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ABSTRACT. The bootstrap method is generally performed by presupposing that each sample unit would 
show the same probability of being re-sampled. However, when a sample with outliers is taken into 
account, the empirical distribution generated by this method may be influenced, or rather, it may not 
accurately represent the original sample. Current study proposes a bootstrap algorithm that allows the use 
of measures of influence in the calculation of re-sampling probabilities. The method was reproduced in 
simulation scenarios taking into account the logistic growth curve model and the CovRatio measurement 
to evaluate the impact of an influential observation in the determinacy of the matrix of the co-variance of 
parameter estimates. In most cases, bias estimates were reduced. Consequently, the method is suitable to be 
used in non-linear models and allows the researcher to apply other measures for better bias reductions. 
Keywords: CovRatio, accuracy, precision, Monte Carlo. 

Proposta de um procedimento bootstrap utilizando medidas de influência em modelos de 
regressão não lineares na presença de outliers 

RESUMO. Em geral o método bootstrap é realizado supondo que cada unidade amostral apresente a mesma 
probabilidade de ser reamostrada. Contudo, ao considerar uma amostra que apresente outliers, a distribuição 
empírica gerada através da execução desse método pode ser influenciada, no sentido de não representar 
fielmente a amostra original. Tendo por base este problema, o objetivo desse trabalho consistiu em propor 
um algoritmo bootstrap que permita utilizar medidas de influência no cálculo das probabilidades de 
reamostragem. Com este propósito, a ilustração desse método foi feita em alguns cenários de simulação, 
considerando o modelo não linear de crescimento logístico e a medida CovRatio, utilizada para avaliar o 
impacto de uma observação influente no determinante da matriz de covariância das estimativas dos 
parâmetros. Observou-se que na maioria dos casos as estimativas dos vieses foram reduzidas. Concluiu-se 
que o método é adequado de ser utilizado em modelos não lineares, permitindo ao pesquisador aplicar 
outras medidas de tal forma a proporcionar melhor redução do viés. 
Palavras-chave: CovRatio, acurácia, precisão, Monte Carlo. 

Introdution 

When inferential methods in data analysis have 
to be applied, the researcher constantly faces atypical 
observations that are generally interpreted as 
outliers. The consequence of such observations 
consists in a breach of assumptions and/or the 
construction of statistical tests. It may be said that 
when outliers occur in a sample, the researcher must 
be very careful in the interpretation of results, since 
the latter may have been impaired. 

An alternative consists in the application of 
robust inferential methods in the occurrence of such 
issues. While taking into consideration samples from 
binomial populations within this context, Silva and 
Cirillo (2010) carried out a study related to the 
performance of an estimator for the binomial 

proportion by different concentration of outliers in 
the sample. Wood et al. (2005) used the same 
approach and proposed two estimators differentiated 
by the arithmetic and weighted mean of the 
observed proportions. When the estimators’ 
variances were compared, the authors concluded 
that the recommendation of an estimator will be 
given in different situations, characterized by the 
distribution of proportions and the number of trials 
(n) performed. 

It is worth mentioning that the use of bootstrap 
methods is specific to each problem. Field and 
Welsh (2007) discussed the effect of different ways 
of modeling clustered data and found that the 
consistency of variance estimates for a bootstrap 
method depended on the choice of model with the 
residual bootstrap. Nankervis (2005) conducted a 
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study of computer algorithms using double 
bootstrap to estimate intervals of confidence. It was a 
study of the robustness of statistical methods and 
model adjustments by outlier observations 
(CARONI; BILLOR, 2007; FILZMOSER et al., 
2008; JACKSON; CHEN, 2004). In this context, 
Cirillo et al. (2006) used the bootstrap method and 
studied the characteristics of Levene´s test with 
regard to the multivariate approach, known in the 
literature as a robust test to the breach in the 
supposition of normality. 

When the use of the bootstrap method in linear 
models was considered, Roberts and Martin (2006) 
used the bootstrap approach to obtain the critical 
points from the studentized residuals that detected 
the influence of outliers in linear regression issues in 
adjusting regression models while taking into 
consideration the non-normal error distributions. 

Within a similar context, bootstrap methods for 
the adjustment of robust regression by the least 
trimmed squares (LST) method were developed by 
Salibian-Barrera and Zamar (2002) and by Van Aelst 
and Willems (2002). In order to reduce the 
computational effort, Willems and Van Aelst (2005) 
proposed a more efficient bootstrap algorithm with 
more accurate estimates. In the case of LMS 
method, Jiménez-Gamero et al. (2004) proposed a 
method called reduced bootstrap for the median. 

In heteroscedastic models, Flachaire (2005) 
compared re-sampling methods that took into 
account different heteroscedastic residual structures 
in the re-sampling process with paired bootstrap. 
The author concluded that, taking into account the 
heteroscedastic structure, some asymptotic tests had 
a better performance. New bootstrap estimators for 
heteroscedastic models may be found in Cribari-
Neto and Gois (2002), Cribari-Neto and Soares 
(2003). 

In terms of predictive models, Austin and Tu 
(2004) provided significant considerations in the use 
of algorithms in different situations illustrated by 
multi-co-linearity, model selection methods and 
statistical adjustment. 

In the case of non-linear model studies, the 
researcher is constantly faced with situations of 
inability to obtain analytical solutions or to fix 
assumptions that would make feasible the derivation 
process. Due to this situation, the obtainment of 
accurate estimates becomes more serious when the 
sample to be submitted to the application of the 
bootstrap method provides a significant amount of 
outliers.  

The usual methods, known in the literature as 
parametric and nonparametric bootstrap 
(DAVISON; HINKLEY, 1997), may provide 

unreliable estimates since the probability of a sample 
unit be randomly selected to compose a bootstrap 
sample follows a uniform discrete distribution. In 
other words, all sampling units have the same 
probability of being selected. The application of 
these methods will certainly generate sub-samples 
that may have more outliers than the original sample 
(LOK; LEE, 2011). Salibian-Barrera et al. (2009) 
developed a bootstrap method for robust estimators 
which is computationally faster and more resistant 
to outliers than the classical bootstrap. This fast and 
robust bootstrap method is, under reasonable 
regularity conditions, asymptotically consistent. 

Regarding to the application of the bootstrap 
method and its problems to the presence of outliers, 
the attainment of estimates of nonlinear model 
parameters, for small samples, provided a field of 
research on the use of computing resources that 
reduced the computational effort. 

Current research proposes a bootstrap algorithm 
that allows the use of influence measures in the 
calculation of re-sampling probabilities. The method 
will be illustrated by some simulation scen arios 
according to the logistic growth curve model and the 
CovRatio measure used to evaluate the impact of an 
influential observation in determining the co-
variance matrix of estimated parameters. 

Material and methods 

Methodology is described according to the 
following steps: (i) Monte Carlo Simulation of the 
logistic model; (ii) bootstrap procedure with the 
incorporation of CovRatio influence measure and 
(iii) evaluation of the accuracy and precision of 
estimates of the logistic growth curve model 
parameter. 

(i) Monte Carlo simulation of the logistic growth curve 
model 

The logistic model studied in current research 
has been defined below (1) 

 
),...,1()]}([1/{ niyxexpy iii    (1)

 
where sample sizes are specified in n = 50 and 
150, xi, i = 1, ..., n, a co-variate with fixed effect. 
The parameter α referred to the upper asymptote; 
β corresponded to the curve intercept and γ 
indicated the average growth rate. Finally, εi 
referred to the ith residue generated by a 
contaminated normal distribution, with the 
following distributions: 
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where δ is the outlier percentage in the sample, 
previously specified at 5 and 10%. It should be noted 
that, with the above specific probabilities, the 
residues distributed by normal distribution indicated 
the reference population, whereas the residues 
generated by Beta distribution corresponded to 
outliers. Contaminated normal distribution was thus 
characterized. The parameters defined in Beta 
distribution, described in the expressions (2-4), were 
arbitrarily set, such that the distribution of residues 
to which outliers were generated, would present 
varying degrees of asymmetry (CASSEL et al., 
1999), as Figure 1 shows. 

It should be underscored that residues may be 
generated by asymmetrical normal distributions 
(AZZALINI; CAPITONIO, 2003; FANG et al., 
1990), following the aim of current investigation. 

The parametric rates in the model simulation (1) 
were arbitrarily defined by α = 1, β = 1 and γ = 1.5. 
Thus, for each sample generated, the least squares 
estimates were obtained by Gauss-Newton iterative 
method (MAZUCHELI; ACHCAR, 2002), with 
the following configurations: maximum number of 
iterations set at r = 1000, and convergence criterion 
set at ξ = 1e-100. Keeping these specifications in 
mind, 500 Monte Carlo simulations were performed 
for each situation within the combination of sample 
size (n), outlier percentage in the sample (δ) and 
distribution of residues (Figure 1). However, only K 
accomplishments that showed the convergence 
achieved in the Monte Carlo process and in the 
bootstrap procedure described in Section (ii), were 
taken into account. 

ii) Bootstrap procedure with the incorporation of 
CovRatio influence measure 

The incorporation of the CovRatio influence 
measure in bootstrap procedure for each situation 
was initially performed in two steps: 

(a) Obtaining Hessians matrices, represented by 
X on the solution of the least squares by Gauss-
Newton’s method; 

(b) Obtaining estimates of ordinary least squares, 
excluding the intercept and specifying the linearized 
model by Y = X + ε. It should be emphasized that 
the term linearized model in current assay does not 
deal with a transformation that makes the model 
linear; it is used as a symbolic notation with regard 
to the general linear model.  

0.4 0.5 0.6 0.7 0.8 0.9 1.0  
(a) 

-3 -2 -1 0 1 2 3  
(b) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6  
(c) 

Figure 1. Distributions of residues used in the generation of 
outliers (a) Beta (6.2); (b) Beta (6.6) and (c) Beta (2.6). 
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This is due to the replacement of the planning 
matrix by the Hessian matrix in (a). Thus, assuming 
the linearized models in (b), the influence measure  
Fi, i = 1, …, n, represented by CovRatio, used as a 
criterion for calculating the weights for each 
sampling observation, is imposed on the bootstrap 
procedure, following the algorithm below: 

1st - Consider a sample defined by set 
)},,(),,,{( 111 nnn xyxyD    where each element 

has been generated on a linearized model. 
2nd - Calculate the influence measure 

niFi ,,2,1,  , related to CovRatio. 

3rd - Assign weight wi to each observation, 
according to the rule  

(a) If ii rF   then ii Fw   

(b) If ii rF   then ii rw   

where ri indicates the ith studentized residuals of 
linearized non-linear model. 

4th - Calculate the probabilities of re-sampling by 

 
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5th - Assign to each element of set D the weights 
p1,...,pn, as below: 
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After the execution of this algorithm, the subsets 

formed from B=500 re-sample with replacement, 
performed on D (first step), are represented by 
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with Bb ,,1  . 
 
Ordinary least squares estimates were obtained 

for each subset Db. At the end of this procedure, B 
subsets were considered within the generation of 
empirical distribution of each parameter. 

iii) Accuracy and precision evaluation of estimates of 
logistic growth curve model parameter 

When the estimates of the logistic growth curve 
model parameters were obtained, an accuracy and 
precision analysis was undertaken for the validation 
of the bootstrap procedure proposed in Section (ii). 
Monte Carlo estimates (MC) and bootstrap with 
influence measure were the two approaches 
proposed, with estimates corrected by Monte Carlo 
bias (BMIC). 

Bias calculation was performed by assuming K 
samples, interpreted as the number of ‘valid’ 
samples, or rather, the simulated sample showed a 

convergence of the Gauss-Newton iterative method 
in the Monte Carlo simulation and in bootstrap 
procedure. Consequently, for each ‘valid’ sample, 
the computed estimates of logistic model (1) 
produced an empirical distribution, by which the 
bias could calculated, according to expressions (5) 
and (6). 

 

 

(5)

 

 

(6)

 
where ϴj is jth (j = 1, 2, 3) parameter of the 
parametric vector ;  and  

respectively referred to Monte Carlo and bootstrap 
estimate of the jth parameter specified in . In terms 

of accuracy, the standard deviation of estimates 
obtained through the Monte Carlo method (MC) 
and bootstrap (BMIC) was computed, following 
expressions (7) and (8). 

 

 

(7)

 

 

(8)

Results and discussion 

Model accuracy of the estimates of the BMIC bootstrap 
method with bias correction 

Results described in Table 1 correspond to the 
study of accuracy of the estimates of the logistic 
growth curve model parameters obtained by the 
Monte Carlo and the bootstrap methods (Section ii) 
proposed in current research. This was done by 
relative bias in the two approaches, namely, Monte 
Carlo simulations (MC) and bootstrap re-sample, 
respectively, with measures of  influence and 
estimates corrected by Monte Carlo bias (BMIC). 

Owing to results in Table 1, with different 
degrees of symmetry for the residue, BMIC in the 
two outlier percentage, δ = 5 and 10%, showed an 
improvement in estimate accuracy relating to 
parameter α, which represents the upper asymptote. 

Specifically with regard to the symmetric 
distribution of residues Beta (6.6), in agreement 
with  results by Cook et al. (1986)  concerning the 
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Table 1. Results relating to bias on estimates of logistic growth curve model parameter obtained by MC and BMIC methods due to 
different sample sizes (n), percentage of outliers in the sample (δ) and distribution of residues with different degrees of symmetry: left 
(Beta (6.2)); right (Beta (2.6)) and symmetric (Beta (6.6)). 

  Upper asymptote (α) 
δ = 5% δ = 10% Method n 

Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 
50 0.2506 0.1823 0.2007 0.1131 0.1539 0.1588 MC 

150 0.1090 0.0997 0.0624 0.0671 0.0715 0.0710 
50 0.0285 0.0167 0.0208 0.0327 0.0878 0.0539 BMIC 

150 0.0065 0.0376 0.0507 0.0440 0.0618 0.0208 
  Intercept of model (β) 

δ = 5% δ = 10% Method n 
Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 

MC 50 0.1854 0.5729 0.4607 0.2838 0.3124 0.2129 
 150 0.6067 1.0903 0.6270 0.7730 0.8470 1.1090 

50 0.2908 0.0913 0.1778 0.3765 0.1782 0.1594 BMIC 
150 0.0137 0.5854 0.1527 0.3514 0.2736 0.6737 

  Average growth rate (γ) 
δ = 5% δ = 10% Method n 

Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 
MC 50 0.7949 0.7836 0.8138 0.8020 0.8019 0.8028 
 150 0.8122 0.8548 0.8419 0.8449 0.8684 0.8308 

50 1.8578 0.6463 1.8239 0.7527 1.3738 2.5804 BMIC 
150 0.3760 2.0029 0.4386 1.9275 1.6052 0.1141 

MC = Monte Carlo method. BMIC = bootstrap method with measure of influence corrected by Monte Carlo bias. 

biases of maximum likelihood estimates in non-
linear regression models, the authors concluded that 
low bias rate might be a merely consequence of the 
position of the co-variate sample space. Since results 
were based on a few simulation scenarios, no strong 
statistical evidence exists that would allow broader 
conclusions on BMIC performance. 

In situations involving the asymmetric 
distribution of residuals (Beta (2.6)) and Beta (6.2)), 
evidence exists that the breach in conditions of 
regularity of nonlinear models have contributed to 
high bias results, which may be mainly observed in 
small samples (n = 50). Consequently, the BMIC 
method provided a reduction in bias estimate and 
the method may be recommended for such 
situations. 

It is worth noting that results obtained for large 
samples (n = 150), even in limitation, have been 
adequate in certain specific situations. This is 
especially true for results of Beta (2.6) distribution 
by different amounts of outliers (δ = 5%) and (δ = 
10%) in which the rates were below 0.01 and 
consistent with recommendation by Box (1971) who 
considered it a reasonable rate relative bias equal to 
or less than 0.01. 

Taking into consideration the results for curve 
intercept, represented by parameter β, it may be said 
that BMIC reduced bias in the two sample sizes 
within situations where the distribution of residuals 
was asymmetric. However, biases did not provide 
adequate rates, according to criterion by Box (1971). 

With regard to the above criterion for results in 
current research, correction by Monte Carlo bias, 
imposed on the bias calculation of bootstrap 
estimates, was not efficient. An alternative to achieve 

a more significant reduction in bias rates is the 
application of bias correction techniques, suggested 
by Cox and Snell (1968) and Mackinnon and Smith 
(1998). An example may be found in Cordeiro 
(2004), or rather, a proposal for the bias correction 
of maximum likelihood estimators in the class of 
nonlinear regression symmetric homoscedastic 
models. 

Alternatively, other measures of influences, such 
as Dffits, Dfbetas and the use of a transformation in 
the variable response to minimize the effects of 
outliers, may be suggested. Rodrigues et al. (2010) 
suggested isotonic regression with different weights. 
Within the context of robust models, alternatives to 
normal errors have been proposed in the literature, 
with heavier tail distributions for residues with 
regard to normal distribution so that the influence 
of aberrant points could be reduced. 

In terms of accuracy of estimates of parameter γ, 
interpreted as an average rate of growth, BMIC 
provided inconsistent results. This fact was 
notorious mainly for small samples. When small and 
even moderate sample sizes were taken into account, 
the formulas that calculated second-order biases 
were extremely useful to ensure improvement in the 
accuracy of the estimators. 

Precision of estimates of the BMIC bootstrap method 
with bias correction 

Following the methodology described in the 
specifications and evaluated for accuracy, Table 2 
demonstrates the precision results. 

When all the situations analyzed are taken into 
account, estimates of results for BMIC method, in 
the case of the parameter α, were imprecise. 
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Table 2. Results of standard deviations of the parameter estimates of logistic growth curve model obtained by MC and BMIC for 
different sample sizes (n), percentage of outliers in the sample (δ) and distribution of residues with different degrees of symmetry: left 
(Beta (6.2)); right (Beta (2.6)) and symmetric (Beta(6.6)). 

  Upper asymptote (α) 
Method δ = 5% δ = 10% 
 

N 
Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 

50 0.7130 0.2954 0.5303 0.2383 0.2718 0.3293 MC 
150 0.2256 0.2427 0.1513 0.2172 0.1797 0.2270 
50 0.4138 0.4435 0.3293 0.4794 0.6221 0.5011 BMIC 

150 0.2498 0.4691 0.3647 0.3977 0.6015 0.5075 
  Intercept of the model (β) 
Method δ = 5% δ = 10% 
 

n 
Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 

MC 50 1.9535 2.4357 1.7542 1.6458 1.5706 1.1813 
 150 1.7344 2.9820 1.6555 2.6015 1.1162 2.8225 

50 0.7019 0.7519 1.5189 1.6382 0.8350 0.7937 BMIC 
150 0.5931 0.9043 1.0720 0.8608 0.6108 0.8357 

  Average growth rate (γ) 
Method δ = 5% δ = 10% 
 

n 
Beta (6.6) Beta (6.2) Beta (2.6) Beta (6.6) Beta (6.2) Beta (2.6) 

MC 50 0.3057 0.6745 0.3107 0.3064 0.3147 0.3092 
 150 0.5041 0.3429 0.2546 0.2955 0.2303 0.4360 

50 13.7013 10.6441 8.2448 10.0699 11.7297  8.3438 BMIC 
150 34.3643 38.2027 41.7933 23.5487 46.1629 35.0767 

MC = Monte Carlo method. BMIC = bootstrap method with measure of influence corrected by Monte Carlo bias. 

One of the causes of imprecision might have 
been the lack of accuracy of results in Table 1. In 
this context, Meyer et al. (2006) indicated that the 
overestimation of the lack of precision was largely 
related to lack of model accuracy (high bias). The 
same author suggested that other related measures, 
such as the square root of the mean error of 
prediction, might be used since this measure 
corrected the lack of accuracy. 

With regard to the precision of estimates related 
to parameter β, the curve intercept, results in Table 
2 showed that method BMIC reduced average 
deviation patterns in the two situations, 
characterized by different amounts of outliers 
contained in the sample, previously fixed at δ = 5 
and 10%. With regard to estimates regarding the 
average rate of growth, represented by parameter γ, 
results in Table 2 indicated that, within the 
evaluation of these scenarios, the BMIC method 
resulted in low precision estimates. This fact was 
detected in all situations evaluated, including larger 
samples (n = 150). 

It is highly relevant to mention that Evans (1996) 
discussed the effect of the degree of asymmetry of 
two growth curves on the precision of estimates of 
least squares of their parameters by Student’s t 
statistic. The author employed the 4-parameter 
logistic model developed by Stone (1980), with the 
fourth parameter as ϴ. 

The parameter’s function is given by relating the 
time that the inflection point is located on the curve 
as a function of upper asymptote represented by the 
model’s parameter α. The author concluded that 
asymmetry had a more detrimental effect on the 

variances of the parameters of the modified logistic 
model. In fact, the average growth rate was the most 
affected parameter. 

Conclusion 

The bootstrap procedure may be applicable to 
non-linear model fitting in a given sample with 
outliers. However, caution must be taken in the 
choice of measure influences as a calculation 
criterion to obtain re-sampling probabilities. 

In terms of the application to the logistic growth 
curve model for distributions with outliers from 
asymmetric distributions, BMIC reduced bias by 
more accurate and precise estimates, specifically 
parameters α and β, which respectively represented 
the upper asymptote and the intercept. 
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