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ABSTRACT. Recognition of isolated spoken digits is the core procedure for a large number of 
applications which rely solely on speech for data exchange, as in telephone-based services, such as dialing, 
airline reservation, bank transaction and price quotation. Spoken digit recognition is generally a challenging 
task since the signals last for a short period of time and often some digits are acoustically very similar to 
other digits. The objective of this paper is to investigate the use of machine learning algorithms for spoken 
digit recognition and disclose the free availability of a database with digits pronounced in English and 
Portuguese to the scientific community. Since machine learning algorithms are fully dependent on 
predictive attributes to build precise classifiers, we believe that the most important task for successfully 
recognizing spoken digits is feature extraction. In this work, we show that Line Spectral Frequencies (LSF) 
provide a set of highly predictive coefficients. We evaluated our classifiers in different settings by altering 
the sampling rate to simulate low quality channels and varying the number of coefficients.  
Keywords: spoken digit recognition, mel-frequency cepstrum coefficients, line spectral frequencies. 

Um estudo comparativo entre os coeficientes MFCC e LSF no reconhecimento automático 
de dígitos isolados pronunciados em português e inglês 

RESUMO. Reconhecimento de dígitos falados isoladamente é o procedimento fundamental para um 
grande número de aplicações importantes que dependem somente da fala para troca de dados, como em 
serviços de telefonia, tais como discagem, reserva de passagens aéreas, transações bancárias e cotações de 
preço. O reconhecimento é uma tarefa desafiadora visto que os sinais possuem curto período de tempo e 
muitas vezes alguns dígitos são acusticamente muito semelhantes a outros dígitos. O objetivo deste trabalho 
é investigar o uso de algoritmos de aprendizado de máquina para reconhecimento de dígitos falados e 
divulgar para a comunidade científica a livre disponibilidade de um banco de dados com dígitos 
pronunciados em inglês e português. Uma vez que algoritmos de aprendizado de máquina são totalmente 
dependentes de atributos preditivos para construir classificadores precisos, acreditamos que a tarefa mais 
importante para reconhecimento de dígitos falados é a extração de características. Neste trabalho, 
mostramos que Line Spectral Frequencies (LSF) fornecem um conjunto de coeficientes altamente preditivos. 
Os classificadores foram avaliados em diferentes configurações alterando a taxa de amostragem para simular 
canais de baixa qualidade e variando o número de coeficientes. 
Palavras-chave: reconhecimento de dígitos falados, coeficientes mel-cepstrais, frequências de linhas espectrais. 

Introduction 

In the last decades, research on speech and 
speaker recognition has attracted an enormous 
amount of attention, mainly due to the increasing 
number of applications such as biometric 
authentication, in which a user's voice is used to 
allow or deny access to a system; and accessibility, in 
which a user is able to control equipment or 
navigate the Internet using speech; thus facilitating 
these tasks to physically impaired people. 

An important speech recognition application, 
especially useful for  telephone service providers, is 

is the recognition of isolated spoken digits. It can 
be used to replace the unattractive ‘push button’ 
system used in Interactive Voice Response menus. 
By using speech interaction, companies make 
their services user-friendlier compared with 
entering numbers on the telephone keypad. This 
is even more evident when the procedure is done 
through mobile devices, in which there are no 
physically detached keyboards for dialing. 

Digit recognition seems to be an easy task 
compared to general speech recognition. However, 
spoken digit recognition is challenging due to two 
main reasons (KOPPARAPU; RAO, 2004): 
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- Spoken digits are of short acoustic duration, 
typically a few seconds of speech; 

- Some digits are acoustically very similar to each 
other (for example, ‘one’ and ‘nine’). 

Due to the relevance of this problem, several papers 
have been published, trying to improve digit 
recognition in different languages, such as English 
(NIMJE; SHANDILYA, 2011), Portuguese (SILVA et 
al., 2012), Arabic (ALOTAIBI, 2005) and Mandarin 
(SHYU et al., 2000). 

Speech recognition applications, including 
spoken digits, follow the process of pattern 
recognition. In this process, summarized in Figure 1, 
an important step is feature extraction. This step is 
crucial to the application's success, since machine 
learning algorithms are fully dependent on 
predictive attributes to build precise classifiers. In 
speech recognition, and in sound recognition in 
general, the raw (audio) data are composed of a huge 
amount of very weak features. In this way, most 
machine learning algorithms are not able to build 
accurate classifiers, mainly due to the curse of 
dimensionality (FRIEDMAN, 1997). Therefore, we 
believe that the most important task for successfully 
recognizing spoken digits is feature extraction. 

In general, spoken digit recognition papers have a 
common framework, in which Mel-Frequency 
Cepstral Coefficients (MFCC) are used as main 
features. Recently, we had discussed that Line 
Spectral Frequencies (LSF) coefficients provide very 
competitive results in the recognition of digits in 
Portuguese (SILVA et al., 2012). 

In this paper, we expand the experiments of Silva 
et al. (2012) in terms of data analysis and 
methodology in the following aspects: 

- We use a new database of spoken digits in 
Portuguese and English. Therefore, we evaluate the 
influence of language in our classification results 
and the potential of extrapolating our techniques to 
other languages; 

- We provide a wider set of experimental settings 
with different number of MFCC and LSF 
coefficients. Thus, we provide a deeper 
understanding of the influence of such parameters 
in the classification performance; 

- We vary the audio sampling rate to simulate the 
frequency response range of public switched 
telephone networks. Therefore, we evaluate the 

robustness of our method in low-quality channels 
such as standard telephone lines. 

We note that in order to make our results fully 
reproducible, we made our newly collected database 
of spoken digits publicly available on a paper website 
(SILVA et al., 2013). This paper website also 
contains all data, code and supplemental material 
that were not included in this paper due to space 
restrictions. 

Our results show that Line Spectral Frequencies 
(LSF) provide a set of highly predictive coefficients 
for digit recognition. The results are superior to 
those obtained with state-of-the-art methods using 
Mel-Frequency Cepstrum Coefficients (MFCC) for 
digit recognition in most settings. In particular, we 
show that the choice of the right feature extraction 
method is as important as the specific classification 
paradigm; and that the right combination of 
classifier and attributes can provide accurate 
classifiers for digit recognition. 

Material and methods 

Spoken digits database 

In a previous work (SILVA et al., 2012), we 
proposed the use of LSF coefficients as features to 
classify spoken digits. In this paper we decided to 
build a new database of spoken digits to overcome 
some limitations of the previous data. More 
specifically, our database possesses the following 
features: 

- 33 speakers, from 20 to 50 years old of both sexes 
(72.73% are male voices and 27.27% are female). The 
previous database had only male speakers; 

- The volunteers speak the digits in a random 
order. In the previous database all speakers said the 
digits in ascending order that caused a clear 
intonation change in the last digit; 

- The division of training and test sets is 
absolute. This makes the comparison with other 
methods simpler, and avoids the same speaker to 
appear in both training and test set at the same time. 
The previous database had no definite training and 
test set split; 

- Digits are spoken in two languages: Portuguese 
and English. The previous database only includes 
the Portuguese language; 
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Figure 1. Simple pattern recognition scheme. 
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- Our database is segmented. Although the 
speaker says all 10 digits in a sequence, we split the 
sequence by each digit and provide a recording with 
each individual digit. The previous database was not 
segmented. As we are only interested in the 
performance analysis of feature extraction and 
classification methods, providing segmented data 
isolates the influence of the segmentation algorithm 
over the results. 

Each speaker pronounced four sequences, two in 
Portuguese and two in English. The background 
noise was not controlled. Despite that all the audio 
files were recorded in closed rooms, such rooms are 
sensitive to external noise and sometimes had air 
conditioning or computers turned on. Some files 
may have rain noise or people talking in the 
surrounding environments. The database was 
separated between different languages and, for each 
language, divided into training and test samples. The 
training set consists of two thirds of the data set and 
the remaining one–third is used as the test set, 
allowing for the same experimental setup to be used 
in other studies. This training/test split is random; 
however, if one speaker is present among the test 
samples, he/she will not appear in the training 
examples or vice versa. Therefore, the classification 
performance is speaker independent and more 
consistent with real world applications. 

In total, 87.88% of the volunteers are Portuguese 
native speakers; however, we have no English native 
speakers. These characteristics add challenges to the 
recognition task, not commonly seen in other 
databases. A detailed description of the set of voices 
is available on a website created specifically for this 
paper  (SILVA et al., 2013). 

In order to segment the database, we used a 
simple amplitude-based detector. This simple 
detector works very well because of the high signal-
to-noise ratio of the data. First, we used spectrum 
subtraction based noise reduction (BOLL, 1979). 
We swept a sliding window across the signal and 
calculated the mean signal amplitude within each 
window and used that statistic as a confidence 
estimate. After that, the amplitude vector was 
normalized, dividing the values in each window by 
the highest value observed. Thus, the relative 
amplitudes will be within the intervals of 0 and 1. 
The confidence that the window contains part of a 
spoken digit is proportional to the mean amplitude. 
Finally, we set an acceptance threshold so that the 
portions above the threshold are indicative of a 
spoken digit. We saved the segments above the 
threshold in separate files. This detection method is 
illustrated in Figure 2. 

 
Figure 2. Segmentation scheme in which confidence values 
above the threshold are indicative of a spoken digit. 

Feature extraction 

In this section we provide a brief description of 
two well-known methods for feature extraction, 
namely Mel-Frequency Cepstrum Coefficients 
(MFCC) and Line Spectral Frequencies (LSF). The 
main purpose of these methods is to perform a 
representational change of the original audio data, 
from a high-dimensional weak-feature domain to a 
low-dimensional strong-feature domain. 

We start describing the technique of dynamic 
windowing. This technique is important for two 
reasons: i) the window allows for extracting local 
features from smaller parts of the signal and 
characterizing signal changes in time; ii) the 
dynamic setting allows for adjusting the size of the 
window so that every signal results in the same 
number of features. 

Dynamic windowing 

Usually, speech recognition involves the 
classification of signals with different durations. 
This variability occurs not only within classes, 
because different spoken digits have different 
durations, but also between classes, because different 
speakers usually have different speaking paces. Data 
with varying length is a problem for several machine 
learning algorithms that expect a fixed-size attribute-
value table as input. Therefore, we use dynamic 
windowing as a strategy to generate fixed-size 
attribute vectors. 

Dynamic windowing is a simple strategy that 
breaks a signal of arbitrary length into a set of feature 
vectors. Each feature vector is the collection of 
features extracted from a segment of the original 
signal, which is obtained from a sliding window of 
width ws. The value of ws is dependent on the length 
of the signal s and the number of windows required. 
Furthermore, each window has an overlap with the 
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previous one, as illustrated in Figure 3. This overlap 
must be large enough so that information in the 
window transitions is not lost. An overlap higher 
than 50% is commonly used. 

 

 
Figure 3. In the dynamic windowing strategy, the feature 
extraction uses a sliding window of width w, proportional to a 
preset number of windows, with an overlap of size s among 
consecutive windows. So, a n-dimensional feature vector is 
extracted for each window. 

In our experiments, we set the window width ws 
according to Equation 1: 
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where: 

o is the overlapping rate in the interval [0, 1); 
e is the window width disregarding overlapping 

between consecutive windows. 
The value of e can be obtained from Equation 2. 
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where: 

ls is the signal length; 
n is the number of windows. 
The dynamic window strategy should be used 

with a word of caution: the existence of signals with 
considerable differences in duration will create a 
large variance in the window sizes, and consequently 
the step sizes. Large step sizes may cause a loss of 
detail on how the signal evolves with time. 

Mel-Frequency Cepstrum Coefficients (MFCC) 

In the past few decades, the Mel-Frequency 
Cepstrum Coefficients have been popularly used as 
features in speech processing tasks, such as speaker 
and speech recognition (CHIA AI et al., 2012). 
Briefly, to calculate those coefficients, we first take 
the magnitudes of frequency components using an 
acoustically-defined scale called ‘mel’. Next, we 
apply a Discrete Cosine Transform (AHMED et al., 
1974) on the resulting representation. The MFCC 

are the cepstrum coefficients obtained from this 
operation. Equation 3 shows the conversion from 
frequency (f) to mel-frequency (m). 
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Line Spectral Frequencies (LSF) 

Linear Prediction (LP) is a technique used in many 
speech applications, such as recognition (), 
compression (MIELIKAINEN et al., 2010) and 
modeling (EDUATI et al., 2010). LP is based on the 
fact that a speech signal can be described by Equation 4. 
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where: 

k is the time index; 
p is the order of LP - ie, the number of employed 

LP coefficients. 
The ai coefficients are calculated in order to 

minimize the prediction error by means of a 
covariance or auto-correlation method. 

Equation 4 can be rewritten in the frequency 
domain with a Z-transform (OPPENHEIM; 
SCHAFER, 2009). In this way, a short segment of 
speech is assumed to be generated as the output of 
an all-pole filter H(z) = 1/A(z), where A(z) is the 
inverse filter such that: 
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The Line Spectral Frequencies (LSF) 

representation, introduced by Itakura (1975), is an 
alternative way to represent LP coefficients. In order 
to calculate LSF coefficients, the inverse filter 
polynomial is decomposed into two polynomials: 
P(z) = A(z) + zp+1 A(z-1) and Q(z) = A(z) – zp+1 
A(z-1), where P(z) is a symmetric polynomial and 
Q(z) is an antisymmetric polynomial. The roots of 
P(z) and Q(z) determine the LSF coefficients. 

LSF are well suited for quantization and 
interpolation (KLEIJN; PALIWAL, 1995). 
Therefore LSF can represent the speech signal, 
mapping a large signal to a small number of 
coefficients, better than other LP representations. 

Evaluation 

We perform several experiments to evaluate the 
classification of spoken digits in Portuguese and 
English using MFCC and LSF coefficients. We also 
compare the methods on sixteen different settings, 
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varying the classification algorithm and their internal 
parameters. The algorithms we use for classification 
and their related settings are shown in Table 1. We 
chose these algorithms because they are frequently 
reported in the literature as having good classification 
performance on signal recognition tasks. 

Table 1. Brief description of the classification algorithms used in 
our experimental evaluation. 

Identifier Inducer/setting 
1-NN 1-Nearest Neighbor 
3-NN 3-Nearest Neighbor weighted by inverse distance 
5-NN 5-Nearest Neighbor weighted by inverse distance 
7-NN 7-Nearest Neighbor weighted by inverse distance 
9-NN 9-Nearest Neighbor weighted by inverse distance 
11-NN 11-Nearest Neighbor weighted by inverse distance 
SVM-Poly1 Support Vector Machine with Polynomial Kernel and 

Degree 1 
SVM-Poly2 Support Vector Machine with Polynomial Kernel and 

Degree 2 
SVM-Poly3 Support Vector Machine with Polynomial Kernel and 

Degree 3 
SVM-
RBF0.01 

Support Vector Machine with RBF Kernel and 
Gamma=0.01 

SVM-
RBF0.05 

Support Vector Machine with RBF Kernel and 
Gamma=0.05 

SVM-RBF0.1 Support Vector Machine with RBF Kernel and  
Gamma=0.1 

NB Naïve Bayes 
10 RF Random Forest with 10 trees 
15 RF Random Forest with 15 trees 
20 RF Random Forest with 20 trees 
 

For both approaches, MFCC and LSF, features 
were extracted with the previously described strategy 
of dynamic windowing. The width and step size of 
the sliding window were such that for each signal a 
set of 25 feature arrays was generated and each 
adjacent pair of windows had an overlapping area of 
75%. Therefore, each feature extraction method 
generated a dataset in which each instance consisted 
of 25×n attributes, n being the number of extracted 
features. For example, in a 13 MFCC scenario, each 
example will have 325 features. 

An inherent problem in the use of MFCC and 
LSF coefficients as features is the choice of the 
number of coefficients to be used. Commonly, 
thirteen MFCC are used in most applications of 
speech recognition and speaker recognition. In order 
to verify whether this number provides good 
classification accuracy and find a number of LSF 
coefficients, we conducted an experiment with a 
large variation in the number of extracted 
coefficients. For each classification scenario, we 
perform a 10-fold cross-validation over the training 
dataset varying the number of coefficients from 7 to 
59, in steps of 2. Once we estimated the best number 
of coefficients on training data, we measured the 
classification performance on the test set. We note that 
this approach of estimating parameters on training data 
is the correct methodology to evaluate the performance 

of classifiers. Papers that report the performance of 
classifiers selecting the best parameter values based on 
errors estimated on the test set have misleading, 
frequently overoptimistic, results (SALZBERG, 1997). 

The audio was recorded with a sampling rate of 
44100 Hz, also known as compact disk (CD) audio 
quality. However, several applications of spoken 
digit recognition must work over restricted sampling 
rates. One example is the frequency response range 
of public switched telephone networks, which is 
commonly between 300 and 3400 Hz. In order to 
analyze the robustness of the methods in 
environments where data is collected at lower frame 
rates, we also performed experiments with our data 
resampled at 20% of the original sampling rate. This 
means that the audio sampling rate was reduced to 
8820 Hz, allowing a frequency range between 0 and 
4410 Hz, similar to the ones found in telephone 
networks and other applications. 

Results and discussion 

We present in Figure 4 the classification results 
for all classifiers listed Table 1. These results present 
the accuracy obtained by each classifier after a search 
for the best number of MFCC/LSF coefficients 
using cross-validation in the training set. 
Summarizing the results with the number of wins 
and losses, MFCC obtained the overall best results 
for English (12 wins and 4 losses) and LSF won for 
Portuguese (also 12 wins and 4 losses). However, 
LSF obtained the highest levels of accuracy for both 
languages with the SVM algorithm using a 
polynomial kernel with a degree of 3. The best 
classifiers obtained 87.27% and 89.09% accuracies 
for English and Portuguese, respectively. 

To evaluate how much the methods are susceptible 
to an inappropriate choice of the number of 
coefficients, we evaluated how accuracy varies relative 
to the number of coefficients. For the sake of 
visualization clarity, we chose to show the results for 
only one algorithm per learning paradigm, i.e., 
distance-based (k-NN), statistical (SVM), probabilistic 
(NB) and decision trees (RF). For each paradigm, we 
analyzed most accurate the classifiers' (Figure 4) 
behaviors. Thus, Figure 5 graphically shows the results 
for LSF and MFCC for the English language. We did 
not present the results obtained with audio in 
Portuguese because they were very similar to the 
results obtained with English. 

The results show that LSF is less dependent on a 
particular number of coefficients than MFCC. LSF 
performance remains relatively constant for all 
classifiers in a wide range of coefficients, with a slight 
tendency to increase performance as the number of 
coefficients is increased. 
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Figure 4. Spoken digit classification accuracy for English and Portuguese using LSF and MFCC. 

 

 
Figure 5. Variation in accuracy relative to the number of LSF 
coefficients (a) and MFCC (b) for English. 

MFCC performance is more dependent on the 
correct number of coefficients, presenting an optimal 

value for a narrow range of coefficients and having a 
tendency to fall considerably as we increase the 
number of coefficients. 

In all settings, the use of more than 25 MFCC 
can be considered inappropriate. In contrast, the 
optimal MFCC setting is in a narrow range between 
11 and 23 coefficients for all classifiers, restricting 
the search space. 

To conclude the experimental step, we 
conducted an experiment using the same dataset, 
but down sampled the data to 8820 Hz sampling 
rate. Again, we used cross-validation to estimate the 
best number of coefficients in each setting before 
classifying the test instances. The results are shown 
in Figure 6 for English and Portuguese. 

It is interesting to note that in terms of accuracy, 
the results did not change significantly compared 
with the full quality signal. The best classification 
results for digits pronounced in both languages were 
achieved by SVM with a RBF kernel and 0.1 as 
Gamma's value. However, LSF coefficients provided 
the best feature space for English with 88.18% 
accuracy, and MFCC were the best features for 
Portuguese also with 88.18%. 

Table 2 shows the accuracy discriminated by 
digit for the most accurate classifiers. We present, 
for each digit, its class accuracy and the most 
frequently misclassified digit. The results are 
separated by language and sampling rate. 

Conclusion 

In this paper, we evaluated the performance of 
using MFCC and LSF for the classification of digits 
pronounced in English and Portuguese in various 
scenarios. 
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Figure 6. Spoken digit classification accuracy for English and Portuguese using LSF and MFCC with audio down sampled to 8820 Hz. 

Table 2. Class accuracy and most frequently misclassified digit for the best classifiers. 

English 44100 Hz 
55LSF SVM-Poly3 

Portuguese 44100 Hz 
41LSF SVM-Poly3 

English 8820 Hz 
21LSF SVM-RBF0.1 

Portuguese 8820 Hz 
13MFCC SVM-RBF0.1 

Digit 
Accuracy (%) Mostly  

misclassified as 
Accuracy (%) Mostly  

misclassified as 
Accuracy (%) Mostly  

misclassified as 
Accuracy (%) Mostly  

misclassified as 
0 95.45 9 90.90 5 and 7 81.82 2 86.36 1, 2 and 7 
1 95.45 9 86.36 8 90.90 4 and 9 100 - 
2 72.73 3 90.90 3 and 9 86.36 0 77.27 8 
3 90.90 2 and 8 95.45 2 77.27 8 86.36 2 
4 77.27 2 86.36 9 95.45 9 90.90 9 
5 81.82 9 95.45 1 81.82 9 95.45 1 
6 100 - 86.36 7 81.82 3 77.27 0 and 3 
7 86.36 0 95.45 0 100 - 81.82 6 
8 86.36 3 86.36 1 95.45 3 100 - 
9 86.36 1 77.27 4 90.90 1 and 5 86.36 1, 4 and 8 
 

We should note that the techniques used in this 
paper performed similarly well for both languages. As 
the methods are language independent, the empirical 
evidence suggests that the same methodology would 
accurately recognize digits in other languages. 
However, such conjecture still requires further 
validation. We also presented empirical evidence that 
the choice of the correct number of coefficients can be 
as important as the correct classifier. We should note 
that our results only partially contribute to the general 
wisdom of using 13 MFCC, as it is frequently used in 
the literature.  

Finally, the results were not significantly altered 
by the use of a reduced sampling rate. Therefore, we 
conclude that the evaluated techniques are well 
suited for being used in applications that require 
low-quality channels. 
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