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ABSTRACT. We investigate for the diffusion equation the differences manifested by the solutions when 
three different types of spatial differential operators of noninteger (or fractional) order are considered for a 
limited and unlimited region.  In all cases, we verify an anomalous spreading of the system, which can be 
connected to a rich class of anomalous diffusion processes.  
Keywords: diffusion equation, fractional derivative, anomalous diffusion. 

Equações de difusão e diferentes derivadas espaciais fracionárias  

RESUMO. Investigamos para a equação de difusão as diferenças manifestadas pelas soluções quando três 
tipos diferentes de operadores diferenciais espaciais de ordem não inteiras (ou fracionárias) são 
considerados para regiões limitadas ou não limitadas. Em todos os casos, verificamos um espalhamento 
anômalo do sistema que pode ser conectado a uma rica classe de processos difusivos.  
Palavras-chave: equação de difusão, derivada fracionária, difusão anômala. 

Introduction 

Actually, the fractional calculus represents an 
important tool which has been successfully applied to 
several contexts (DAS; MAHARATNA, 2013; 
DEBNATH, 2003; MACHADO et al., 2014; 
GLÖCKLE; NONNENMACHER, 1995; HILFER, 
2000; SHLESINGER et al., 1994). For example, 
electrical response (LENZI et al., 2013; SANTORO et 
al., 2011), biological systems (CASPI et al., 2000; 
PLOTKIN; WOLYNES, 1998), finance, viscoelasticity 
(GLÖCKLE; NONNENMACHER, 1991) and 
anomalous diffusion (PEKALSKI; SZNAJD-
WERON, 1999). In particular, the last point has 
received much attention since that the usual approach 
(RISKEN, 1989; GARDINER, 2009) does not provide 
a suitable description of the experimental results and, 
consequently, requires extensions. In this sense, by 
using fractional calculus, the diffusion equation (or 
Fokker - Planck equation) and the Langevin equation 
have been extended and, consequently, used to 
investigate several situations such as the ones present in 
Refs. (HILFER, 2000; METZLER; KLAFTER, 2000; 
LENZI et al., 2009; METZLER et al., 1994; 
SOKOLOV, 2012). However, there is more than one 
definition of the fractional (or noninteger) differential 
operators which have been used to investigate these 
situations. In this sense, our goal is to investigate the 

differences manifested by the solutions when 
three representative fractional operators are 
incorporated to in the diffusive term, i.e., the 
usual spatial derivative is replaced by a fractional 
differential operator. The operators analyzed here 
are the Riemann - Liouville (PODLUBNY, 
1999), Caputo (PODLUBNY, 1999), and the one 
proposed by Qianqian et al. (2010) which reminds 
us the usual case. For these operators, we consider 
the situations characterized by a limited and no 
limited regions in order to establish the 
differences. Analysis is performed next, followed 
by discussion and conclusion.  

Material and methods 

Diffusion equations and different fractional operators 

Let us start our analysis about the differences 
of these operators by investigating the behavior of 
the solutions when these fractional differential 
operators are incorporated in the diffusive term. 
The first spatial differential operator considered 
here is the Riemann - Livouville, defined as 
(PODLUBNY, 1999)  
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where: 
n is a integer and 1n n   . Using this definition 
for the spatial derivative the usual diffusion equation 
can be extended to 
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to describe, for simplicity, a system defined in the 
interval ],[ ba  and subjected to boundary and 

initial conditions. The usual diffusion equation 
can also be extended by incorporating the 
fractional differential operators in the Caputo 
(PODLUBNY, 1999) sense. In this case, the 
diffusion equation is modified to 
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which is very similar to Equation (2), however the 
differential operator, to be considered in this case, is 
given by 
 

0
0

( )

1

1 ( ', ) '
( , )

( ) ( ')

nxC
x x nx

x t dx
D x t

n x x





  

    (4)

 
with 1n n    where n  is an integer number 
and ( ) ( , )n x t  is the thn  – spatial derivative of the 
distribution ( , )x t . Note that for   integer 

Equation (2) and (3) recover the usual diffusion 
equation and the presence of the constants 

,aK  

and 
,bK  permit us, from the form point of view, 

to work out the operators present in the diffusive 
term in the  asymmetric and symmetric form.  In 
addition, it is interesting to mention that the 
presence, in the diffusive term, of these 
differential operators can related to a long-tailed 
behavior of the jump probabilities which 
characterize the diffusive process manifested by 
the system. 

For these operators when the system is defined 
in a infinite interval, i.e., ),(  , both equations 

lead us to the same solution since that the 
operators in this limit are equivalent as discussed 
in Ref. (PODLUBNY, 1999). This feature may be 
observed from the numerical from point of view. 
In fact, by using the discrete form of these 
operators known as the L2 method (QIANQIAN 
et al., 2010), we obtain, for the Grünwald-
Letnikov fractional differential operator, 
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with the interval [ , ]L L  divided in N  parts, 

h L N , such that N i N    and 
ix ih . 

Whereas, the discrete form of the Caputo's operator, 
using the same procedure, can be written as follows 
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Notice that equations for ( )GL

L x iD u x


 and 

( )C
L x iD u x


 only differ by the first two terms before 

the sum, and these terms are inversely proportional 
to L . Therefore their discrepancies become smaller 
if we increase the size of the system, as illustrated in 
Figure 1.  
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Figure 1. This figure illustrates the difference between the solutions 
of  Equation (2) and (3) obtained in the interval [-L,L] as a function 
of L for t = 0.1 and 0x . We consider, for simplicity, 8.1  and 
absorbent boundary conditions. Note that difference decrease by 
increasing the value of L. 

Interesting characteristics of Equation (2) and (3) 
appear when they are considered in a finite interval 
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where the surface effects may play an important 
role. In order to face this point, we investigate the 
differences between Equation (2) and (3) when the 
system is considered, without loss of generality, in a 
limited interval, i.e., ],0[ L , with , 0b K . We also 

assume that ( , )x t  is ( 1)n  times continuously 

differentiable and that ( ) ( , )n x t  is integrable in the 
interval ],0[ L . Using these assumptions, it is possible 

to show that 
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for 21  . Equation 5 shows a connection 
between the Riemann - Liouville and Caputo 
differential operators which implies in the 
presence of the addition terms. These terms 
related to the boundary conditions, imposed by 
the problem under consideration, may behave as a 
source or sink by introducing or removing 
particles of the system such as adsorption and/or 
desorption process. Thus, the extensions of the 
diffusion equation given by Equation (2) and (3) 
have different solutions and, consequently, are 
not equivalent. This feature is also verified for a 
semi-infinity interval, i.e., [0, ) .  

Now, let us consider the fractional differential 
operator proposed in Ref. [2]. This fractional 
operator is defined as    xx nnn    with 

  /22 
    which brings the usual differential 

operator raised to a noninteger exponent. The 
eigenfunctions and eigenvalues may be 
represented by  xn  and n , respectively. 

Incorporating this operator in the usual diffusion 
equation, we obtain that 
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The solution for this equation can be formally 
written as: 
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for a system defined in an interval [ , ]a b  with  

     2, 0
b b

n n n

a a

x x dx x dx    B  (8) 

 
and  xn  subjected to boundary conditions. From 

this previous development, we verify that the 
definition of fractional operator present in Ref. [2] is 
very interesting since that it allows us to use some 
the properties of the integer differential operator and 
introduces a noninteger index.  

To investigate a possible equivalence with the 
previous fractional diffusion equations, we consider 
the solutions of Equation (6) in a limited region. In 
particular, we analyze the behavior of the solutions 
of these equations in two situations, when the 
system is subjected to absorbing boundary 
conditions ( (0, ) ( , ) 0t L t   ). The first of them is 

to consider, for simplicity, the initial condition 
 , 0 ( / 2) sin( )x x    and 

, 0b K  
for Equation. 

(2), (3), and (6). For this case, the results shown in 
Figure 2 illustrate the differences evidencing the 
nonequivalence of the   fractional diffusion 
equations. In the second case, we restrict our 
analysis, without loss of generality, to Equation (3) 
and (6) by taking into account the initial condition 
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using this initial condition is possible to show that a 
solution of Equation (3), satisfying the required 
boundary condition, is given by  
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where 2   recovers the usual solution connected 
to the initial condition. Figure 3 illustrates Equation 
(9) for different values of   in order to illustrate 
the effect of the noninteger index of the differential 
operator and the time evolution of the solution. 

The solution for Equation (6), by considering 
the previous absorbent boundary condition, can be 
written as follows:  
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with  
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Figure 2. This figure illustrates the solution of Equation (2), (3), 
and (6), for simplicity, by considering  = 1.8 and L = 1. 
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Figure 3. The figures, (a) and (b), illustrate the behavior of 
Equation (9) for different values of  and t, for simplicity, by 
considering L = 1. 

Equation (10) is illustrated in Figure 4 in order 
to show the effect of the index  on the solution 
and the time evolution. From Figures 3 and 4, we 
observe that solutions obtained from Equation (3) 
and (6), subject to the certain initial condition, are 
different when the system is defined in a limited 
region. This point is illustrated in Figure 5 and 
shows the nonequivalence of these spatial 
differential operators for the conditions 
considered here. 
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Figure 4. The figures, (a) and (b), illustrate the behavior of 
Equation (10) for different values of   and t, for simplicity, by 
considering the initial condition  

 kxxx  ,2E )0,( J  (where k 

is obtained from the equation E2,(-k)=0) and L = 1. 

Results and discussion  

We have investigated the solutions of the 
fractional diffusion Equation (2), (3), and (6) by 
considering different situations in a finite interval. 
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The results found for these equations shown that 
the surface effects play an important role on the 
solutions of these equations. This point is shown, 
for example, by Equation (5) which implies that 
Equation (2) is equivalent to Equation (3) if 
additional terms connected to the surface are 
considered. Similar situation is evidenced in Figure 
2 when Equation (2), (3), and (6) are compared for 
an initial condition. The equivalence is only found 
when the system is defined in the interval ( , )   

where the surface effects are absent.  
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Figure 5. This figure illustrates the solution of Equation (9) and 
(10), for simplicity, by considering  = 1.8, the initial condition 

 
 kxxx  ,2E )0,( J , and  L = 1, for t = 0.1. Note the 

difference between the solutions evidencing the nonequivalence 
of the spatial differential operators. 

Conclusion  

The results presented here for a system subjected 
to a finite interval shows that the fractional operators 
are not equivalent. In this sense, it is interesting to 
note that the surface effects play an important role 
on these operators.  
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