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ABSTRACT. The objective of this analysis was to fit germination data of Rhipsalis cereuscula Haw seeds to 
the Weibull model with three parameters using Frequentist and Bayesian methods. Five parameterizations 
were compared using the Bayesian analysis to fit a prior distribution. The parameter estimates from the 
Frequentist method were similar to the Bayesian responses considering the following non-informative a 
priori distribution for the parameter vectors: gamma (10³, 10³) in the model M1, normal (0, 106) in the 
model M2, uniform (0, Lsup) in the model M3, exp (μ) in the model M4 and Lnormal (μ, 106) in the model 
M5. However, to achieve the convergence in the models M4 and M5, we applied the μ from the estimates of 
the Frequentist approach. The best models fitted by the Bayesian method were the M1 and M3. The 
adequacy of these models was based on the advantages over the Frequentist method such as the reduced 
computational efforts and the possibility of comparison. 
Keywords: Bayesian inference, growth curve, modeling. 

Modelos de regressão não-linear aplicados à germinação de sementes de Rhipsalis 
cereuscula Haw (Cactaceae) 

RESUMO. Neste estudo, foi proposto o ajuste de germinação de sementes pelo modelo Weibull com três 
parâmetros por meio da metodologia frequentista e da Bayesiana. Na análise Bayesiana foram utilizadas 
cinco parametrizações para as distribuições a prior não-informativas e foram comparadas quanto ao ajuste. 
As estimativas dos parâmetros obtidas pela metodologia frequentista foram similares aos da metodologia 
Bayesiana quando considerado distribuições a priori não-informativas para o vetor de parâmetros: gama 
(10³, 10³) no modelo M1, normal (0, 106) no modelo M2, uniforme (0, Lsup) no modelo M3, exp (μ) no 
modelo M4 e lognormal (μ, 106) no modelo M5. No entanto, para a convergência nos modelos M4 e M5, foi 
utilizado para μ os valores obtidos pela metodologia frequentista. Os melhores modelos para a modelagem 
Bayesiana foram os modelos M1 e M3. Estes modelos foram considerados adequados, tendo como 
vantagem sobre a metodologia frequentista o menor esforço computacional e a possibilidade de 
comparação. 
Palavras-chaves: inferência Bayesiana, curva de crescimento, modelagem. 

Introduction 

Nonlinear regression is a statistical technique in 
which a nonlinear mathematical model describes the 
relationship of response variables to predictor 
variables. In general, a nonlinear model is y = η(t, β) 
+ e where η(t, β) is a function with at least one 
nonlinear parameter, β is a vector of p unknown 
parameters, t is the predictor variable and e is a 
random error with normal distribution, zero mean 
and variance σ² (e ~ N(0, σ²)).  

In seed germination studies, the function η(t, β) 
represents the number or the proportion of 
germinated seeds obeying a growth curve. This 
component is deterministic and the usual equations 

representing the model are mathematical equations 
such as the asymptotic exponential, logistic, 
Gompertz and Weibull. Although such equations 
are empirical representations of the biological 
mechanism, they permit the biological interpretation 
of the parameters. Very often, otherwise, the 
Frequentist approach has been applied to model 
such type of data, and this application has biased the 
responses, which results in ineffectiveness of the 
estimates and therefore inappropriate conclusions. 

Ratkowsky (1983, 1990) stood out that the 
nonlinear parameters do not require the same 
properties as the linear models. However, close to 
linear models have similar properties asymptotically, 
and therefore can be parameterized to respond as a 
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linear one. The dissemination of nonlinear models 
has induced some authors to investigate tests to 
evaluate the degree of nonlinearity of a model. 
O’Brien (2008) reported some tests to detect 
spurious nonlinearity, and Peña and Rodriguez 
(2005) reported a method to verify both the 
presence of nonlinearity and the power of the 
nonlinear regression. 

In terms of cumulative numbers of germinating 
seeds during the chronological time, the responses can 
be represented by asymptotic or sigmoid curves. 
Currently, the parameters have been usually estimated 
using Frequentist methods as the mean squares to 
conclude about the responses, but without reporting 
nonlinear and goodness of fit tests.  

Time for radicle protrusion can be used as a 
random variable when the objective is to report the 
germination curve during a period of evaluation. 
Thus, the distribution of the time for seed 
germination can be reported by some probability 
distributions while the curve along the time 
represents the cumulative shape of the probability 
distribution. Hunter et al. (1984) reported the 
normal distribution to represent the curve of seed 
germination. Recently, seed technologists have 
noticed about the asymmetry in the time for seed 
germination after proposing other probability 
distribution. O’Neill et al. (2004) investigated the 
germination of Perennial ryegrass seeds and suggested 
the inverse normal as an alternative model to the 
Lognormal, Log logistic, and Weibull distributions. 
The parameter estimation as suggested by Hunter  
et al. (1984), Brain and Butler (1988) applying the 
maximum likelihood method, and the deviation 
from the inverse normal distribution was lower and 
therefore the best response. Soliman et al. (2006) 
also estimated parameters using the Frequentist and 
Bayesian methods from the Weibull model to 
investigate the time for failure of industrial 
machines, and reported more accurate estimates 
with the Bayesian than with the maximum 
likelihood method.   

The majority of authors consider the error, e, a 
continuous random variable with normal 
distribution, zero mean and variance σ², e ~ N(0, 
σ²). In such cases and when the errors do not follow 
the normal distribution, the Bayesian methods have 
been applied to model nonlinear equations. De la 
Cruz-Mesia and Marshall (2003) applied a 
procedure for nonlinear errors following a 
continuous autoregressive process. They argued 
about the advantage of the process because of the 

application of additional information based on 
previous experiments, which is suitable for small 
samples that is not based on the asymptotic theory.  

The Bayesian method has also been suggested to 
estimate growth curves to describe replicate 
measurements where every individual has the 
measures replicated over time. Thus, Blasco et al. 
(2003) studied the Bayesian analysis from the 
selection effect on rabbit growth curves, and Martins 
Filho et al. (2008) fitted a logistic model to growth 
data of two cultivars of common beans. We sought 
to investigate the Frequentist and the Bayesian 
approaches to fit data over the time necessary for 
seed germination using the Weibull distribution 
with three parameters.  

Material and methods 

Models for the responses of seed germination 
One seed is considered germinated just after 

radicle protrusion indicating the presence of a 
normal seedling capable of developing a normal 
plant under field conditions. Time for radicle 
protrusion t follows the Weibull distribution 
(WEIBULL, 1951):  
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in which f denotes the density probability function, 
F is the cumulative distribution function of the 
random variable T and θ = (b, c) is the vector of 
parameters. 

Modeling the percentage of seed germination 
over time t, Carneiro et al. (2000) and Carneiro 
(1994) suggested the following Weibull curve with 
three parameters:  
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where: 

M is the third parameter. The parameters of 
nonlinear models represent quantitative 
experimental responses and permit direct 
interpretation. For example, in the following 
model: 
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where: 
M is the maximum of seed germination 

(BROWN, 1987; BROWN; MAYER, 1988a and b; 
CARNEIRO, 1994, 1996; CARNEIRO; GUEDES, 
1995), b is time to 63.21% of M and c is the spread 
over the time t (CARNEIRO, 1994, 1996; 
CARNEIRO; GUEDES, 1995). 

Frequentist approach 

In this context, the nonlinear regression model 
for the total of seed germination for the time t 
is ( ) ( , )i i i iy t F t e  , with ei ~ N(0, σe²). The errors 

ei are non-correlated and yi|θ, σe² ~ N(F(ti,θ), σe²), 
whose maximum likelihood function is: 
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The application of the frequentist analysis to 

nonlinear models requires prior knowledge of the 
model and data to suggest initial values of 
parameters to obtain the estimates using the 
iterative process. Computer routines use these 
initial values to determine in the parametric space 
the values to maximize the logarithm of the 
likelihood function or minimize the sum of 
squared errors.  

The value of the parameter vector that minimizes 
the residual sum of squares has sampling distribution 
close to normal with the covariance matrix σe² (W’W)-1, 
where W is the matrix n × p from the first derivatives 
of F (ti, θ) in relation to ̂ . The concern is on the right 
choice of the numerical algorithm to obtain the 
estimates. In this context, the R software has the 
Gauss-Newton routines, and the SAS Institute Inc. 
(2008) has several possibilities in the proc nlin as the 
Gauss, Marquardt, Newton, Gradient, and DUD, 
which is the default method that uses numerical 
estimates of the derivatives. 

The statistical properties of nonlinear models, the 
responses to the estimation process and the quality of 
asymptotic inferences for finite samples are all due to 
the model curvature. The origins of measuring the 
linearization level using the curvature of a nonlinear 
function was introduced by Bates and Watts (1980, 
1988), discussed by Ratkowsky (1983, 1990) and other 
authors. This curvature detains two components: the 
intrinsic curvature (IN) and the parameter curvature 
(PE). The parameter curvature indicates the 
nonlinearity due to the parameterization of the model. 
The intrinsic curvature measures the change in the 
nonlinear model whether the parameter values are 
somewhat modified (BATES; WATTS, 1980, 1988; 

RATKOWSKY, 1990). The lower the curvatures, the 
better is the validity of the asymptotic inference. 

The lower the curvature, the better is the validity of 
the asymptotic inference. Bates and Watts (1980, 1988) 
suggested using a significant level α, the limit of:  
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to test both curvatures, where F is the quantiles of F 
distribution of Snedecor with p and n-p degrees of 
freedom, p is the number of parameters and n is the 
sample size. Another important measurement to 
diagnose the nonlinearity is the bias of Box, which 
helps to identify the parameter responsible for the 
excess of curvature. Ratkowsky (1983) suggested the 
limit of 1% of relative bias, or the absolute value of 
the bias quotient to the parameter estimate. These 
estimates can be achieved by the algorithm from proc 
iml in the SAS Institute Inc. (2008) (SOUZA, 1998).  

The parameters were estimated by the proc nlin 
in SAS Institute Inc. (2008), and the presence of 
normal errors was checked by the proc univariate. 
The quality of the estimates was verified by 
designing a software in the proc iml following 
Souza (1998) recommendation.  

Bayesian approach 

In Bayesian inference, the researcher can 
combine prior information, which is called as a prior 
distribution. These types of information are 
obtained from previous studies carried out with the 
same experiment or from sampling data. Otherwise, 
they can be vague, but in both cases a probability 
density function must be expressed for every 
parameter in the model. Usually, this information is 
expressed by the likelihood function, which means 
the pool of the density function from the 
observations conditioned in the parameters. Based 
on the Bayes theorem, the a prior function is 
combined with the sampling information by 
multiplying the a priori density function versus the 
likelihood, and the product is a function on the 
parametric space. Based on the a prior choice for the 
parameters θ = ([M, b, c)] of the Weibull model [2], 
we suppose that the a prior density function is a 
product from two density functions, π(θ, σ²) = 
π(θ)π(σ²), θ  R³, σ² > 0. 

De la Cruz-Mesia and Marshall (2003) suggested 
for nonlinear models the following a prior 
distributions in the parameter vector and random 
error: 
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where:  

N3 denotes a normal tridimensional distribution, 
and IG is the gamma inverse distribution. Although 
the specification of the hyper parameter μ0, Σ0, a1 and a2 

can be difficult, non-informative a prior distributions 
can be used as values for these hyper parameters. In the 
current proposition we will consider five different a 
prior non-informative distributions for the vector of 
parameters θ = (M, b, c): 

 
θ ~ gamma(10³, 10³), θ ~ normal(0, 106)(0,+∞), θ ~ 
uniform(0, Lsup) 

 
θ ~ exp(μ) and θ ~ lnormal(μ, 106) (6)

 
where: 

 will be estimated by the sampling mean and 
Lsup will be 10 for M, 100 for b, 1,000 for c. The best 
model will be compared by the DIC values for every 
parameter (Deviance Information criterion 
(SPIEGELHALTER et al., 2002). Thus the models 
considered were: 

Model M1 - Assuming non-informative gamma 
distribution as a prior for all parameters M, b, c ~ 
gamma (10³, 10³). 

Model M2 - Assuming non-informative 
truncated normal distributions as a prior for all the 
parameters: M, b, c ~ normal (0, 106)(0,+∞). 

Model M3 - Assuming non-informative uniform 
distributions a prior for all the parameters: M, b, c ~ 
uniform (0, Lsup), Lsup =100 for M, 1,000 for b, and 10 
for c. 

Model M4 - Assuming non-informative 
exponential distributions as a prior for all the 
parameters: M, b, c ~ exp (μ), with μ mean estimated 
by the frequentist method. 

Model M₅- Assuming non-informative log-
normal distributions as a prior for all the parameters: 
M, b, c ~ lognormal (μ, 106), with μ mean estimated 
by the frequentist method. 

Supposing that the Weibull model can describe 
the data, 200,000 values will be generated for each 
chain, with a burning period of 1,000. The final 
sampling will be composed of values selected with 
jumps of 20, which means a sample size of 10,000. 
The chain convergence will be verified by the 
CODA Software (BEST et al., 1995), and 
Heidelberger and Welch (1983) criteria. The a 
posteriori marginal distribution for all the 

parameters will be obtained by the BRugs 
software (SPIEGELHALTER et al., 1994) 
available in the R software. 

Application 

The comparison of methods was illustrated from 
seed germination of Rhipsalis cereuscula Haw 
(Cactaceae) growing attached to the trees in the Ingá 
Yard Conservation Reserve at Maringá town, Paraná 
State, Brazil. The seeds were manually collected from 
various fruit, manually extracted, and dried in the 
shade under environmental light and temperature in 
the Seed Laboratory of the Universidade Estadual de 
Maringá, Experimental Research Farm, at Iguatemi 
County, Paraná State, Brazil. Dried seeds were stored 
in open plastic containers. One hundred seeds were 
germinated on three germitest papers using plastic box 
measuring (11 x 11 x 5 cm) in the seed germinator 
Mangelsdorf protected by a germination room, both 
maintained at 20°C. The data were collected at 8h 
intervals, and every seed with the protrusion of the 
hypocotyl-radicle was counted as germinated. 

The model was fit to the number of germinated 
seeds, and the analyses were based on the frequentist 
and Bayesian approaches conceiving the nonlinear 
model of Weibull with three parameters for describing 
the seed germination curve. The logarithm function of 
the likelihood is described in [3] and [4]. 

Results and discussion 

Frequentist analysis 

The hypothesis of normal errors was verified 
using the tests of Kolmogorov-Smirnov, Cramer-
von Mises and Anderson-Darling whose p-values 
were higher than 10%. 

Evaluating the results after fitting the Weibull 
model, the maximum of germinated seeds was about 
31, in which 63.21% germinated in 429h with the 
spread of 4.64 (Table 1). The diagnostic of the fitting 
quality was based on curvature measures, bias of Box, 
and relative bias (Table 1) (RATKOWSKY, 1983, 
1990). 

Table 1. Frequentist estimates of Weibull parameters, and 
qualitative measurements of goodness of fit of data describing the 
seed germination of Rhipsalis cereuscula Haw at 20°C. 

Parameter Estimate Standard 
Error 

CI (95%) Amplitude Bias of 
Box 

Relative 
bias 

M 30.862 0.631 (29.609; 
32.116) 2.507 0.0094 0.0303 

b 429.011 6.333 (416.427; 
441.594) 25.167 -0.0088 0.0020 

c 4.639 0.324 (3.994; 5.284) 1.290 0.0249 0.5369 
IN - Intrinsic Curvature 0.1328  

PE - Parameter Curvature 0.2218  
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Considering the relative bias of Box (Table 1), 
the parameter estimates of M and c were higher 
than 1%. Therefore, they are the most nonlinear 
parameters in this model. The limit for the 
curvatures are 0.8226 with p = 3 and n = 92 at 5% 
probability. Therefore, IN and PE were lower 
than 0.8226 validating the process of asymptotic 
inference.  

Bayesian analysis 

The following are estimates: mean, standard 
error and Icr (95%), i.e., the interval with 95% 
reliability respectively for parameters of the 
Weibull model for the germination of Rhipsalis 
cereuscula Haw for every model. 

Regarding the responses in Table 2, the 
maximum of seed germination was about 31 and 
63.21% of the seed protrusion required 429h. 
Therefore, the estimates from the Frequentist are 
similar to the Bayesian method whether the 
vector of parameter has non-informative a prior 
distributions. To fit the models M4 and M5 we 
made use of μ estimated by the frequentist 
method, which may be a disadvantage of both 
models to the M1 and M3. In the same Table 2, 
the model M2 has the higher value of DIC 
indicating the worst fitting quality among all the 
five models investigated.  

The frequentist method required the initial 
parameter values in the proc nlin of SAS Institute 
Inc. (2008), and further analysis to verify the 
goodness of fit of the model. In contrast, the 
Bayesian method required only a prior 
distribution, which can be non-informative for 

the vector of parameter. Considering the 
responses, except the model with a prior normal 
distribution, the other estimates are similar, but 
using less computational efforts. Another 
advantage of the Bayesian is the possibility of 
modeling several a prior distributions using the 
DIC by comparison. 

The result of the modeling using the Bayesian 
approach corroborates the findings of De la Cruz-
Mesia and Marshall (2003), who suggest that this 
is a worthwhile procedure, as well as adding prior 
information based on the experience of the 
researcher is also suitable for small samples, 
because it is not based on the asymptotic theory. 
We observed also that the results from this seed 
germination experiment agree with the findings of 
Soliman et al. (2006) when they compared the 
parameters of the Weibull model estimated by 
Bayesian and frequentist methods. Bayes 
estimates obtained from this model, as concluded 
Soliman et al. (2006), have more accuracy than 
the corresponding estimated by maximum 
likelihood method. 

Conclusion 

Modeling germinating seeds over time to 
radicle protrusion can be done using the 
frequentist and Bayesian approaches because both 
provide close estimates, but the Bayesian 
inference required less computational efforts. 
Considering the responses from these five 
models, the less appropriate was the normal 
model with zero mean and variance 106.  

Table 2. Bayesian estimates of parameters from the Weibull model to describe the seed germination of Rhipsalis cereuscula Haw at 200C. 

Models Parameter Mean Standard Error ICr(95%) Range DIC 

M1 

M 30.900 0.706 (29.560; 32.330) 2.770 

455.6 
b 429.300 7.291 (415.600; 444.300) 27.700 
c 4.665 0.347 (4.031; 5.393) 1.362 
 2.823 0.214 (2.447; 3.279) 0.832 

M2 

M 29.540 0.626 (28.300; 30.740) 2.440 

463.8 
b 409.700 6.778 (396.100; 422.700) 26.600 
c 5.224 0.442 (4.463; 6.193) 1.730 
 2.958 0.243 (2.534; 3.479) 0.945 

M3 

M 30.880 0.694 (29.560; 32.300) 2.740 

455.6 
b 429.200 7.319 (415.200; 444.300) 29.100 
c 4.672 0.351 (4.036; 5.415) 1.379 
 2.824 0.212 (2.452; 3.276) 0.824 

M4 

M 30.870 0.702 (29.560; 32.350) 2.790 

455.6 
b 429.100 7.328 (415.500; 444.000) 28.500 
c 4.661 0.345 (4.018; 5.398) 1.380 
 2.824 0.213 (2.436; 3.273) 0.837 

M5 

M 30.890 0.710 (29.570; 32.360) 2.790 

455.6 
b 429.200 7.436 (415.500; 444.500) 29.000 
c 4.655 0.352 (4.022; 5.389) 1.367 
 2.819 0.213 (2.435; 3.290) 0.855 
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