
Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

Simulating a simple neural network on branch prediction

Vinicius Marra Ribas, Maurício Fernandes Figueiredo and Ronaldo Augusto de Lara
Gonçalves*

Departamento de Informática, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil.
*Autor para correspondência. e-mail: ronaldo@din.uem.br

ABSTRACT. This work evaluates the usability of perceptron and its efficiency on branch
prediction in superscalar architectures, using two simulators. Firstly, we simulated the use of
perceptron on the classification of colored points on the Cartesian plane. The classifier
showed that perceptron could be used on branch prediction, because the action of
classifying is similar to the action of predicting. Based on this previous analysis, we also
simulated the use of perceptron on branch prediction using branch traces automatically
generated. The predictor presented satisfactory results. In all cases, we concluded that
simulation is a good strategy to measure performance of branch predictor based on
perceptron before its implementation in hardware.
Key words: superscalar processors, branch prediction, perceptron.

RESUMO. Simulando uma rede neural simples na previsão de desvios. Este trabalho
avalia a usabilidade do perceptron e sua eficiência na previsão de desvios em arquiteturas
superescalares, usando dois simuladores. Primeiro, nós simulamos o uso do perceptron na
classificação de pontos coloridos sobre o plano Cartesiano. O classificador mostrou que o
perceptron poderia ser usado na previsão de desvios pois a ação de classificar é similar a ação
de prever. Com base nesta análise prévia, nós também simulamos o uso do perceptron na
previsão de desvios usando traços de desvios gerados automaticamente. O previsor
apresentou resultados satisfatórios. Em todos os casos, nós concluímos que a simulação é
uma boa estratégia para medir o desempenho de previsores de desvios baseados no
perceptron, antes de sua implementação em hardware.
Palavras-chave: processadores superescalares, previsão de desvios, perceptron.

Introduction

Many commercial processors are implemented
on superscalar architectures, like Pentium (Intel),
Atlon (AMD), UltraSparc (SUN), PowerPC 7455
(Motorola), Alpha 21264 (DEC) and others. Branch
prediction is a fundamental strategy used in these
processors, to predict the probable path of next
instructions to be fetched, anticipating the execution
of instructions and providing high instruction level
parallelism.

Techniques for branch prediction predict the
branch direction (taken or not-taken) as well as the
target address. They can be static or dynamic, if they
always choose a predefined direction (Smith and
Sohi, 1995) or use hierarchical tables containing
branch history (Bray and Flynn, 1991; Lee and
Smith, 1984; Yeh and Patt, 1991), respectively.
Recently, interesting results were obtained from
studies of branch prediction based on neural
networks (Calder et al., 1997; Jiménez and Lin, 2000,

2001). In this context, some works adopt a single
neuron perceptron, which is able to classify linearly
separable areas and predict time series (Koskela et al.,
1996; Cholewo and Zurada, 1997; Thiesing et al.,
1997). Being a recent area of study, it requires
further investigation.

The main objective of this work is to simulate
and evaluate the use of perceptron on branch
prediction. Firstly, we simulated the use of
perceptron in the colored point classification, in
order to understand its behavior. After that, we
simulated a modified version of the perceptron
predictor kernel proposed by Jiménez (Jiménez and
Lin, 2000, 2001).

This paper is organized as follows: Section 2
presents concepts and techniques about branch
prediction. Fundamentals of neural networks and a
brief description of perceptron are addressed in
Section 3. Section 4 describes a colored point
classification tool based on perceptron. Section 5
describes a branch predictor simulator also based on

154 Ribas et al.

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

perceptron. Section 6 shows the analysis of results
for branch prediction. Section 7 summarizes main
conclusions and proposes future works. Finally, the
references used in this work appear in the last
section.

Branch prediction

In superscalar architecture, branch instructions
may reduce the parallelism because the branch
direction or the target address during the instruction
fetch cannot be known. Branch predictors may
predict the branch direction, as well as the target
address, avoiding the interruption of instruction
stream inside pipeline and anticipating the fetch of
the probable path. Thus, it is an essential mechanism
to ensure high performance for superscalar
processors, providing continuous instruction stream
and expanding the possibilities to detect parallel
instructions (Gonçalves et al., 2001).

Smith (1981) classified branch prediction
techniques in static prediction (prefixed solution by
hardware or software) and dynamic prediction
(solved at run time according to the history of past
branches). Regarding static prediction, there are
techniques which always predict either taken or not-
taken for any branches, techniques which always
predict taken for some types of branches (defined by
operation code) and not-taken for others, or still,
techniques which always predict taken only for
backward branches and not-taken for forward
branches.

Dynamic prediction techniques are more
complex ones. A well-known dynamic technique
uses a table to keep n most recently not-taken
branches. If a branch is matched in this table, it is
predicted as not taken; otherwise, it is predicted as
taken. Another technique predicts a branch in
accordance with its last execution. In this case, a
table is used to keep a 1-bit history for each branch
instruction (1 for taken branch and 0 for not-taken
branch). This technique can be improved keeping
the last n occurrences of each branch using n-bit
history. A different version of this technique uses 2-
complement counters instead of a bit history. In this
case, a branch is predicted taken when the signal bit
of the respective counter is 0 and not taken when it
is 1. The counter is updated after each branch
solution.

Nowadays, the most used techniques for branch
prediction, providing better results, make use of a
specific cache named Branch Target Buffer (BTB).
Several proposals for BTBs are discussed in (Lee and
Smith, 1984; Perleberg and Smith, 1993). The BTB
is organized as a table (see Figure 1), where each line

consists of information to identify branches
(normally their addresses) and to supply predictions
(normally counters or histories), target addresses for
taken branches and probably some target
instructions.

Figure 1. Branch target buffer (BTB).

When a branch instruction is fetched, its address
is compared with branch addresses stored in the
BTB. If the address is stored there, the branch is
predicted using the respective branch history field.
Moreover, if the target address is not known yet, it is
obtained from the branch target field. If the branch
is predicted taken, the processor gets the first target
instructions from the appropriated field of the BTB,
while the fetch is redirected to the target address
(jumping those first instructions). If the branch is
predicted not taken, the processor continues
fetching on the natural path of the program.

After the branch solution, the predicted outcome
is compared with the branch real outcome and both
branch direction and target address are verified. If
the prediction was predicted correctly, the processor
follows its normal execution; if not, the pipeline is
flushed and the processor starts to fetch from the
right path. Also, the prediction field and/or target
address of BTB are updated.

Yeh and Patt (1991) proposed a new organization
for BTB, which uses more than one level of history
and the predictions are based on the individual
branch behavior, as well as on the relationship
among them. That prediction technique was named
Two-Level Adaptive Training and has three basic
variations: GAg, PAg and PAp.

GAg has a two-level structure. In the first level,
there is a Global Branch History Register (GBHR),
which is a shift register containing n outcomes from
n last branches. After each branch solution, the
register is shifted in order to insert a new bit,
producing a new situation inside that register.
However, the same situation can appear several
times, generating different patterns. In the second
level, there is a Global Pattern History Table
(GPHT), which is indexed by different patterns

Simulating a simple neural network on branch prediction 155

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

provided by GBHR. Each line in GPHT contains
the s last occurrences of the same pattern, which can
be generated by different branch instructions. The
prediction is based on the history of the second
level, which is indexed by the pattern from the first
level. Consequently, the behavior of a branch can
influence other branches. Moreover, during the next
prediction for the same branch, the pattern can be
changed.

PAg and PAp are extended models. In both cases,
the first level uses a Per-Address Branch History
Table (PBHT) rather than a unique global register.
In this table, each different branch instruction
addresses an individual pattern register. However, in
the second level, PAp and PAg are different because
PAp has several GPHTs rather than one, where each
branch instruction addresses its own pattern table on
the second level; this is named Per-Address Pattern
History Tables (PPHT). All models are sketched in
Figure 2. In fact, there are other variations (Yeh and
Patt, 1992).

Figure 2. Variations of two-level adaptive BTB.

Nowadays, new approaches for branch
prediction based on neural networks (Calder et al.,
1997; Jiménez and Lin, 2000, 2001) have been
investigated. Simple models, like perceptron, have
been analyzed due to their capabilities to support
long streams of branch histories without requiring
additional computing or additional hardware
resources. More details about those techniques are
described in the next section.

Neural networks

The utilization of neural networks in several
fields of human knowledge has grown significantly,
due to their singular features, like learning,
classification, prediction, optimization,
approximation and others (Haykin, 1994). Jain and
Mao (1996) said that neural network applicability is
vast and can resolve many computational problems,
like time series prediction. Branch prediction fits in
this context, whose problem is similar to predict the
next element in a sequence of 0s and 1s (taken or
not-taken).

The fundamental component of neural networks is
the artificial neuron, which is modeled from the
biological neuron. The neuron receives n inputs Xi (1 ≤ i
≤ n). They are weighted by synaptic weights Wj (1 ≤ j ≤
n), which are associated to the learning capabilities of the
neuron. The output y is defined by an activation
function f, which operates on both the sum of those
weighed inputs and an activate threshold represented by
a weight W0. Mathematically, the neuron is represented
by the equation bellow:

)XWW(
1
∑
=

+=
n

j
jj0fy (E1)

Neural networks can be organized under

different models, depending on the number of
layers, number of neurons in each layer, number of
inputs and outputs, neuron connection types,
synaptic weights, activation function and threshold.
The main feature of neural networks is its learning
capability, which is done by adjusting the synaptic
weights, using results obtained either from real-time
execution or from a training period (Figueiredo and
Gomide, 1999). The learning techniques are
classified in four basic types (Jain and Mao, 1996):
Error Correction, Boltzmann learning, Hebb
learning and Competition learning.

The basic principle of the Error Correction
learning is to use neuron output error (the
difference between desired output and neuron
output) to adjust the synaptic weights, in order to
avoid the same error later. The purpose of
Boltzmann learning is adjusting the synaptic weights
in order to generate neuron states according to some
probability distribution. In Hebb learning, the
intensity of synaptic connections is changed,
according to output line correlations between pre
and pos synaptic neurons (Jain and Mao, 1996). In
Competition learning, neurons dispute activation
among themselves. The winner establishes which
neurons adjust their weights.

Perceptron is one of the first implemented
models for artificial neuron. Originally imagined by
Rosemblatt, its activation function is y = f (∑), such
that y = -1 when ∑ ≤ 0 and y = +1 when ∑ > 0.
Figure 3 represents this model.

The perceptron is able to classify elements
(Russell and Norvig, 1985). Hence, if the set of all
possible inputs of perceptron is a n-dimensional
space ruled by equation E1, there is an hyperspace
(line, if n=2) that separates the space in a set of
inputs for which perceptron returns -1 and a set of
inputs it returns +1.

156 Ribas et al.

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

Figure 3. Model of perceptron neuron.

Rosemblatt showed that, when the learning
pattern submitted to perceptron has linearly separable
classes, the learning process converges to a finite
number of iterations, adjusting the synaptic weights
and the activation threshold of neuron (Jain and Mao,
1996; Jiménez and Lin, 2001). This effect is called
Perceptron Convergence Theorem. The perceptron
learning process uses an error correction technique
where the initial synaptic weights are values randomly
generated, in the range [-0.5, +0.5].

According to Jain and Mao (Jain and Mao, 1996),
the applicability of neural networks is wide and it
can solve many computational problems, like the
ones related to classifying and prediction of time
series. Branch prediction appears in this context,
because to predict the next branch is similar to
predict the next element of time series composed of
1s and 0s (taken and not-taken). Thus, two
simulators based on perceptron were developed: a
colored point classification tool and a branch
predictor, discussed in the next sections.

Classification simulator

This simulator, called classifier, was developed just
to provide information about the behavior of the
perceptron neuron in a classification process. Our
interest was to investigate the possibility of using
perceptron in branch prediction. The simulator was
developed using Borland Delphi 5.0 Tool on Windows
platform and its interface is shown in Figure 4.

Figure 4. Classifier user interface.

Using the “generate” button, the classifier allows
random generation of points in the Cartesian plane.
This point set is called global point set. Each point is
represented by a coordinate (x, y) in the interval [-
1,+1] and by one of two colors (red or blue).
Depending on the configuration, the global point set
can be generated in two color groups or with a well-
defined linear separation, either mixed (no
separation) in the plane. Figure 4 shows an example
of the first case. However, the perceptron neuron
does not know the configuration and tries to find
the boundary between the red and blue groups.

After point generation, the perceptron can
execute two phases: training (for learning) and
classification. Clicking on the “train” button starts
the training. The “number of points” field adjusts the
number of training points (500 is default). The
initial synaptic weights can be adjusted to zero by
checking the “null initiate weights” box, otherwise
they will be chosen randomly in the interval [0,+1].
The training point set is a subset of the global point
set. The perceptron trains either until a solution is
found (boundary) or until executing the maximum
number of iterations, defined by the “number of
executions” field (1,000 is default).

In any training iteration, the perceptron analyzes
the whole training point set and for each point it
makes a supposition about its color. After analyzing
all training points, even if only a point is wrong, the
synaptic weights will be recalculated (learning) and a
new iteration will start. The aim of the perceptron
training is to find, dynamically, the better synaptic
weights for that point set. Thus, the perceptron will
be able to classify another point set with the same
characteristics (same boundary).

During the training phase, all learning actions of
the perceptron are graphically animated. The
“visualization time” field adjusts the animation speed.
After the training, the user interface will show the
linear equation required to separate the two point
groups in the best possible way. Clicking on “classify”
button starts the next phase.

During the classification phase, the classification
point set (difference between the global point set and
the training point set) is submitted to the
perceptron, but no information about the colors is
provided. The perceptron tries to predict the color
for each point and find the boundary, using the
synaptic weights adjusted during the training phase.
The results are shown in the user interface. The
points correctly classified are plotted using the group
color and all wrong points are plotted using another
color. The interface shows the total number of
errors.

Simulating a simple neural network on branch prediction 157

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

The current simulation (global point set and its
respective weights obtained during its training
phase) can be stored in a text file. This
information can be recovered by the “File” option
in the menu bar. This feature allows the
reevaluation of any specific situation, as well as
the execution of an exhaustive simulation. The
exhaustive simulation provides statistics about the
classification accuracy for different sizes of
training point set (default is from 2 to 500 points).
For each variation, the global point set is classified
and the accuracy rate is plotted in a graph. We can
notice there is a little instability when the
perceptron uses a few points for training. That
situation happens because the perceptron is not
able to find the appropriated linear equation.

Figures 5 and 6 show the perceptron engine and
learning codes, respectively.

Figure 5. Perceptron output code.

Figure 6. Perceptron learning code.

Our experiments showed that perceptron neuron

is able to classify Cartesian elements in one of two
possible groups, if they are linearly separable. In a
sense, the perceptron could be used to predict
branches due to two reasons. First, the branch
prediction tries to classify branches in one of two
possible groups: taken or not-taken branches, such
as the classification. Second, both point classification
and branch prediction consider previous actions to
guess the next one. Thus, the classifier was modified
in order to make our predictor, which is explained in
the next section.

Prediction simulator

Our branch prediction simulator, also called
predictor, uses a prediction code kernel developed
by Jimenéz and Lin (Jiménez and Lin, 2001). That
kernel was adapted and extended using Borland
C++Builder 4 Tool for Windows. Figure 7 shows
the predictor interface. It works as follows: the
simulator generates a branch stream randomly,
containing a sequence of 0s and 1s, which simulates
a trace of branch outcomes such as generated by
execution of one real application. In this stream, 1
represents “taken” and 0 “not-taken”.

Figure 7. Predictor execution model.

The simulator scans the branch stream using a
history window. For each new prediction, this
window is moved on the stream, bit after bit, and
the simulator extracts the branch history from it,
which is used as perceptron inputs. The predictor
uses the branch history to predict the next branch
outcome. In other words, the branch stream
simulates the branch history being modified in run-
time, which is shown in Figure 7.

The branch stream is generated according to the
configuration specified in the simulator interface.
Users can define stream size, history (input) size,
execution type, execution number, distribution and
other parameters. The stream size is defined by “i-
number” option. The perceptron neuron used in the
predictor works with different input sizes (branch
history), such as shown in the fields of “history size”
option. These sizes also define the prediction
window sizes.

There are two possibilities to generate a branch

158 Ribas et al.

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

stream, depending on the “distribution” option to be
random or pattern. In the first case, the whole
stream is randomly generated, with no relationship
between bits. As a matter of fact, users can define the
occurrence probability for taken branches in the
“taken prediction” option. In the second case, the
stream is composed of a same random pattern
repetition, separated by zero segments. The distance
between zero segments and the size of each zero
segment are defined by “spacing” and “repetition”
options, respectively.

In addition, the simulator allows exhaustive
execution. In this case, the perceptron works on a
branch stream several times (until 1 million of
repetitions in the current version, according to
“iterations” options). This feature provides more
reliable statistics. That branch stream can be the
same or a newer one in each repetition, depending
on the “instruction set” option to be adjusted for
“fixed” or “variable”. Notice that, using the second
option, it is hard to evaluate the ability of the
perceptron, since the synaptic weights obtained in
one previous stream doesn't satisfy the next one.

Usually, the initial synaptic weights for the
current repetition are the final synaptic weights
obtained in the previous repetition, for either fixed
or variable option. However, being ticked the “fixed
learning” box, the perceptron uses the same synaptic
weights between repetitions. When this option is not
ticked, the synaptic weights are reinitiated to zeroes
between repetitions.

Pressing the “go” button starts the simulation.
The errors, execution steps and statistic results of
the predictor are presented in the text window.
Results can be shown in short mode (only final
statistics) or partial mode (partial statistics between
iterations) depending on “short presentation” box to be
ticked or non-ticked, respectively.

Some other functions could be noticed. The
“clear” button stops the simulation (if necessary) and
cleans the text window. “Save” button writes the
simulation results in a text file. Ticking on the
“combined execution” box allows the complete
execution of all possible configuration options and
writes the results in a text file. Next section presents
a performance evaluation of its branch prediction
based on this predictor.

Performance evaluation

According to Smith (1981), when the
prediction policy is “always taken”, the prediction
accuracy rate has as value the percentage of
branches really taken. For example, considering a
branch stream containing 80% of taken branches

the accuracy rate will be 80%. For many
benchmarks, the number of taken branches is
bigger than not-taken branches and that policy
reaches an average rate of about 76.68%. We
consider this rate as referential parameter for
evaluating our predictor.

In our simulations, we have proven that, if the
perceptron does not learn (disabled learning), its
prediction accuracy is lower. That is obvious,
because if there is no learning, the perceptron makes
the same mistakes, independently of the number of
repetitions. Besides that, for a branch stream
composed only of taken or not-taken branches, the
accuracy rate is 100%. In this case, perceptron starts
making a few mistakes and quickly starts to get its
predictions right.

If the branch stream is composed of randomly
generated branches and the number of taken
branches is larger than the number of not-taken
branches (or conversely), the performance of our
predictor is similar to that policy “always taken” (or
“always not-taken” in the opposite case).

Anyway, the performance of perceptron is never
smaller than 50%, even in the worst case (totally
random situation, in which the number of taken and
not-taken branches is evenly distributed - 50% for
both). This behavior is understandable, since the
perceptron tries to find a branch pattern in the
inputs, which means a classification function. That
is hard in a random group.

However, it is worthwhile to notice that the
accuracy rate of perceptron increases according to
largest percentage occurrence between taken and
not-taken branches and therefore, it is never lower
than 50%. Besides, it has always a growing behavior
when the number of taken branches grows up to
100% or decreases up to 0%.

Another important remark is that, using streams
containing sequences of a same branch pattern, our
predictor got a very satisfactory performance,
reaching more than 97% of accuracy rate. Even
without learning, the performance reaches above
95%. If the branch pattern is variable for each
stream, the performance reaches more than 87% if
learning is considered; otherwise, the perceptron
performance reaches more than 85%. The average
results can be seen in Tables 1 and 2.

Table 1. Accuracy for taken/not-taken branches.

Branch Distribution Stream Accuracy

100% Taken 100%
100% Not-Taken 100%

Simulating a simple neural network on branch prediction 159

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

Table 2. Accuracy for random branches.

Branch Distribution Stream

Random Pattern Repetition Input Type

NL WL NL WL

Fixed 75% 75% 95% 97%
Variable 75% 75% 85% 87%

NL (No Learning) - WL (With Learning)

Conclusion and future works

In this work, a classification tool to understand
the perceptron behavior is developed. Simulations
with this tool showed that the perceptron could be
used to predict branch instructions in superscalar
architectures. Based on that preliminary evaluation,
we built a branch prediction simulator using only
one perceptron neuron. Our simulations presented
satisfactory results.

Using streams containing sequences of a same
branch pattern, our predictor reaches more than
97% of accuracy rate. Even without learning, the
performance reaches above 95%. If the branch
pattern is variable for each stream, the performance
reaches more than 87% if considering learning;
otherwise the perceptron performance reaches more
than 85%. For values randomly generated, our
predictor presented accuracy around 75%,
equivalent that one reached by “always taken/not-
taken” policy. These results show moderate
efficiency of the perceptron on branch prediction
using non-real inputs. It may be concluded that
simulation is a good strategy to measure the
performance of a branch predictor based on
perceptron before its implementation in hardware.

For future works, we intend to analyze the
performance of perceptron on real benchmarks. In
this case, we will implement our predictor inside the
SimpleScalar Tool Set (Burger and Austin, 1997), in
order to measure the effects of the speculative
execution on prediction accuracy. We also will work
on two level prediction models, using more than
one perceptron to improve performance.

References

BRAY, B. K.; FLYNN, M. J. Strategies for branch target
buffers. ACM - Association for Computing Machinery, Jun.
1991, Proceedings... Annual International. p. 42-50.
BURGER, D.; AUSTIN, T. M. The SimpleScalar tool set,
Version 2.0. TR #1342. Madison: Computer Sciences
Department, University of Wisconsin-Madison, 1997.
CALDER, B. et al. Evidence-based static branch prediction using
machine learning. Maryland: ACM Transactions on
Programming Languages and Systems, 1997.
CHOLEWO, T.J.; ZURADA, J.M. Sequential Networks

Construction for Time Series Prediction. In: IEEE
JOINT CONFERENCE ON NEURAL NETWORKS,
COMPUTER, Houston, Jun. 1997. Proceedings...
Houston, 1997. p. 2034-2039.
FIGUEIREDO, M.; GOMIDE, F. Design of fuzzy
systems using neurofuzzy networks. IEEE Transactions on
Neural Networks, New York, v. 10, no. 4, p.815-827, 1999.
GONÇALVES, R. et al. Evaluating the Effects of Branch
Prediction Accuracy on the Performance of SMT
Architectures. In: EUROMICRO. 9. 2001:
EUROMICRO WORKSHOP PARALLEL AND
DISTRIBUTED PROCESSING. 9. Mantova, 2001.
Proceedings... Mantova, 2001. p. 355-362.
HAYKIN, S. Neural Networks. New York: Prentice Hall.
1994.
JAIN, A. K.; MAO, J. Artificial Neural Networks: a
tutorial. Proceedings of the IEEE Computer, Los Alamitos, p.
31-44, 1996.
JIMÉNEZ, D. A.; LIN, C. Dynamic branch prediction
with perceptrons. In: INTERNATIONAL
SYMPOSIUM ON HIGH PERFORMANCE
COMPUTER ARCHITECTURE., 7. Monterrey. 2001.
Proceedings... Monterrey, 2001. p. 20-24.
JIMÉNEZ, D. A.; LIN, C. Perceptron learning for
prediction the behavior of conditional branches. In:
INNS-IEEE INTERNATIONAL JOINT
CONFERENCE ON NEURAL NETOWORKS.
Washington, DC. 2000. Proceedings... Washington:
University of Texas, 2000.
KOSKELA, T. et al. Time series prediction with multilayer
perceptron, FIR and Elman Neural Networks. In:
WORLD CONGRESS ON NEURAL NETWORKS,
San Diego, 1996. Proceedings... San Diego: INNS Press,
1996. p. 491-496.
LEE, J. K. F.; SMITH, A. J. Branch prediction strategies
and branch target buffer design. IEEE Computer Magazine,
New York, p. 6-22., 1984.
PERLEBERG, C. H.; SMITH, A. J. Branch target buffer
design and optimization. IEEE Transactions on Computers, v.
2, n. 4, p. 396-412, 1993.
RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a
modern approach. Englewood Cliffs: Prentice Hall Inc.,
1985, p. 563-597.
SMITH, J. E. A Study of branch prediction strategies. In:
ANNUAL INTERNATIONAL SYMPOSIUM ON
COMPUTER ARCHITECTURE, 8., Minneapolis, 1981.
Proceedings...Minneapolis, 1981, p. 135-148.
SMITH, J. E.; SOHI, G. S. The microarchitecture of
superscalar processors. IEEE, Los Alamitos, 1995.
Proceedings... Los Alamitos, 1995. p. 1609-1624.
THIESING, F. M. et al. Parallel back-propagation for
prediction of time series. EUROPEAN PVM USERS'
GROUP MEETING, 1., Rome, 1997. Proceedings... Rome,
1997.
YEH, T.; PATT, Y. N. Two-Level Adaptive Training
Branch Prediction. In: ACM/IEEE INTERN.
SYMPOSIUM AND WORKSHOP ON
MICROARCHITECTURE, 24., Albuquerque, 1991.

160 Ribas et al.

Acta Scientiarum. Technology Maringá, v. 25, no. 2, p. 153-160, 2003

Proceedings... Albuquerque, 1991, p.51-61.
YEH, T.; PATT, Y. N. Alternative implementation of
two-level adaptive branch prediction. In: ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE, 19., Queensland, 1992. Proceedings...

Queensland, 1992, p. 124-134.

Received on June 29, 2003.
Accepted on October 14, 2003.

