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ABSTRACT. The Wald method is grounded on a statistic based on the asymptotic approximation of 
normal distribution. The method has shown incoherent values at a nominal level of confidence for the 
probability of coverage in intervallic estimates, mainly in small samples, noticeable in linear functions 
formed by binomial proportions. Current analysis improves this method used in inferring from binomial 
linear functions, taking into consideration zero-inflated samples. Improvement was assessed by Monte 
Carlo simulation techniques within different scenarios. Results show that the improvement proposed is 
recommended in situations in which sampling proportions are close to 0,5 and produce a maximum 
variance of the binomial proportions involved in the composition of the linear function. 
Keywords: binomial families, probability of coverage, simulation. 

Aprimoramento do método de Wald aplicado a estimação de funções lineares binomiais 
com excesso de zeros 

RESUMO. O método de Wald é fundamentado em uma estatística que tem por base a aproximação 
assintótica da distribuição normal. Este método apresenta valores incoerentes de probabilidade de cobertura 
em estimativas intervalares em relação ao nível nominal de confiança, principalmente para pequenas 
amostras. Tal fato é perceptível em funções lineares formadas por proporções binomiais. O objetivo do 
trabalho consiste em aprimorar este método utilizado na inferência sobre funções lineares binomiais 
considerando amostras com excesso de zeros. Avaliou-se este aprimoramento utilizando técnicas de 
simulação Monte Carlo em diferentes cenários. Concluiu-se que o aprimoramento proposto é 
recomendável nas situações em que as proporções amostrais são próximas a 0.5 resultando em uma 
variância máxima das proporções binomiais envolvidas na composição da função linear. 
Palavras-chave: famílias binomiais, probabilidade de cobertura, simulação. 

Introduction 

The Wald method is highly relevant among the 
known procedures in literature for inference from 
binomial proportions. The method, widely used to 
compare two binomial proportions, is characterized 
essentially for being asymptotic, where the 
distribution of the estimator is approximately 
normal. Due to this approximation, numerous 
studies show that the method presents shortcomings 
with regard to results of coverage probability and its 
use in small samples. Alternative methods are 
proposed to correct this deficiency. An 
improvement to the Wald method, proposed by 
Agresti and Coull (1998), briefly consists of adding 
four pseudo-observations, two successes and two 
failures, in the expression of the proportion 
estimator. This procedure is known as the ‘add – 4 
method’. However the more general problem of 

interval estimation for a linear function of binomial 
proportions mentioned by Price and Bonett (2004), 
including pairwise comparisons, complex contrasts, 
interaction effects and simple main effects 
(BONETT; WOODWARD, 1987), are factors that 
influence the probability coverage estimate. 

Studying the Wald method and comparing it to 
other methods using the bootstrap approach, Carari 
et al. (2010) came to the conclusion that the Wald 
method presented probabilities of coverage with 
rates lower than the confidence coefficient´s 
nominal rates, thus jeopardizing its practical 
application to small samples. Regard to the add-4 
method, the study showed that it stood out by 
producing adequate results for probabilities of 
coverage and intervals with shorter lengths. 

The Wald method has also been used in dealing 
with linear functions which involve binomial 
proportions, also known as binomial families. A 
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generalization of this method with its approach is 
stated by Price and Bonett (2004) as a confidence 
interval for the parameter rate 

q

i i
i=1

F= δ π . As such, 
the confidence interval approximately 100(1-α)% 
from Wald to F is given (1) 

 

 2q q
i i i

i i α 2
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ˆ ˆδ π 1-π
ˆδ π ±z

in
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where: 

in is the reference sample size for i-th binomial 

population;  
ˆi i iY n  ; δi is a known  co-efficient and 

specified by researcher; 
q is the number of coefficients involved in the 

function. Even with the above generalization, the Wald 
method still presents the flaws mentioned and in this 
context alternative methods have emerged. More 
details may be found in Price and Bonett (2004), Tebbs 
and Roths (2008) and Cirillo et al. (2009). 

It is worth mentioning that the Wald method 
applied to the comparison of two binomial 
proportions or generalized for binomial linear 
functions put forth in the literature does not 
consider zero-inflated binomial (ZIB) samples. In 
this case, the use of these methods would 
certainly exacerbate the deficiencies mentioned 
previously with regard to coverage probability and 
applications to small samples. Silva and Cirillo 
(2010) warn that, even assuming the adequacy of 
the model, some zeros may be considered 
outliers, and thus different methods of assessment 
are sensitive to this anomaly. 

Consequently, robust assessment methods must 
be arrived at which will consider the presence of 
divergent data and provide a coherent estimate of 
the parameter required. Faced with this problem, 
methods which deal with the effect of outliers on 
estimates is still the focus of research. Andrade et al. 
(2014) have proposed a bootstrap algorithm which 
looks at the effect of divergent observations and/or 
influential on estimates for non-linear parameter 
models. 

While keeping focus on tallying data, Silva et al. 
(2012) studied the zero-inflated effect on a Poisson 
model according to sampling size and different 
parametric rates inferring from a zero-inflated 
Poisson (ZIP) model. The authors reached the 
conclusion that discrimination of ZIP and Poisson 
through a score test was recommended on the basis 
of a sampling size greater than n = 40 in samples 
with a high proportion of null rates. 

Wood et al. (2005) proposed two alternatives to 
estimate the probability of success in binomial samples 

tainted with divergent observations. These alternatives 
referred to two estimators differentiated by arithmetic 
average and rationalized means of the proportions 
observed. 

After comparing estimators variances, the authors 
come to the conclusion that an estimator’s 
recommendation will apply at different situations 
characterized by the distribution of proportions and the 
number of trials (n) performed. 

In view of a scarcity of robust, zero-inflated 
methods to estimate binomial linear functions, 
current research is characterized by the proposal for 
an improvement of the Wald method applied to the 
intervallic binomial linear functions. The above 
turns the method robust to zero-inflated binomial 
samples and replaces the maximum likelihood 
estimates by robust estimates. Several scenarios 
among different parametric configurations are 
assessed via Monte Carlo to validate the method. 

Material and methods 

Following the objectives proposed, the method 
was performed in two steps, specified in sections 2.1 
and 2.2, with details below. 

Simulation of zero-inflated binomial samplings. 

Using Monte Carlo simulation techniques, the 
zero-inflated binomial samples were generated while 
taking into account the ZIB model (RUCKSTUHL; 
WELSH, 2001), characterized by the mixture of two 
components in such a way that one component 
presumes that the occurrence of zero is defined by a 
γ probability, while the other component represents 
a binomial distribution with a (1-γ) probability. The 
ZIB model is thus defined by the following 
expression (2) 

 
m

y m-y

γ+(1-γ)(1-π) ,           if           y=0

P(Y=y) m
(1-γ) π (1-π) , if y=1,2,...,m

y


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(2)

 
with the expectation that 

 
E(Y) = (1 - γ) (1 - π) mπ 

 
and the variance defined as  

 
Var (Y) = [(1-γ) mπ][(1 - π)(1 - γm)] 

 
where γ is a probability of zero occurrence and m 
the number of Bernoulli experiments. Using the 
model given in (2), set m = 100 Bernoulli 
experiments for n samples sizes, the parametric rates 
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assumed in the Monte Carlo simulation process are 
described in Table 1. 

Table 1. Parametric rates to generate zero-inflated binomial 
samples. 

γ = 0.2 γ = 0.3 
n π n π 
30 0.5 and 0.7 30 0.5 and 0.7 
40 0.5 and 0.7 40 0.5 and 0.7 
50 0.5 and 0.7 50 0.5 and 0.7 
60 0.5 and 0.7 60 0.5 and 0.7 
70 0.5 and 0.7 70 0.5 and 0.7 
80 0.5 and 0.7 80 0.5 and 0.7 
90 0.5 and 0.7 90 0.5 and 0.7 
 

Keeping the parametric rate configurations, 
estimators for robust to zero-inflated binomial 
proportions are defined by zibπ . This estimator 
was obtained as a combination of estimators 
found in Ruckstuhl and Welsh (2001) and Silva and 
Cirillo (2010) . 

 
m

zib s mle
y=0

ˆ ˆπ ρ (x)π   
 

(3) 

 
where mleπ̂  is the maximum likelihood estimator of 

π  given in (4) 
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where: 
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The expression presented in (3) is based on the 

likelihood disparity of E-estimators (RUCKSTUHL; 
WELSH, 2001) and 

sρ (x) represents a function that 

minimizes the disparity. 
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(6)

 
where c1 and c2  are affinity constants. 

The function argument n

n

f (y)
x=

p (y)  
is fixed, where 

np (y) is the probability for a Binomial distribution, 

considering the estimate of π given by (4). The rates 
for s are set in 1 and 2, defining the estimator πෝzib in 

two approaches mentioned in current research as the 
incorporation of ρ1 and ρ2 components.  

We would like to emphasize that the structure 
of ρ1 and ρ2 in the estimation process is 
understood as a systematic component taking into 
consideration that the researcher may choose 
which function will be assumed. Note that by 
assuming u = 1, ρ2 = ρ1 suggests that ρ2 is a 
generalization of ρ1 differing only in the 
asymptotic properties. 

In this context, the rates for affinity constants 
c1 and c2 are defined on the basis of the 
component in such a way that, upon assuming the 
component ρ1, the coefficients u = c2 = 1 are 
fixed and a value for c1 < c2 = 1 is investigated. 
Thus, ρ1 (x) is prone to a greater increase when x → ∞.  

Keeping the c1 < c2 = 1 inequality in mind, 
according to Ruckstuhl and Welsh (2001), the 
maximum likelihood estimates tend to be more 
robust. Taking into consideration ρ2, it is assumed 
that c1 = 0.1 keeping the c1 < c2 = 1 restriction, 
whereas the rate of u is examined so as to reduce the 
increase of ρ2 (x) when x → ∞. 

It is worth underscoring that the accuracy and 
precision of the estimator (3) depend on the rates 
of the affinity constants c1 and c2 which make it 
robust to expected numbers of null values. 
Consequently, the research for these constants 
was carried out by a computer routine. 

The intention of Silva and Cirillo (2010) was 
to reproduce Tables for rates of u and c1 in two 
situations of sρ ( )x  described in (6). Thus the 

researcher may use the estimator zibπ  in a 
statistical inference based on the maximum 
likelihood estimate of π on a zero inflated sample, 
observing the deviations between mleπ  and zibπ  

estimates, given by zib mleπ π k  , where k  

indicates a tolerable rate for this difference. The 
first step is to evaluate the maximum likelihood 
estimate ( mleπ ), proceeding the evaluation of 

np (y)  

for application on 
sρ ( )x  and evaluation of zibπ , 

according to expression (4). Thus foregrounded, 
Tables presented by Silva and Cirillo (2010) may 
be helpful for the choice of u and c1.  

So that zero-inflated binomial estimates could be 
compared and validated, the relative bias for mleπ  and 

zibπ̂  estimates were valued according to expression (7) 

 

mle
mle

π̂ -π
v =

π
 and zib

zib

π̂ - π
v =

π
 (7) 
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Definition and estimation of linear functions of binomial 
proportions taking into consideration the Wald method 

After generating the binomial samples, the 
structure of the binomial linear functions was 
represented by the parametric rate, as shown in (8) 

 
q

i i
i=1

F= δ π
, 

(8)

 
where q is the total number of binomial 
populations, the i-th coefficient associated with the 
success proportion regarding to the i-th binomial 
population is expressed as δi, following specifications 
shown in Table 2. 

Table 2. Coefficients used for linear function specifications. 

Family q Coefficient vector used in composition of F 

F1 3  1δ 2 , 1 , 1    

F2 5  2δ 4 , 1 , 1 , 1 , 1      

F3 7  3δ 6 , 1 , 1 , 1 , 1 , 1 , 1        

F4 10  4δ 9 , 1, 1, 1, 1, 1, 1, 1, 1, 1           

 

For each F linear function representing a binomial 
family, the intervallic estimates for F were numerated, 
taking into account Wald’s confidence intervals 
according to expression (1). Maximum likelihood 
estimates were replaced by zibπ  estimates with the 

systematic ρ1 and ρ2 component. 
Finally, according to assessment scenario (Table 

1), the intervals adapted for robust zero-inflated 
proportions were compared by a 100 (1-α)% interval 
for exact probability of coverage for a fixed value of 
F(8) defined by (9) 
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where I (y1,…,yq) equals 1 if the intervals contains F 
(8), when Y1 = y1,…,Yg = yg equals zero if the 
interval does not contain F (8). An approximation is 
obtained from 2000 Monte Carlo simulations by 
means of estimated interval percentages which 
include the F parameter calculated from a program 
developed by R 3.00 software (R DEVELOPMENT 
CORE TEAM, 2011). 

Results and discussion 

Taking into consideration the evaluation 
scenarios mentioned in Methodology (Section 2.1), 
the number of Bernoulli m = 100 trials in this first 
step was established when obtaining the study 
samples for the recommended methods. 

With this specification, 
mleπ̂  maximum likelihood 

estimates and zero-inflated robust as represented by 
πෝ୸୧ୠ were obtained in binomial samples generated via 
Monte Carlo with the null observations percentages 
nearing 20 and 30% as per the parametric values 
specified in the γ = 0.2 and 0.3 mixture probability. 
Results are shown in Tables 3-6. 

Table 3. Comparative results of 
mleπ̂  and zibπ  estimators, taking 

into account the parametric rate π = 0.5 with c2 = u = 1 
restriction characterizing the systematic ρ1 component. 

n γ c1 mleπ̂  Bias 
zibπ̂  bias 

30 0.2 0.2900 0.3995 -0.2010 0.5000 -0.0001 
30 0.3 0.4300 0.3504 -0.2992 0.5018 0.0036 
40 0.2 0.2600 0.4006 -0.1988 0.5007 0.0014 
40 0.3 0.4300 0.3499 -0.3002 0.5001 0.0003 
50 0.2 0.2600 0.4002 -0.1996 0.4941 -0.0119 
50 0.3 0.4300 0.3508 -0.2984 0.4986 -0.0027 
60 0.2 0.2500 0.3985 -0.2030 0.4983 -0.0034 
60 0.3 0.4300 0.3506 -0.2988 0.4983 -0.0034 
70 0.2 0.2500 0.3998 -0.2024 0.4913 -0.0173 
70 0.3 0.4300 0.3504 -0.2992 0.4974 -0.0052 
80 0.2 0.2400 0.3991 -0.2018 0.4962 -0.0076 
80 0.3 0.4300 0.3497 -0.3006 0.4982 -0.0037 
90 0.2 0.2400 0.4000 -0.2000 0.4914 -0.0171 
90 0.3 0.4300 0.3499 -0.3002 0.4975 -0.0049 
 

Table 4. Comparative results of 
mleπ̂  and zibπ  estimators taking 

into account the parametric rate = 0.5 with c1 = 0.1 and c2 = 1 
restriction characterizing the systematic ρ2 component. 

n γ u 
mleπ̂  Bias zibπ̂  bias 

30 0.2 0.1540 0.3995 -0.2010 0.5102 0.0203 
30 0.3 0.1800 0.3514 -0.2972 0.4930 -0.0141 
40 0.2 0.1400 0.4000 -0.2000 0.5026 0.0052 
40 0.3 0.1730 0.3499 -0.3002 0.5020 0.0041 
50 0.2 0.1310 0.4003 -0.1994 0.4997 -0.0006 
50 0.3 0.1700 0.4002 -0.1995 0.4941 -0.0119 
60 0.2 0.1240 0.4002 -0.1995 0.4952 -0.0096 
60 0.3 0.1660 0.3507 -0.2986 0.4996 -0.0008 
70 0.2 0.1170 0.3993 -0.2014 0.5039 0.0078 
70 0.3 0.1640 0.3509 -0.2982 0.4970 -0.0061 
80 0.2 0.1130 0.4003 -0.1994 0.4900 -0.0201 
80 0.3 0.1610 0.3500 -0.3000 0.4982 -0.0037 
90 0.2 0.1060 0.3999 -0.2002 0.5102 -0.0204 
90 0.3 0.1590 0.3491 -0.3018 0.5000 -0.0010 
 

Table 5. Comparative results of 
mleπ̂  and zibπ  estimators taking 

into account the parametric rate π = 0.7 with c2 = u = 1 
restriction characterizing the systematic ρ1 component. 

n γ c1 mleπ̂  Bias zibπ̂  Bias 

30 0.2 0.0001 0.5580 -0.2029 0.8322 0.0188 
30 0.3 0.2700 0.4889 -0.3016 0.7011 0.0015 
40 0.2 0.1500 0.5611 -0.1984 0.6977 -0.0033 
40 0.3 0.2700 0.4924 -0.2966 0.6994 -0.0008 
50 0.2 0.1500 0.5610 -0.1996 0.6961 -0.0056 
50 0.3 0.2700 0.4907 -0.1986 0.7051 0.0073 
60 0.2 0.1500 0.5591 -0.2990 0.6979 -0.0030 
60 0.3 0.2700 0.4899 -0.3001 0.7050 0.0072 
70 0.2 0.1500 0.5597 -0.2004 0.6961 -0.0056 
70 0.3 0.2800 0.4902 -0.2997 0.6951 -0.0069 
80 0.2 0.1500 0.5605 -0.1990 0.6944 -0.0080 
80 0.3 0.2800 0.4904 -0.2994 0.6978 -0.0012 
90 0.2 0.1500 0.5597 -0.2004 0.6976 -0.0035 
90 0.3 0.2800 0.4921 -0.2970 0.6949 -0.0073 
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Table 6. Comparative results of 
mleπ̂  and zibπ  estimators taking 

into account the parametric rate π = 0.7 with c1 = 0.1 and c2 = 1 
restriction characterizing the systematic ρ2 component. 

n γ u 
mleπ̂  Bias zibπ̂  Bias 

30 0.2 0.1300 0.5589 -0.2820 0.7078 0.0134 
30 0.3 0.1400 0.4904 -0.2994 0.7025 0.0040 
40 0.2 0.1270 0.5582 -0.2026 0.7020 -0.0019 
40 0.3 0.1400 0.4920 -0.2971 0.6979 -0.0017 
50 0.2 0.1240 0.5604 -0.1986 0.7001 0.0044 
50 0.3 0.1400 0.4908 -0.2990 0.6972 -0.0014 
60 0.2 0.1220 0.5605 -0.2013 0.6967 0.0017 
60 0.3 0.1390 0.4895 -0.2986 0.7025 0.0028 
70 0.2 0.1190 0.5604 -0.3001 0.7008 -0.0072 
70 0.3 0.1390 0.4884 -0.2997 0.7015 0.0030 
80 0.2 0.1180 0.5590 -0.1993 0.7002 -0.0008 
80 0.3 0.1390 0.4899 -0.2994 0.6953 -0.0068 
90 0.2 0.1160 0.5592 -0.2004 0.7048 -0.0038 
90 0.3 0.1390 0.4897 -0.2970 0.6983 -0.0052 
 

In short, results made it clear that, in fact, in 
zero-inflated contaminated binomials, estimates for 
maximum likelihood were not accurate. This 
statement might be confirmed from the bias results, 
including situations of greater size sampling. 
However, when taking into consideration πෝ୸୧ୠ 
estimates, it was noted that for almost all sample 
sizes and γ rates on an average the relative biases 
were less than 0.01, including small swings due to 
the Monte Carlo error in π = 0.5 Tables (3 and 4) 
and π = 0.7 rates (Tables 5 and 6). 

Based on results on zibπ  estimates accuracy, the 

composition of binomial linear functions for the 
Wald method was conducted and coverage 
probabilities were calculated. For comparison 
purpose, a 95% nominal confidence level was taken 
into consideration. Each binomial family was 
represented by F1, F2, F3 and F4, respectively with 
regard to 	ߜሚ1, ߜሚ2, ߜሚ3 and ߜሚ4 coefficient vectors, 
described in Table 2. Thus, the graphics with 
probability estimates are shown as follows in the 
Figures 1 - 8: 

 

 
Figure 1. Probability of coverage assuming parameters γ = 0.2 
and π = 0.5 and the systematic component ρ1. 

 
Figure 2. Probability of coverage assuming parameters γ = 0.2 
and π = 0.5 and the systematic component ρ2. 

 
Figure 3. Probability of coverage assuming the parameters γ = 
0.2 and π = 0.7 and the  systematic component ρ1. 

 
Figure 4. Probability of coverage assuming the parameters γ = 
0.2 and π = 0.7 and the  systematic component ρ2. 
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Keeping a mean proportion of null values around 
20% (γ = 0.20) of sampled observations, the results 
shown in Figures 1-4 made it clear that the increase 
in sampling size resulted in a decrease of coverage 
probability, with rates much lower than the nominal 
confidence level. 

This was demonstrated by arranging the 
binomial families using zibπ  estimates with the use 

of ρ1 and ρ2 components. However, when the null 
observation proportion was increased to about 30% 
of sample units (γ = 0.30), while taking into 
consideration the parametric values which maximize 
the variance of binomial proportions, that is, π = 
0.5, the binomial families whose zero-inflated 
proportions were estimated with ρ1 components 
showed probabilities of greater coverage at the 
nominal level of confidence (Figure 5). The same 
result for all sample sizes was observed when the 
parametric value increased, in situations where 
estimates were obtained using ρ1 and ρ2 systematic 
component (Figures 7-8). 

 

 
Figure 5. Probability of coverage assuming the parameters γ = 
0.3 and π = 0.5 and the systematic component ρ1. 

 
Figure 6. Probability of coverage assuming the parameters γ = 
0.3 and π = 0.5 and the systematic component ρ2. 

 
Figure 7. Probability of coverage assuming the parameters γ = 
0.3 and π = 0.7 and the systematic component ρ1. 

 
Figure 8. Probability of coverage assuming the parameters γ = 
0.3 and π = 0.7 and the systematic component ρ2. 

It is worth mentioning that the Wald method, 
put into context for the obtainment of the estimates 
of binomial families, was assessed by Cirillo et al. 
(2009) for the use of the infinite bootstrap algorithm 
recommended by Conlon and Thomas (1990). 
Within this approach, authors of different 
assessment scenarios also concluded that results 
related to the probabilities of coverage were 
incoherent with the nominal level of confidence. 

Silva and Cirillo (2010) produced studies related 
to the use of a robust estimator used in the inference 
of a binomial model contaminated by the mixture of 
binomial populations, when samples were obtained 
through Monte Carlo simulations. This study used 
an estimator belonging to the E estimator class 
(RUCKSTUHL; WELSH, 2001) incorporated into 
the ρ1(x) (8), a component which altered the E 
estimator. Several c1 affinity constant rates were 
considered, specified in rates 0.1 ≤ c1 ≤ 0.9 sample 
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sizes equal to 10, 50 and 80, besides the mixture 
rates equal to 0.20 and 0.40. The main conclusive 
results were illustrated in the recommendation to 
assume c1 = 0.1 for samples greater than n = 50. 

Already confirmed results were described 
regarding to flows noticed in the Wald method and 
the choice of c1 constants based on sampling size and 
degree of contamination for the results listed in this 
work. 

The Wald method, when using zero-inflated 
proportion estimates obtained by the πෝ୸୧ୠ estimator 
incorporated into the systematic ρ2 component, may be 
recommended in situations with proportions which 
maximize the binomial family variance, that is π  0.7, 
since, for this parametric value, the scenarios evaluated 
led to coverage probabilities greater than 95%. 

Conclusion 

The use of the Wald method incorporated into 
estimates for zero-inflated binomial proportions using 
the ρ2 component showed results in line with the 
nominal confidence level of binomial proportions. In 
practical terms, this method is recommended for 
samples in which proportions are close to 0.7 with 
proportions close to 0.3. 
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APPENDIX 1 

R function for evaluation of fn, described in (5)  
fny = function (m, n, data, vet) 
{ 
m: number of Bernoulli trials  
n: sample size 
data: binomial sample inflated by zeros 
vet: vector formed by 0,1,…,m  
for (a in 1:(m)) 
{ 
prop = 0;     aux = vet[a] 
for (b in 1:n) 
{ 
if (aux == data[b]) prop = prop + 1 
}  
v cont[a] = (prop) n-1 
} 
return (v cont) 
} 
Obtaining MLE when the specifications of the function arguments are given  
rfny = fny (m, n, data, vet) 
est_MLE = sum (data*rfny) m-1 
d = d binom (y, m, est_MLE)                          input value on estimaPzib function 
x = (rfny massa-1)                                            input value on estimaPzib function 

 

APPENDIX 2 

Function to estimate the robust binomial proportion inflated by zeroes  
estimaPzib = function (x, d, c1, c2, u) 
{ 
c1 and c2 : specification of constants to be used in ρ1 
u: constant  to be used in ρ2  
x: rate to be replaced on function p1 or p2 
d: densities given the maximum likelihood estimates 
estPzib = 0 
for (b in 1 : length (x)) 
{ 
if (x[b] > = c1 && x[b] < = c2)   rho[b] = x[b]*log(x[b]) 
if (x[b] < c1) 
rho[b] = ((c1 ^ (1-u) * log(c1) + ((1-u) * log(c1) + 1) * (c1 ^ (1-u) u-1)) * x[b] ^ u)  
- (((1 - u) * log(c1) + 1) * c1 u-1) 
if(x[b] > c2) 
rho[b] = ((c2 ^ (1 - u) * log(c2) + ((1 - u) * log(c2) + 1) * (c2 ^ (1 - u) u-1)) * x[b] ^ u)  
- (((1 - u) * log(c2) + 1) * c2 u-1) 
auxPzib = rho[b]*d[b];      estPzib = auxPzib + estPzib 
} 

return (estPzib) 

} 

 

Robust Estimate to zero excess  
With regard to this step, the researcher may choose between ρ1 or ρ2 
u=0.13  function considering ρ2 for any rate of u different from 1; 
u = 1 function considering ρ1 
Assume any value for c1, keeping the restriction c1 < c2 = 1 on ρ1 or ρ2  
 c1 is researched, like to an example assumed as c1 = 0.1 
c1 = 0.1; c2 = 1 

 

Evaluation of Pzibestimator  
Specify the functions arguments 
Pzib = estimaPzib (x,d,c1,c2,u) 

 


