  

In order to analyze covariates in MRO 
problem some research studies have recently been 
conducted. Hejazi et al. (2011) represented a 
novel method based on goal programming to find 
the best combination of factors so as to optimize 
multiresponse-multicovariate surfaces with 
consideration of location and dispersion effects. 
Moreover, they considered covariate probable 
values as an objective function which should be 
maximized. Salmasnia et al. (2013) applied PCA 
to reach uncorrelated sets of responses and 
covariates. They assumed that the probability 
distribution functions of the covariates are 
known. Desirability function was used to 
aggregate individual desirability of principal 
components (PCs) extracted from the location 
and dispersion effects as well as probability of the 
covariates. Hejazi et al. (2012) considered 
correlation coefficients to calculate expected value 
and variance of goal function in multiresponse 
optimization problem. They used these measures 
to construct deterministic equivalent for 
stochastic optimization models. Hejazi et al. 
(2013) introduced quality chain design (QCD) 
problem in multistage systems and proposed a 
multiresponse optimization model to find best 
factor setting with smaller covariance matrix. 
They let the response variables of each stage be 
considered as covariates affecting responses of the 
next stages. 

A summarized comparison of correlated 
multiresponse optimization methods are reported 
in Table 1. 
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Table 1. Comparative study of the major works on MRO with correlated data. 

Method Solution  
Space 

Location 
Effect 

Dispersion 
Effect 

Interaction 
Effect 

Approach on 
correlated inputs 

Approach on  
correlated outputs 

Optimization  
Approach 

(KAZEMZADEH  
et al., 2008) Continuous ● ● ● Not considered Considers Correlation  

Coefficient as responses 
Goal programming and 

Desirability fucntion 
(SHAH et al., 2004) Continuous ●  ● Not considered SUR method Desirability function 
(SU; TONG, 1997) Discrete ●   Not considered PCA Factor effects of new components 
(TONG et al., 2005) Discrete ●   Not considered PCA Variation mode  chart of PCA 

(CHIAO; HAMADA, 2001) Continuous ● ● ● Not considered Considers Correlation  
Coefficient as responses 

Joint probability maximization 

(ANTONY, 2000) Discrete  ●  Not considered PCA Signal to noise maximization 
(WANG, 2007) Discrete ● ●  Not considered PCA Variation mode  chart of PCA 

(RIBEIRO et al., 2010) Continuous ●  ● Not considered PCA Response surface fitting on  
first component 

(HEJAZI et al., 2011) Continuous ●  ● PCA Not considered Goal programming 
(SALMASNIA et al., 2013) Continuous ● ● ● PCA PCA Desirability function 

(HEJAZI et al., 2012) Continuous ● ● ● Not-considered Considered in calculating  
variance of the Goal function 

Goal programming 

(HEJAZI et al., 2013) Continuous ● ● ● Simulation Iterative SUR Minimizing the determinant and trace 
of the predicted covariance matrix 

 

According to the literature, many works have 
been conducted on using Principal Components 
Analysis (PCA) to solve correlated multiresponse 
problems.  PCA converts several correlated columns 
to independent components by linear 
transformations. These components are then 
substituted into multiple original responses. Another 
approach to solve this problem is based on 
prediction of the correlation as an individual 
response variable by Response Surface Methodology 
(RSM). Each of the mentioned approaches has 
specific benefits and limitations. It seems a sensible 
claim that PCA cannot provide proper directions for 
optimization of components. Moreover, if the 
number of selected components is less than the 
number of original responses, some information is 
lost. Consideration of correlation coefficients as 
separate response variables requires multi-replicated 
design for experiments. Additionally, the accuracy of 
estimated correlation is strongly dependent on the 
number of replications. However, more experiment 
runs are more costly and time-consuming. 
Furthermore, even though there are enough 
experimental runs, the statistical error in response 
regression is unavoidable. The last approach in 
solving multiresponse optimization problem is 
multivariate regression method that is very useful 
when response variables are correlated. 

The proposed method aims to consider all of 
location effects and correlation among the 
responses. In addition, probabilistic covariates are 
included into the multiresponse model to reduce 
error terms and uncovered variance.  

Material and methods 

When the problems involve several equations with 
common variables, it is recommended to estimate the 

parameters through a system of equations 
simultaneously. Various methods  such as Ordinary 
Least Squares (OLS), Cross-Equation Weighting 
method, SUR, Two-Stage Least Squares (2SLS), 
Weighted Two-Stage Least Squares (WTSLS), 
Three-stage Least Squares (3SLS), Full 
Information Maximum Likelihood (FIML), and 
the Generalized Method of Moments (GMM) 
have been proposed to solve such problems. 
Among them, SUR and FIML methods have been 
used in this paper to estimate the response 
surfaces simultaneously. 

The SUR method, also known as the multivariate 
regression, or Zellner's method, estimates the 
parameters of the system, accounting for 
heteroscedasticity and contemporaneous correlation in 
the errors across equations. 

Full Information Maximum Likelihood 
(FIML) estimates the likelihood function under 
the assumption that the contemporaneous errors 
have a joint normal distribution. 

The aforementioned methods are compared with 
respect to the main characteristics in Table 2. 

Table 2. Characteristics of the major methods of system 
estimation. 

Limiting assumptions 
Method of estimation 

Normality Homoscedasticity IPE1 IET2 Instruments 
OLS - * * * No 
Cross-Equation  
Weighting - - * * No 

SUR  
(ZELLNER, 1962) 

- - - - No 

2SLS 
(BASMANN, 1957) - * - * Yes 

WTSLS - - - * Yes 
3SLS  
(ZELLNER; THEIL, 1962) 

- - - - Yes 

FIML  
(AMEMIYA, 1977) 

* - - - No 

GMM 
(HANSEN, 1982) - - * - Yes 

1- Independency between Predictors and Errors 2- Independent error terms. 
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In this study, there are two main approaches 
included in the proposed methodology to analyze 
correlation among the inputs as well as the outputs. 
The covariates are initially transformed by PCA to 
remove their correlation and after that, the response 
surfaces between correlated response variables and 
input (including PCs and control factors) are fitted 
through a simultaneous equations system. 

Consecutive steps of the proposed approach are 
as follows: 

Step 1: Identify input and outputs variables. 
In this step, all potentially effective variables 

(namely responses, factors, covariates and other 
nuisances) should be identified. 

Step 2: Select a proper design and run the 
experiments. 

A proper design is selected for conducting the 
experiments regarding the number of variables and 
their levels. 

Step 3: PCA phase. 
Perform PCA on correlated covariates to get 

independent components (see appendix (A) for 
more details about PCA).  

Step 4: Develop a system of equations. 
4) a. Perform an initial RSM to get an insight 

about the more effective factors on each response.  
4) b. Define an equation for relations between 

each response and other variables. 
Next, enter each response variable and related 

factors as an equation into the system. In addition let 
each response be considered as a predictor variable for 
other ones. 

Step 5: Estimate parameters of the system. 
If the error terms are normally distributed, use 

FIML, otherwise perform ISUR method to estimate 
the coefficient of effects. 

Step 6: Construct multi-objective optimization 
model including the following objective functions.  

- Response surfaces related to quality characteristics. 
- Probability function of the PCs derived by using 

PCA transformation equations and probability 
function of original covariates. 

Step 7: Apply Global Criterion (GC) method to 
solve the multi-objective optimization model. 

In Section 4 these steps are discussed in details. 

Model representation 

A general multiresponse problem can be 
expressed as: 

 

Subject to:  ;   

(1)

where: 
ˆ ( )iR x represents response surface for ith quality 

characteristic;  
( )jf pc is the probability function of jth PC; 

x is vector of control factors; 
c is covariate vector calculated by inverting the 

PCA transformation.  
Furthermore, it is assumed that the process is 

statistically under control and the control range for 
covariate vector is [ lcl, ucl ]. 

Optimization method (Global Criterion)  

This method allows one to transform a multi-
objective optimization problem into a single-
objective problem. The function traditionally used 
in this method is distance. The multi-objective 
method can be written as follows: 

 

Optimize 
[minimize/maximize] 

1

ˆ ( )
( )

r r

i i
i

i i

T R x
F x w

d

   
 
 
  

Subject to: The same constraints 

(2)

 
where Ti is the optimum value of problem 
objective function when only ith objective was 
considered; wi is a value representing importance 
of each objective; di is the range of ith response 
within the observed experimental runs 
(DONOSO; FABREGAT, 2007). In this study 
GC method was applied to convert problem into 
single objective form. 

Results and discussion 

This section is organized to demonstrate the 
computational steps of the proposed approach. For 
this purpose, a numerical example from the 
literature is considered with some modifications 
(MONTGOMERY, 2005). 

Step 1: A chemical experiment with three 
controllable variables and two covariates is 
designed to be analyzed by the proposed method. 
The outputs are conversion (Y1) and activity (Y2) 
levels. Humidity (c1) and environment 
temperature (c2) are considered as probabilistic 
covariates.  

Step 2: A CCD design is selected and the 
experiments are conducted accordingly. Table 3 
shows the results of experiments gathered by a 
Central Composite Design (CCD).  

Step 3. PCA is performed on Humidity and 
Temperature factors. According to the 
observations, they have the following probability 
distribution.  



Multivariate multiresponse surface optimization 473 

Acta Scientiarum. Technology Maringá, v. 36, n. 3, p. 469-477, July-Sept., 2014 

 

Table 3. Results of designed experiments for numerical example. 

Time 
 (x1) 

Heat (x2) 
Catalyst  

(x3) 
Humidity  

(c1) 
Temp  

(c2) 
pc1 pc2 

Conversion 
 (R1) 

Activity  
(R2) 

-1.000 -1.000 -1.000 41% 16.7 16.719 -0.572 74.000 53.200 
1.000 -1.000 -1.000 55% 17.3 17.298 -0.469 51.000 62.900 
-1.000 1.000 -1.000 67% 19.3 19.284 -0.471 88.000 53.400 
1.000 1.000 -1.000 55% 12.3 12.327 -0.171 70.000 62.600 
-1.000 -1.000 1.000 12% 11.5 11.467 -0.561 71.000 57.300 
1.000 -1.000 1.000 95% 18.5 18.486 -0.140 90.000 67.900 
-1.000 1.000 1.000 65% 19.2 19.220 -0.482 66.000 59.800 
1.000 1.000 1.000 96% 16.5 16.528 -0.015 97.000 67.800 
0.000 0.000 0.000 30% 13.2 13.243 -0.481 81.000 59.200 
0.000 0.000 0.000 59% 14.0 13.973 -0.233 75.000 60.400 
0.000 0.000 0.000 46% 16.4 16.432 -0.505 76.000 59.100 
0.000 0.000 0.000 57% 16.4 16.377 -0.397 83.000 60.600 
-1.682 0.000 0.000 59% 13.5 13.494 -0.200 76.000 59.100 
1.682 0.000 0.000 33% 13.9 13.889 -0.485 79.000 65.900 
0.000 -1.682 0.000 48% 15.0 15.024 -0.401 85.000 60.000 
0.000 1.682 0.000 38% 13.1 13.098 -0.389 97.000 60.700 
0.000 0.000 -1.682 29% 12.7 12.707 -0.459 55.000 57.400 
0.000 0.000 1.682 20% 15.8 15.831 -0.731 81.000 63.200 
0.000 0.000 0.000 25% 11.5 11.530 -0.432 80.000 60.800 
0.000 0.000 0.000 75% 19.1 19.142 -0.378 91.000 58.900 
 

Since, there is a significant linear relationship 
between two covariates, it is reasonable to 
consider a bivariate distribution for their 
treatments. It may be observed that these two 
covariates follow a normal distribution with the 
following parameters: 

 
c1~ N(0.5032, (0.2278)2),  c2~ N(15.30, (2.581)2), and 
 ρ(c1, c2)=0.655 (3)

 
Consider the above distributions as marginal 

probability functions of c1 and c2. Therefore, the 
bivariate normal probability distribution for the 
covariates can be estimated as follows: 

 

 

 

(4)

 
PCA gives the following equations to transform 

the set of covariates into a set of independent ones 
(The required calculations are performed in Minitab 
statistical package). 

 

 

(5)

 
Step 4. Understanding the strong effects helps us 

to fit better surfaces of response variables. 
Therefore, Figure 1 is provided to show the effects 
graphically and separate RSMs have been initially 
conducted on each response to guess which 

predictive terms should be included in the 
estimation. The results showed that the following 
terms would be considered to construct the system 
of equations. 

 
Y1  x1, x2, x3, x1x3, x2x3, x2

2, x3
2 

 
Y2  x1, x3, pc1, pc2, Y1, x1pc2, pc1Y1, x3

2 

 
In this case, the problem is analyzed by Iterative 

Seemingly Unrelated Regression (ISUR) and FIML. 
The response surfaces regressed by the mentioned 
methods are given below in Table 4 (Eviews 
statistical package has been used to estimate the 
parameters in system). 

Table 4. Estimated equations in the system using FIML and 
ISUR method. 

Method Estimated system 
ISUR 

FIML 

R1(X,PC,Y)= 79.6+1.028 x1+3.898 x2+6.203 x3+ 
                         + 11.481 x1x3-3.901 x2x3+3.103x2

2-5.012x3
2 

R2(X,PC,Y)= 43.544+0.928 x1+2.37 x3+1.37 pc1+10.066 pc2+ 
                         + 0.267 Y1-5.868 x1 pc2-0.0177 pc1 Y1+0.97x3

2  
 
R1(X,PC,Y)= 79.6+1.028 x1+3.925 x2+6.204 x3+ 
                        + 11.481 x1x3-4.007 x2x3 +3.021 x2

2-5.0198x3
2 

R2(X,PC,Y)= 23.33+0.889 x1+2.17 x3+2.595 pc1+10.859 pc2+ 
                        + 0.531 Y1-5.811 x1 pc2-0.033 pc1 Y1+1.287x3

2  
 

Step 5. Construct the multiobjective 
optimization model 

Two response surfaces and two probability 
functions are to be considered as objective 
functions with respect to input variables 
constrained by their specification limits. 
Therefore, the multi-objective mathematical 
program for this problem is developed in which 
the decision variables consist of three factors and 
two interdependent covariates. 
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Figure 1. Matrix plot for the experimental data. 

 

Subject to:  
 

 

 

(6)

 
The last constraints calculate the original value of 

covariates by inverting the transformation matrix (A) 
and ensure that the covariates are within the pre-
specified statistical control limits. The following 
calculations are required to calculate the probability 
function of the PCs. 

Theorem 1- If C is vector of p random variables 
jointly distributed by Np(µc, ∑c), and A is a q p 
matrix, then the distribution of PC = AC remains a 
multivariate normal with the following parameters 
(Proofs are available in Rencher and Schaalje 
(2008)). 

 

PC CA   (7)
 

PC CA A    (8)
 

where A’ is the transpose of matrix A. 
According to Theorem 1, the distribution 

function of the PCs is given below. 

 
 
As shown above, the new components have 

zero covariance so their probability distributions 
can be expressed by two individual and uni-
variate normal variables. 

pc1~N(15.3, 6.682) and  pc2~N(-0.4, 0.029) 

Now, model represented by Equation set (6) can 
be explicitly formed as: 

 

 
Subject to: 
The same constraints 

(9)

 
Model (9) is a nonlinear programming due to 

the first two objective functions. It can be 
simplified to quadratic programming model by 
considering this point that the mode value of each 
normal distribution occurs at mean value. 
Therefore, the maximum probability equals to 
minimum distance form mean value.  
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(10)

 
With this property of normal distribution, the 

final multiobjective quadratic programming can be 
written as: 

 

 
Subject to: 
The same constraints 

(11)

 
Table 5 gives a summary of optimal solutions 

obtained by solving the above model for each 
objective functions separately. 

Table 5. Trade off matrix and required parameters of GC 
method. 

 Method of estimation Z1 Z2 R1 R2 
ISUR 0 0 100 73.832 Target (Ti) 
FIML 0 0 100 78.796 

Best observed 0.106 0.003 97 67.9 
Worst observed 1.541 2.272 51 53.2 
Range (di) 1.435 2.269 46 14.7 
 

According to Table 6, the final multi-objective 
mathematical model using Global Criterion can be 
constructed by replacing the objective functions of 
the above multi-objective program as Equation (6). 

 

 

(12)

 
In this example, we consider the same 

important degrees for all objective functions. 
Table 6 shows the optimal solution and the 
related objective values for this example. 

The results support the claim that the method 
which applies PCA on outputs cannot correctly 
find optimization direction. But the application of 
PCA to solve co-linearity among covariates would 
lead into better and more accurate estimations. It 
is also observed that most probable values of 
covariates would lead into the more reliable 
results. The PCA method reaches the target of 
first objective due to the large coefficient of first 
response in the first PC. It seems PCA is more 
useful for correlated predictors rather than 
correlated multiresponse problems. Most existing 
MRO works used PCA to gain uncorrelated 

responses, but they usually disregarded the proper 
direction of location effects. Moreover, the 
proposed methodology has following main 
features: 

Table 6. Optimal results of the numerical example. 

Method X PC C R1(X,C,Y) R2(X,C,Y) GC 

ISUR 

1.215

0.428

1.68

 
 
 
 
 

 15.222

0.394

 
  

 0.504

15.222

 
 
  100 70.837 0.0018 

FIML 

1.224

0.464

1.68

 
 
 
 
 

 14.965

0.383

 
  

 0.501

14.996

 
 
  100 78 0.0522 

(RIBEIRO et 
al., 2010) 

1.68

1.68

1.68

 
  
  

Not 
considered 

0.091

22.17

 
 
 

 

100 62.62 Not 
considered 

 

Multiple responses, multiple stochastic 
covariates have been analyzed by the methodology, 

The effects of covariates with known distribution 
function can be identified in this approach, 

PCA is used to solve co-linearity issues when 
there are meaningful dependencies among the 
covariates. 

Several objective functions and performance 
indices of a quality engineering problem can be 
optimized simultaneously by using GC method, 

The desired direction for optimization of 
responses doesn’t change after modeling and 
optimization.  

Conclusion  

This study proposes a new hybrid approach on 
multiresponse optimization in which PCA method 
applies to handle co-linearity among the covariates 
and uses multivariate system regression to predict 
the correlated responses. Current study tries to 
model the multiresponse-multicovariate problem in 
a simultaneous system of equations and use the 
estimated equations to construct an optimization 
program.  

For further studies, the mixed set of categorical and 
numerical responses is suggested. In this work, only 
the variances of observed values were considered. 
Therefore, the variances of predicted responses can be 
another future research on this subject.  
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Appendix: A 

 
 
Principal component analysis (PCA) 
Principal Component Analysis was initially introduced by Pearson (1901) and later developed by Hotelling 

(1933). PCA is a multivariate technique for dimension reduction and forming independent components from 
correlated variables. The maximum number of new variables that can be formed is equal to the number of 
original variables. If we have a set of p correlated variables, PCA generates p uncorrelated ones by linear 
combinations as follow: 

 
pc1 = w11 x1+ w12 x2+...+w1p xp  (A1)

 
Pc2 = w21 x1+ w22 x2+...+w2p xp  (A2)

 
Pcp = wp1 x1+ wp2 x2+...+wpp xp (A3)

 
where pc1, pc2, … , pcp are the p principal components and wij is the weight of the jth variable for the ith 
principal component. The weights, wij , are estimated such that: 

 

1 The principal components are created in order to decreasing variance, and
therefore the first principal component accounts for most variance in the data. 

Second component is found so that it can cover maximum amount of the
variance which is not identified by the first one and so on. 

 

2 wij
2+wi2

2+...+wip
2=1  i=1,2,...,p (A4)

3 wi1wj1+wi2wj2+...+wipwjp=0  for all i≠j
 

(A5)
 
Condition (2) is used to fix the scale of the new variables and is necessary because it is possible to increase 

the variance of a linear combination by changing the scale of the weights. The condition (3) ensures that 
W=(wij)p×p is an orthogonal matrix (Sharma, (1995)). 

 
 
 


