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ABSTRACT. This work evaluates the usability of perceptron and its efficiency on branch 
prediction in superscalar architectures, using two simulators. Firstly, we simulated the use of 
perceptron on the classification of colored points on the Cartesian plane. The classifier 
showed that perceptron could be used on branch prediction, because the action of 
classifying is similar to the action of predicting. Based on this previous analysis, we also 
simulated the use of perceptron on branch prediction using branch traces automatically 
generated. The predictor presented satisfactory results. In all cases, we concluded that 
simulation is a good strategy to measure performance of branch predictor based on 
perceptron before its implementation in hardware. 
Key words: superscalar processors, branch prediction, perceptron. 

RESUMO. Simulando uma rede neural simples na previsão de desvios. Este trabalho 
avalia a usabilidade do perceptron e sua eficiência na previsão de desvios em arquiteturas 
superescalares, usando dois simuladores. Primeiro, nós simulamos o uso do perceptron na 
classificação de pontos coloridos sobre o plano Cartesiano. O classificador mostrou que o 
perceptron poderia ser usado na previsão de desvios pois a ação de classificar é similar a ação 
de prever. Com base nesta análise prévia, nós também simulamos o uso do perceptron na 
previsão de desvios usando traços de desvios gerados automaticamente. O previsor 
apresentou resultados satisfatórios. Em todos os casos, nós concluímos que a simulação é 
uma boa estratégia para medir o desempenho de previsores de desvios baseados no 
perceptron, antes de sua implementação em hardware. 
Palavras-chave: processadores superescalares, previsão de desvios, perceptron. 

Introduction 

Many commercial processors are implemented 
on superscalar architectures, like Pentium (Intel), 
Atlon (AMD), UltraSparc (SUN), PowerPC 7455 
(Motorola), Alpha 21264 (DEC) and others. Branch 
prediction is a fundamental strategy used in these 
processors, to predict the probable path of next 
instructions to be fetched, anticipating the execution 
of instructions and providing high instruction level 
parallelism.  

Techniques for branch prediction predict the 
branch direction (taken or not-taken) as well as the 
target address. They can be static or dynamic, if they 
always choose a predefined direction (Smith and 
Sohi, 1995) or use hierarchical tables containing 
branch history (Bray and Flynn, 1991; Lee and 
Smith, 1984; Yeh and Patt, 1991), respectively. 
Recently, interesting results were obtained from 
studies of branch prediction based on neural 
networks (Calder et al., 1997; Jiménez and Lin, 2000, 

2001). In this context, some works adopt a single 
neuron perceptron, which is able to classify linearly 
separable areas and predict time series (Koskela et al., 
1996; Cholewo and Zurada, 1997; Thiesing et al., 
1997). Being a recent area of study, it requires 
further investigation. 

The main objective of this work is to simulate 
and evaluate the use of perceptron on branch 
prediction. Firstly, we simulated the use of 
perceptron in the colored point classification, in 
order to understand its behavior. After that, we 
simulated a modified version of the perceptron 
predictor kernel proposed by Jiménez (Jiménez and 
Lin, 2000, 2001). 

This paper is organized as follows: Section 2 
presents concepts and techniques about branch 
prediction. Fundamentals of neural networks and a 
brief description of perceptron are addressed in 
Section 3. Section 4 describes a colored point 
classification tool based on perceptron. Section 5 
describes a branch predictor simulator also based on 
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perceptron. Section 6 shows the analysis of results 
for branch prediction. Section 7 summarizes main 
conclusions and proposes future works. Finally, the 
references used in this work appear in the last 
section. 

Branch prediction 

In superscalar architecture, branch instructions 
may reduce the parallelism because the branch 
direction or the target address during the instruction 
fetch cannot be known. Branch predictors may 
predict the branch direction, as well as the target 
address, avoiding the interruption of instruction 
stream inside pipeline and anticipating the fetch of 
the probable path. Thus, it is an essential mechanism 
to ensure high performance for superscalar 
processors, providing continuous instruction stream 
and expanding the possibilities to detect parallel 
instructions (Gonçalves et al., 2001). 

Smith (1981) classified branch prediction 
techniques in static prediction (prefixed solution by 
hardware or software) and dynamic prediction 
(solved at run time according to the history of past 
branches). Regarding static prediction, there are 
techniques which always predict either taken or not-
taken for any branches, techniques which always 
predict taken for some types of branches (defined by 
operation code) and not-taken for others, or still, 
techniques which always predict taken only for 
backward branches and not-taken for forward 
branches. 

Dynamic prediction techniques are more 
complex ones. A well-known dynamic technique 
uses a table to keep n most recently not-taken 
branches. If a branch is matched in this table, it is 
predicted as not taken; otherwise, it is predicted as 
taken. Another technique predicts a branch in 
accordance with its last execution. In this case, a 
table is used to keep a 1-bit history for each branch 
instruction (1 for taken branch and 0 for not-taken 
branch). This technique can be improved keeping 
the last n occurrences of each branch using n-bit 
history. A different version of this technique uses 2-
complement counters instead of a bit history. In this 
case, a branch is predicted taken when the signal bit 
of the respective counter is 0 and not taken when it 
is 1. The counter is updated after each branch 
solution. 

Nowadays, the most used techniques for branch 
prediction, providing better results, make use of a 
specific cache named Branch Target Buffer (BTB). 
Several proposals for BTBs are discussed in (Lee and 
Smith, 1984; Perleberg and Smith, 1993). The BTB 
is organized as a table (see Figure 1), where each line 

consists of information to identify branches 
(normally their addresses) and to supply predictions 
(normally counters or histories), target addresses for 
taken branches and probably some target 
instructions. 

 

Figure 1. Branch target buffer (BTB). 

When a branch instruction is fetched, its address 
is compared with branch addresses stored in the 
BTB. If the address is stored there, the branch is 
predicted using the respective branch history field. 
Moreover, if the target address is not known yet, it is 
obtained from the branch target field. If the branch 
is predicted taken, the processor gets the first target 
instructions from the appropriated field of the BTB, 
while the fetch is redirected to the target address 
(jumping those first instructions). If the branch is 
predicted not taken, the processor continues 
fetching on the natural path of the program. 

After the branch solution, the predicted outcome 
is compared with the branch real outcome and both 
branch direction and target address are verified. If 
the prediction was predicted correctly, the processor 
follows its normal execution; if not, the pipeline is 
flushed and the processor starts to fetch from the 
right path. Also, the prediction field and/or target 
address of BTB are updated. 

Yeh and Patt (1991) proposed a new organization 
for BTB, which uses more than one level of history 
and the predictions are based on the individual 
branch behavior, as well as on the relationship 
among them. That prediction technique was named 
Two-Level Adaptive Training and has three basic 
variations: GAg, PAg and PAp. 

GAg has a two-level structure. In the first level, 
there is a Global Branch History Register (GBHR), 
which is a shift register containing n outcomes from 
n last branches. After each branch solution, the 
register is shifted in order to insert a new bit, 
producing a new situation inside that register. 
However, the same situation can appear several 
times, generating different patterns. In the second 
level, there is a Global Pattern History Table 
(GPHT), which is indexed by different patterns 
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provided by GBHR. Each line in GPHT contains 
the s last occurrences of the same pattern, which can 
be generated by different branch instructions. The 
prediction is based on the history of the second 
level, which is indexed by the pattern from the first 
level. Consequently, the behavior of a branch can 
influence other branches. Moreover, during the next 
prediction for the same branch, the pattern can be 
changed. 

PAg and PAp are extended models. In both cases, 
the first level uses a Per-Address Branch History 
Table (PBHT) rather than a unique global register. 
In this table, each different branch instruction 
addresses an individual pattern register. However, in 
the second level, PAp and PAg are different because 
PAp has several GPHTs rather than one, where each 
branch instruction addresses its own pattern table on 
the second level; this is named Per-Address Pattern 
History Tables (PPHT). All models are sketched in 
Figure 2. In fact, there are other variations (Yeh and 
Patt, 1992). 

 

Figure 2. Variations of two-level adaptive BTB. 

Nowadays, new approaches for branch 
prediction based on neural networks (Calder et al., 
1997; Jiménez and Lin, 2000, 2001) have been 
investigated. Simple models, like perceptron, have 
been analyzed due to their capabilities to support 
long streams of branch histories without requiring 
additional computing or additional hardware 
resources. More details about those techniques are 
described in the next section. 

Neural networks 

The utilization of neural networks in several 
fields of human knowledge has grown significantly, 
due to their singular features, like learning, 
classification, prediction, optimization, 
approximation and others (Haykin, 1994). Jain and 
Mao (1996) said that neural network applicability is 
vast and can resolve many computational problems, 
like time series prediction. Branch prediction fits in 
this context, whose problem is similar to predict the 
next element in a sequence of 0s and 1s (taken or 
not-taken). 

The fundamental component of neural networks is 
the artificial neuron, which is modeled from the 
biological neuron. The neuron receives n inputs Xi (1 ≤ i 
≤ n). They are weighted by synaptic weights Wj (1 ≤ j ≤ 
n), which are associated to the learning capabilities of the 
neuron. The output y is defined by an activation 
function f, which operates on both the sum of those 
weighed inputs and an activate threshold represented by 
a weight W0. Mathematically, the neuron is represented 
by the equation bellow: 
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Neural networks can be organized under 

different models, depending on the number of 
layers, number of neurons in each layer, number of 
inputs and outputs, neuron connection types, 
synaptic weights, activation function and threshold. 
The main feature of neural networks is its learning 
capability, which is done by adjusting the synaptic 
weights, using results obtained either from real-time 
execution or from a training period (Figueiredo and 
Gomide, 1999). The learning techniques are 
classified in four basic types (Jain and Mao, 1996): 
Error Correction, Boltzmann learning, Hebb 
learning and Competition learning. 

The basic principle of the Error Correction 
learning is to use neuron output error (the 
difference between desired output and neuron 
output) to adjust the synaptic weights, in order to 
avoid the same error later. The purpose of 
Boltzmann learning is adjusting the synaptic weights 
in order to generate neuron states according to some 
probability distribution. In Hebb learning, the 
intensity of synaptic connections is changed, 
according to output line correlations between pre 
and pos synaptic neurons (Jain and Mao, 1996). In 
Competition learning, neurons dispute activation 
among themselves. The winner establishes which 
neurons adjust their weights. 

Perceptron is one of the first implemented 
models for artificial neuron. Originally imagined by 
Rosemblatt, its activation function is y = f (∑), such 
that y = -1 when ∑ ≤ 0 and y = +1 when ∑ > 0. 
Figure 3 represents this model. 

The perceptron is able to classify elements 
(Russell and Norvig, 1985). Hence, if the set of all 
possible inputs of perceptron is a n-dimensional 
space ruled by equation E1, there is an hyperspace 
(line, if n=2) that separates the space in a set of 
inputs for which perceptron returns -1 and a set of 
inputs it returns +1. 
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Figure 3. Model of perceptron neuron. 

Rosemblatt showed that, when the learning 
pattern submitted to perceptron has linearly separable 
classes, the learning process converges to a finite 
number of iterations, adjusting the synaptic weights 
and the activation threshold of neuron (Jain and Mao, 
1996; Jiménez and Lin, 2001). This effect is called 
Perceptron Convergence Theorem. The perceptron 
learning process uses an error correction technique 
where the initial synaptic weights are values randomly 
generated, in the range [-0.5, +0.5]. 

According to Jain and Mao (Jain and Mao, 1996), 
the applicability of neural networks is wide and it 
can solve many computational problems, like the 
ones related to classifying and prediction of time 
series. Branch prediction appears in this context, 
because to predict the next branch is similar to 
predict the next element of time series composed of 
1s and 0s (taken and not-taken). Thus, two 
simulators based on perceptron were developed: a 
colored point classification tool and a branch 
predictor, discussed in the next sections. 

Classification simulator 

This simulator, called classifier, was developed just 
to provide information about the behavior of the 
perceptron neuron in a classification process. Our 
interest was to investigate the possibility of using 
perceptron in branch prediction. The simulator was 
developed using Borland Delphi 5.0 Tool on Windows 
platform and its interface is shown in Figure 4. 

 

Figure 4. Classifier user interface. 

Using the “generate” button, the classifier allows 
random generation of points in the Cartesian plane. 
This point set is called global point set. Each point is 
represented by a coordinate (x, y) in the interval [-
1,+1] and by one of two colors (red or blue). 
Depending on the configuration, the global point set 
can be generated in two color groups or with a well-
defined linear separation, either mixed (no 
separation) in the plane. Figure 4 shows an example 
of the first case. However, the perceptron neuron 
does not know the configuration and tries to find 
the boundary between the red and blue groups. 

After point generation, the perceptron can 
execute two phases: training (for learning) and 
classification. Clicking on the “train” button starts 
the training. The “number of points” field adjusts the 
number of training points (500 is default). The 
initial synaptic weights can be adjusted to zero by 
checking the “null initiate weights” box, otherwise 
they will be chosen randomly in the interval [0,+1]. 
The training point set is a subset of the global point 
set. The perceptron trains either until a solution is 
found (boundary) or until executing the maximum 
number of iterations, defined by the “number of 
executions” field (1,000 is default). 

In any training iteration, the perceptron analyzes 
the whole training point set and for each point it 
makes a supposition about its color. After analyzing 
all training points, even if only a point is wrong, the 
synaptic weights will be recalculated (learning) and a 
new iteration will start. The aim of the perceptron 
training is to find, dynamically, the better synaptic 
weights for that point set. Thus, the perceptron will 
be able to classify another point set with the same 
characteristics (same boundary). 

During the training phase, all learning actions of 
the perceptron are graphically animated. The 
“visualization time” field adjusts the animation speed. 
After the training, the user interface will show the 
linear equation required to separate the two point 
groups in the best possible way. Clicking on “classify” 
button starts the next phase. 

During the classification phase, the classification 
point set (difference between the global point set and 
the training point set) is submitted to the 
perceptron, but no information about the colors is 
provided. The perceptron tries to predict the color 
for each point and find the boundary, using the 
synaptic weights adjusted during the training phase. 
The results are shown in the user interface. The 
points correctly classified are plotted using the group 
color and all wrong points are plotted using another 
color. The interface shows the total number of 
errors. 
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The current simulation (global point set and its 
respective weights obtained during its training 
phase) can be stored in a text file. This 
information can be recovered by the “File” option 
in the menu bar. This feature allows the 
reevaluation of any specific situation, as well as 
the execution of an exhaustive simulation. The 
exhaustive simulation provides statistics about the 
classification accuracy for different sizes of 
training point set (default is from 2 to 500 points). 
For each variation, the global point set is classified 
and the accuracy rate is plotted in a graph. We can 
notice there is a little instability when the 
perceptron uses a few points for training. That 
situation happens because the perceptron is not 
able to find the appropriated linear equation. 

Figures 5 and 6 show the perceptron engine and 
learning codes, respectively.  

 

Figure 5. Perceptron output code. 

 

Figure 6. Perceptron learning code. 

Our experiments showed that perceptron neuron 

is able to classify Cartesian elements in one of two 
possible groups, if they are linearly separable. In a 
sense, the perceptron could be used to predict 
branches due to two reasons. First, the branch 
prediction tries to classify branches in one of two 
possible groups: taken or not-taken branches, such 
as the classification. Second, both point classification 
and branch prediction consider previous actions to 
guess the next one. Thus, the classifier was modified 
in order to make our predictor, which is explained in 
the next section. 

Prediction simulator 

Our branch prediction simulator, also called 
predictor, uses a prediction code kernel developed 
by Jimenéz and Lin (Jiménez and Lin, 2001). That 
kernel was adapted and extended using Borland 
C++Builder 4 Tool for Windows. Figure 7 shows 
the predictor interface. It works as follows: the 
simulator generates a branch stream randomly, 
containing a sequence of 0s and 1s, which simulates 
a trace of branch outcomes such as generated by 
execution of one real application. In this stream, 1 
represents “taken” and 0 “not-taken”. 

 

Figure 7. Predictor execution model. 

The simulator scans the branch stream using a 
history window. For each new prediction, this 
window is moved on the stream, bit after bit, and 
the simulator extracts the branch history from it, 
which is used as perceptron inputs. The predictor 
uses the branch history to predict the next branch 
outcome. In other words, the branch stream 
simulates the branch history being modified in run-
time, which is shown in Figure 7. 

The branch stream is generated according to the 
configuration specified in the simulator interface. 
Users can define stream size, history (input) size, 
execution type, execution number, distribution and 
other parameters. The stream size is defined by “i-
number” option. The perceptron neuron used in the 
predictor works with different input sizes (branch 
history), such as shown in the fields of “history size” 
option. These sizes also define the prediction 
window sizes. 

There are two possibilities to generate a branch 
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stream, depending on the “distribution” option to be 
random or pattern. In the first case, the whole 
stream is randomly generated, with no relationship 
between bits. As a matter of fact, users can define the 
occurrence probability for taken branches in the 
“taken prediction” option. In the second case, the 
stream is composed of a same random pattern 
repetition, separated by zero segments. The distance 
between zero segments and the size of each zero 
segment are defined by “spacing” and “repetition” 
options, respectively. 

In addition, the simulator allows exhaustive 
execution. In this case, the perceptron works on a 
branch stream several times (until 1 million of 
repetitions in the current version, according to 
“iterations” options). This feature provides more 
reliable statistics. That branch stream can be the 
same or a newer one in each repetition, depending 
on the “instruction set” option to be adjusted for 
“fixed” or “variable”. Notice that, using the second 
option, it is hard to evaluate the ability of the 
perceptron, since the synaptic weights obtained in 
one previous stream doesn't satisfy the next one. 

Usually, the initial synaptic weights for the 
current repetition are the final synaptic weights 
obtained in the previous repetition, for either fixed 
or variable option. However, being ticked the “fixed 
learning” box, the perceptron uses the same synaptic 
weights between repetitions. When this option is not 
ticked, the synaptic weights are reinitiated to zeroes 
between repetitions. 

Pressing the “go” button starts the simulation. 
The errors, execution steps and statistic results of 
the predictor are presented in the text window. 
Results can be shown in short mode (only final 
statistics) or partial mode (partial statistics between 
iterations) depending on “short presentation” box to be 
ticked or non-ticked, respectively. 

Some other functions could be noticed. The 
“clear” button stops the simulation (if necessary) and 
cleans the text window. “Save” button writes the 
simulation results in a text file. Ticking on the 
“combined execution” box allows the complete 
execution of all possible configuration options and 
writes the results in a text file. Next section presents 
a performance evaluation of its branch prediction 
based on this predictor. 

Performance evaluation 

According to Smith (1981), when the 
prediction policy is “always taken”, the prediction 
accuracy rate has as value the percentage of 
branches really taken. For example, considering a 
branch stream containing 80% of taken branches 

the accuracy rate will be 80%. For many 
benchmarks, the number of taken branches is 
bigger than not-taken branches and that policy 
reaches an average rate of about 76.68%. We 
consider this rate as referential parameter for 
evaluating our predictor. 

In our simulations, we have proven that, if the 
perceptron does not learn (disabled learning), its 
prediction accuracy is lower. That is obvious, 
because if there is no learning, the perceptron makes 
the same mistakes, independently of the number of 
repetitions. Besides that, for a branch stream 
composed only of taken or not-taken branches, the 
accuracy rate is 100%. In this case, perceptron starts 
making a few mistakes and quickly starts to get its 
predictions right. 

If the branch stream is composed of randomly 
generated branches and the number of taken 
branches is larger than the number of not-taken 
branches (or conversely), the performance of our 
predictor is similar to that policy “always taken” (or 
“always not-taken” in the opposite case).  

Anyway, the performance of perceptron is never 
smaller than 50%, even in the worst case (totally 
random situation, in which the number of taken and 
not-taken branches is evenly distributed - 50% for 
both). This behavior is understandable, since the 
perceptron tries to find a branch pattern in the 
inputs, which means a classification function. That 
is hard in a random group. 

However, it is worthwhile to notice that the 
accuracy rate of perceptron increases according to 
largest percentage occurrence between taken and 
not-taken branches and therefore, it is never lower 
than 50%. Besides, it has always a growing behavior 
when the number of taken branches grows up to 
100% or decreases up to 0%. 

Another important remark is that, using streams 
containing sequences of a same branch pattern, our 
predictor got a very satisfactory performance, 
reaching more than 97% of accuracy rate. Even 
without learning, the performance reaches above 
95%. If the branch pattern is variable for each 
stream, the performance reaches more than 87% if 
learning is considered; otherwise, the perceptron 
performance reaches more than 85%. The average 
results can be seen in Tables 1 and 2. 

Table 1. Accuracy for taken/not-taken branches. 

Branch Distribution Stream Accuracy 

100% Taken 100% 
100% Not-Taken 100% 
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Table 2. Accuracy for random branches. 

Branch Distribution Stream 

Random Pattern Repetition Input Type 

NL WL NL WL 

Fixed 75% 75% 95% 97% 
Variable 75% 75% 85% 87% 

NL (No Learning) - WL (With Learning) 

Conclusion and future works 

In this work, a classification tool to understand 
the perceptron behavior is developed. Simulations 
with this tool showed that the perceptron could be 
used to predict branch instructions in superscalar 
architectures. Based on that preliminary evaluation, 
we built a branch prediction simulator using only 
one perceptron neuron. Our simulations presented 
satisfactory results.  

Using streams containing sequences of a same 
branch pattern, our predictor reaches more than 
97% of accuracy rate. Even without learning, the 
performance reaches above 95%. If the branch 
pattern is variable for each stream, the performance 
reaches more than 87% if considering learning; 
otherwise the perceptron performance reaches more 
than 85%. For values randomly generated, our 
predictor presented accuracy around 75%, 
equivalent that one reached by “always taken/not-
taken” policy. These results show moderate 
efficiency of the perceptron on branch prediction 
using non-real inputs. It may be concluded that 
simulation is a good strategy to measure the 
performance of a branch predictor based on 
perceptron before its implementation in hardware. 

For future works, we intend to analyze the 
performance of perceptron on real benchmarks. In 
this case, we will implement our predictor inside the 
SimpleScalar Tool Set (Burger and Austin, 1997), in 
order to measure the effects of the speculative 
execution on prediction accuracy. We also will work 
on two level prediction models, using more than 
one perceptron to improve performance. 
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