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ABSTRACT. Compositional data belong to the simplex sample space, but they are transformed to the 
sample space of the real numbers using the additive log-ratio transformation to allow the application of 
standard statistical techniques. This study aims to model compositional skewed data of three soil 
components after additive log-ratio transformation. The current modeling was done for compositional data 
of sand, silt and clay (simplex), and bivariate data (real) using the standard skew theory with and without 
the inclusion of the covariate soil porosity. The analyses were run using the R statistical software and the 
package sn, and the goodness-of-fit was found after applying the covariate. 
Keywords: compositional data, skew-normal distribution, parameter estimation. 

Modelagem de dados composicionais assimétricos 

RESUMO. Dados composicionais pertencem ao espaço amostral simplex, mas que são transformados para 
o espaço amostral dos números reais, através da transformação log-razão aditiva, permitindo a aplicação de 
técnicas estatísticas padrão. Esse trabalho tem por objetivo modelar dados composicionais de três 
componentes, que apresentam assimetria, após transformação log-razão aditiva. A modelagem foi feita para 
dados composicionais de areia, silte e argila (simplex), e para os dados bivariados (reais), utilizando-se a 
teoria normal assimétrica sem e com a inclusão da covariável porosidade do solo. As análises foram feitas 
por meio do ambiente estatístico R utilizando o pacote sn e o melhor ajuste ocorreu ao considerar a 
covariável na modelagem. 
Palavras-chave: dados composicionais, distribuição normal assimétrica, estimação de parâmetros. 

Introduction 

Compositional data are vectors whose elements 
are proportions with summation equal to 1. The 
natural sample space is the unitary simplex with 
dimension equal to the number of elements which 
means a restrictive part of the real space. The 
modeling of these types of data can be done through 
the simplex or by the set of real numbers. Aitchison 
(1986), and Pawlowsky-Glahn and Olea (2004) 
described the additive log-ratio transformation 
(ALR) and the centered log-ratio (CLR) for data 
analysis, for example, as an analytical method in the 
real sampling space, but requiring a new data 
transformation to the original sample space. The 
current experiment uses the real space as the 
sampling space given the possibility of applying the 
theory developed by Martins et al. (2009), who 
applied a multivariate normal distribution to 
compositional data. Sometimes, however, the 
normal distribution does not provide the best fit of 
the data. Thus, the skew-normal distribution 
developed by Azzalini (1985) has been profitable for 

these cases and applied to several areas of research 
and development. 

Azzalini (1985) formally introduced the skew-
normal distribution after previous studies. Gupta  
et al. (2004) developed a survey on the different 
articles/authors as Branco and Dey (2001), Loperfido 
(2001), Azzalini and Capitanio (1999), Gupta and 
Chen (2001), Gupta and Brown (2001) and reported 
two experiments to characterize this distribution 
considering quadratic statistics. Considering the 
compositional data, the literature contains articles as 
reported by Aitchison et al. (2003) who 
characterized the shape of the logistic normal 
additive and its tests. Màteu-Figueras et al. (2005) 
proposed the additive logistic skew-normal 
distribution to analyze compositional data, and 
highlighted the analytical difficulties to obtain the 
estimates. Màteu-Figueras and Pawlowsky-Glahn 
(2007) used a measurement like Lebesgue 
compatible with the algebraic and geometric 
structure of the simplex to define the skew-normal 
distribution in such sample space. 
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The objective of this experiment was to fit a 
bivariate skew-normal model to compositional data 
after the ALR transformation. The application had a 
data set with 82 compositions of sand, silt and clay. 

Material and methods 

In the current analysis, we used a data set 
collected from an irrigated area under the central-
pivot of the Areão Farm, campus of the Escola 
Superior de Agricultura – “Luiz de Queiroz” 
(ESALQ-USP). A quadrant was designed in the 
highest part of the hill (at the top of the slope) from 
which 82 soil samples were collected from 0 to  
0.20 m using a regular squared net for sampling the 
soil at every 20 m. Every soil sample had the 
contents of sand, silt and clay evaluated. 

Compositional data 

The composition is a vector 
1 2 BX [X ,X ,...,X ]'  

with B components representing the proportions. 
The sample space is the simplex given 
by B

i{X / X 0,i 1,2,..., B;1 'X 1}    S . 

However, it is possible for vectors with positive 
components measured in the same scale to become a 
composition by dividing every component by the 
summation of all of them.  

Visual graphic of a sample with three 
components, for example, is done by a ternary 
diagram designed on equilateral triangle where each 
vertex represents an individual component. Lemos 
and Santos (1996 apud REICHARDT; TIMM, 
2004), describes the soil classification using a 
diagram that divides the soil into classes so that a 
location in the diagram allows the classification, 
ranging from Sandy to Very Clay. 

Avoiding the application of standard statistical 
techniques that produce inconsistent results because 
of the intrinsic correlation among the components, 
Aitchison (1986) proposed, amidst others, the log 
additive ratio transformation as the 

 
alr :  B B 1S  
 

'

1 B 1

B B

X X
X alr(X) ln ,..., ln

X X
    

      
    

 

 
enabling the analysis in the real space and the 
inverse transformation that is the generalized 
additive logistic, 

 
1 Bagl(alr(X)) X (exp(ln(X / X )),...,exp(0)) '   (1)

and the results are transformed to the original scale. 
Similar to Martins et al. (2009) who applied the ALR 
transformation to obtain 

1Y =ln(Sand/Silt)  and 

2Y =ln(Clay/Silt) . 

Skew-normal distribution 

Azzalini (1985) defined a random variable Z as a 
standard skew-normal distribution if the density 
function was given by: 

 
f (z | ) 2 (z) ( z)     ,   e z  (2)

 
where ( )   and ( )   are the density function and 

the standard normal distribution with zero mean 
and variance 1, respectively, and α is a parameter 
controlling the asymmetry of the distribution 
ranging from ( , )  . The expected value and the 

variance of Z are given by 
 

2
E(Z)  


  and   22

Var(Z) 1  


 (3)

 
with δ related to α by 

2
( )

1


  

 
. 

Based on Azzalini (2005), if Z has skew-normal 
distribution denoted by Z ~ NA( ) , and 

YY Z    , where 
Y   and  , thus 

2
yY ~ NA( , , )   . 

The asymmetric coefficient of the skew-normal 
distribution based on Bayes and Branco (2007), is 

 
3 3/22

22

2 4 2
1 1

11


                      

... 

 
[ 0.99527;0.99527]   

(4)

 
which characterizes how and how much the 
distribution deviates from the symmetry. 

After Azzalini and Dalla Valle (1996), Azzalini 
and Capitanio (1999) described the extension of the 
Equation (2) for the multivariate case, the skew-
normal multivariate density function for a standard 
normal random vector Z  with k dimension as the 

function 
 

k Zf (z | ) 2 (z, ) ( ' z)      ,  kz  

 
where

k Z(z, )   is the k-dimensional normal density 

with vector of means equal to zero and correlation 
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matrix 
Z , ( )   is the distribution function N(0,1) , 

univariate, and   a vector of k dimension. 
Specifically for two dimensions, Azzalini and 

Dalla Valle (1996) described the bivariate skew-
normal density function of 

1 2Z ' (Z ,Z )  as 

 

2 1 2 2 1 2 z 1 1 2 2f (z ,z ) 2 (z ,z ; ) ( z z )      , 

 

where 
*

z *

1

1

 
    

  

 
is the correlation matrix, and 

 
*

1 2
1 * 2 * 2 2 2 * 1/2

1 2 1 2[(1 ( ) )(1 ( ) 2 )]

  
 

         
; 

 
*

2 1
2 * 2 * 2 2 2 * 1/2

1 2 1 2[(1 ( ) )(1 ( ) 2 )]

   
 

           
. 

 
After introducing the location parameter 

 and the scale 0   in the Equation (2), we 
have the density function for a random variable Y as 

 

2 Y Y2 y y
f (y; ; ; )

                  
, 

 

Yy,  ,     and 0  , 

 
denoted as 2Y ~ NA( , , )   . 

In the multivariate case, from Azzalini (2005), 
the skew-normal distribution for a random vector k-
variate Y  with n observations 

1 n(y ,..., y )  can be 

 
1/2k/2

Y Y Yf (y; , , ) 2(2 )
       

 

      ' 1 ' * 1
Y Y Y Y

1
exp y y ( ) y

2
           

, 

in which ( )   is defined as previously, the vector 
k-variate   controls the shape of the distribution 
and determines the direction of maximum 
asymmetry. Thus, we denote

k Y YY ~ NA ( , , )   , 

so that 
 

1 2'
*

Y 1
Z *

2

1
1

1

1

  
                

 

 

where *  is the square root of the
Ydiag( ) , which 

denotes the diagonal matrix formed by 
Y . The 

vector can be written as ' 1/2
Z Y(1 )       , 

where * 1 * 1
Z Y( ) ( )       is the correlation matrix 

associated with 
Y . Thus, the expected value and 

the variance of Y  are 
 

*
Y ZE(Y)         and  * '

Y Z ZVar(Y) *      , 

 
where Z  is given by the Equation (3). 

Based on Azzalini and Capitanio (1999), for n 
independent observations 

1 n(y ,..., y )  sampled from 

k i YNA ( , , )    with i 1,..., n , the log-likelihood 

function for the random vector Y  is 
 

Y

1
Y Y

1 1
l(y; , , ) n log n tr( V)

2 2
          

 * 1
i i

i

log 2 ( '( ) (y ))      

 
where 
 

1
i i i i

i

V n (y )(y ) '   . 

 
In the case of covariates 
 

'
i ix                        i=1,...,n, 

 
where 

p k  is the parameter matrix and 
n pX 

 is a 

matrix of covariates. 
Testing the model significance for the 

distribution asymmetry, Azzaline and Capitanio 
(1999) suggested the log-likelihood ratio test to 
verify the normality. The null hypothesis is 0   

and the test statistics is: 
 

* *ˆ ˆˆˆ ˆ2[l( , , ) l( , , 0)]       (5)
 

where * *ˆˆ( , )   are the estimates of maximum 

likelihood of ( , )   under the assumption of 

normality. Under 0H , if the statistical test is higher 

than the
p

2 , the hypothesis of data normality is 

rejected. 
In the current analysis, we fit the bivariate skew-

normal model for the response variables Y1 and Y2, and 
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then, we fit the model using the soil porosity as the 
covariate. The analyses were carried out using the R 
Software (R DEVELOPMENT CORE TEAM, 2011) 
and adaptations of the functions of the package sn 
(AZZALINI, 2011). 

We compared the model using the Akaike 
information criterion - AIC (AKAIKE, 1974) and 
corrected Akaike information criterion - AICc 
(BOZDOGAN, 1987) which are 

 

parAIC n 2ln(l)    and  par par

par

2n (n 1)
AICc AIC

n n 1


 

 
, 

 
respectively, where npar is the number of parameter 
in the model and 1 is the maximum value of the 
likelihood function for the estimated model. 

We verified the normality of the bivariate data using 
the quantil-quantil plots and the probability-probability 
plots (QQ and PP, respectively). The purpose of QQ 
plot is to calculate the expected value for the observed 
value of the variable based on the distribution, i.e. the 
normal. The PP plot, in turn, compares the empirical 
cumulative distribution of the variable with the 
theoretical cumulative distribution function as the best 
fit. In both plots, dots close to the line indicate that the 
data are following the distribution under study. We 
also showed the contours of the bivariate normal 
density for both models. Thereafter, we applied the 
Equation (1) to transform the bivariate data into 
compositional data. Finally, we presented a diagram of 
texture classification using the original compositions 
and the compositions estimated by the model. 

Results and discussion 

Table 1 lists the parameter estimates with and 
without the total soil porosity. Setting the limits 
of IC at 95% for the first model, the results of the 
average of the variable Y2 as the skew components 
for the first model were significant, unlike those 
verified in the second model. However, the 
confidence intervals had limits close to zero 
maintaining the skew parameter of the model 
(Tables 1 and 2). This result is consistent with the 
responses in the Table 2 where the hypothesis of 
bivariate normality of data is also rejected for the 
model without the covariate. 

In Figures 1 and 2, the QQ plots exhibited the dots 
closest to the line for the skew-normal model with the 
covariate. Similarly, the PP plots also confirmed the 
best goodness-of-fit to the skew-model when the total 
soil porosity is considered in the model. 

Figure 3 shows the contours of the fitted models 
indicating the suitability of the skew-normal 
distribution. 

The covariance matrix from the model with the 
covariate is 

 

Y

0,2568 0,0722ˆ
0,0722 0,0494

 
   

 
 

 
and, therefore, the estimate of E(Y)  can be 
obtained by 

 

 
'

i i

1,6251 0,6607
ŷ 1 x

0,0470 0,0351

  
      

 

      0,2568 0 0,7417
.

0 0,0494 1,3366

   
    
   

 

 
where ix , i 1,..., n  is the covariate data. 

Table 1. Estimates and confidence interval for parameters from 
the skew-normal model with and without the covariate. 

Model Parameter Estimates Llow 95% Lupp 95% 
Without  β01 -0.1109 -0.2508 0.0290 
covariate β02 -0.6122 -0.7326 -0.4917 
 α1 -6.4395 -12.5095 -0.3696 
 α2 2.9699 -0.5065 6.4463 
With covariate β01 1.6251 1.1015 2.1488 
 β11 -0.0470 -0.0605 -0.0334 
 β02 0.6607 0.2709 1.0504 
 β12 -0.0351 -0.0454 -0.0247 
 α1 -7.2197 -15.0389 0.5996 
 α2 3.0083 -0.7418 6.7585 

Table 2. Estimates and confidence interval for the asymmetric 
coefficient for the skew-normal model with and without the 
covariate. 

Model Coefficient Estimates Llow 95%(λ) Lupp 95% (λ) 
Without covariate λ1 -0.9038 -0.9696 -0.0102 
 λ2 0.6623 -0.0248 0.9040 
With covariate λ1 -0.9214 -0.9774 0.0391 
 λ2 0.6683 -0.0677 0.9117 

Obs: values calculated from the Equation (4) using the estimates of i (i=1,2), Table 
1.The models are compared by the Equation (5) that confirmed based on the previous 
results that the model with the covariate had a best goodness-of-fit due to the lower 
AIC and AICc values. 

Table 3. Test statistics and p-value for the likelihood ratio test 
for bivariate normality. 

Model Statistics p-values 
without covariate 14.6771 0.0007 
with covariate 10.4633 0.0053 
 

Table 4. Log-likelihood and comparison of the skew-normal 
models with and without the covariate. 

Models Log-likelihood AIC AICc 
Without covariate -4.6815 17.3629 17.8824 
With covariate 14.7821 -17.5642 -16.4442 
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Figure 1. QQ-plots for the normal (a) and skew-normal 
distribution (b), PP-plots for the normal (c) and skew-normal (d) 
for the model without covariate. 
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Figure 2. QQ-plots for the normal (a) and skew-normal 
distribution (b), PP-plots for normal (c) and skew-normal 
distribution (d) with the covariate. 
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(a) (b) 

Figure 3. Contours of the bivariate model without (a) and with (b) the covariate. 

Figure 4 illustrates the diagram of texture 
classification using the soil composition and the 
composition estimates by the model with the 
covariate. Thus, this soil is classified as Clay-loam to 
Very Clay, across the Clay. Otherwise, the model is 
satisfactory and the composition determines the soil 
classification as Clay-loam and Clay. 

 

 
Figure 4. Diagram of the textural classification for soil composition 
estimated by the skew-normal model using soil porosity as covariate. 

Conclusion 

The results indicate that the bivariate skew-
normal distribution is an alternative for modeling 
transformed (ALR) compositional soil data. The 
model is more appropriate using the soil porosity as 
covariate than the normal distribution. Experiments 
with particle size analysis can achieve the benefits of 
this methodology because of the inclusion of 
compositional data with three components. 
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