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ABSTRACT. The cell membrane is one of the most important structures of living organisms. This is due 
to the many functions attributed to it such as permeable selectivity, protection, anchoring to the 
cytoskeleton and so many others. Any change in the shape of the cell membrane may affect directly the 
properties and abilities. In this article, we study how defects in the liquid crystalline organization of a 
membrane can change its shape.  For performing this, we consider a membrane with orientational order, 
i.e., a nematic membrane, which can happen in biological membranes, nematic films and other systems and 
study how a defect in this order can change the shape of the membrane when the bending rigidity is 
considered. We find that depending on the ratio of rigidity and elastic constant, buckling of this membrane 
may happens and turn it into pseudo-spheres.   
Keywords: +1 defects, nematic liquid crystals, bending rigidity, buckle. 

Mudança de morfologia em membranas nemáticas induzida por defeitos 

RESUMO. A membrana celular é uma das estruturas mais importantes dos seres vivos. Isto se deve aos 
vários fatores atribuídos a ela como permeabilidade seletiva, proteção, ancoramento ao citoesqueleto e 
vários outros. Qualquer mudança no formato da membrana celular pode afetar diretamente suas 
propriedades e habilidades. Neste artigo, estudamos como defeitos na organização liquido cristalina de uma 
membrana pode mudar o seu formato. Isto é feito considerando-se uma membrana com ordem 
orientacional, isto é, uma membrana nemática, o que pode ocorrer em membranas biológicas, filmes 
nemáticos e outros sistemas e estudamos como defeitos nesta ordem podem mudar o formato da 
membrana quando a rigidez da membrana é levada em conta. É encontrado que dependendo da razão entre 
rigidez e constante elástica, curvaturas desta membrana podem ocorrer levando a formatos conhecidos 
como pseudo-esferas. 
Palavras-chave: defeitos +1, cristais líquidos nemáticos, rigidez, curvatura. 

Introduction 

The biomembrane is one of the most 
intriguing structures in nature. The plasma 
membrane is made of lipids, having amphiphilic 
nature, just as liotropic liquid crystals (JAKLI; 
SAUPE, 2006). There are several functions 
attributed to it, such as permeable selectivity, 
protection, anchoring to the cytoskeleton and so 
many others (ALBERTS et al., 2002). All these 
functions can be greatly affected by external 
factors, which include changes in the membrane 
morphology, often described by geometry and 
topology (FRANK; KARDAR, 2008). In fact, 
shape change in membranes has been subject of 
great effort in condensed matter. Very often, these 
shapes are investigated by analyzing the  
coupling between geometrical shape and orientational 

order. These studies include orientional order and 
defects in deformable vesicles (LUBENSKY; 
PROST, 1992; HIRST et al., 2013; JIANG et al., 
2007; NYUGEN et al., 2013; PARK et al., 1992; 
RAMAKRISHNAN et al., 2010) and cytoskeletal 
filaments (NÉDÉLEC et al., 1997; SURREY  
et al., 2001). Furthermore, vector fields on a surface or 
nematic membranes, are considered simplified models 
to describe membranes that are more complex. These 
include any flexible sheet with ordered road-like 
constituents (SHALAGINOV, 1996; SPECTOR et al., 
1993; YOUNG et al., 1978). 

In this work, we investigate the problem of a flat 
membrane with coupled nematic order when 
defects of the +1 kind appear. In regular nematic 
cells, it is expected that the bulk will buckle into the 
third dimension when defects are present (CLADIS; 
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KLEMAN, 1972; JAKLI; SAUPE, 2006; MEYER, 
1973). By using a simple model composed of 
nematic order and bending rigidity in covariant 
form, we are able to determine that a second-
order like transition may guide the buckling of 
the membrane depending on the ratio of the 
parameters involved. Furthermore, we obtain an 
analytical result for the shape of the membrane, 
which buckles into pseudo-spheres. 

Material and methods 

In order to model the membrane, the Monge 
parameterization (NELSON, 2004) was used, 
which defines a surface, mapped on a plane 
defined by the variables 1  and 2  with height 

),( 21 h . The position vector then can be written 

as )],(,,[),( 212121  hr 


, which defines the 

tangent vectors as ),,(ˆ
21  rt

ii


 with .2,1i  

We consider the free energy of the system to 
come from two contributions: the field, which 
wants to make all the vectors on the surface of the 
membrane parallel one to each order, supposing 
initial flat membrane, and the bending rigidity 
term. In a configuration with a defect, the flat 
configuration cannot minimize the free energy of 
the system, and the membrane has to bend, 
changing its shape. However, it has to pay a price 
for bending. The total free energy of the system, 
in the absence of surface tension 
(RAMAKRISHNAN et al., 2011), can be written 
in covariant form as: 
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where: 
  is the bending rigidity, H  is the mean curvature, 
AK  is the nematic elastic constant (elastic isotropy 

approximation), yn  represent the components of 
the director field and g  is the metric tensor. The 

director field, in the presence of defects of +1 kind 
can be written as 

 

21
ˆ)sin(ˆ)cos(   ttn 


 (2)

 
where: 
  is a parameter used to distinguished defects asters 
( 0 ) and vortices ( 2/  ), which  
is shown in Figure 1. 

 
 

 
 

 
Figure 1. (a) orientation of director field depending on the 
parameter  . (b) aster configuration ( 0 ) and (c) vortices 

( 2/  ). 
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Results and discussion 

The first approach for solving this problem is to 
try some specific shape for the membrane that 
would minimize the energy of the membrane 
(SEUNG; NELSON, 1998). One could argue that 
the actually shape for minimizing a +1 defect 
configuration would be a cone shape, and we can 
find how deep the cone goes by minimizing the free 
energy with respect to the angle   between the 
cone side and the z axis (in cylindrical coordinates), 
going from 2/   for a flat membrane until 

0 . For this configuration, the tangent vectors 
may be defined everywhere in terms of  as: 

 
]2/sin[ˆ]2/cos[ˆˆˆ

1
  zrtt r  and 


ˆˆˆ

2
 tt . 

(3)

 
The element of area for a conic surface is given 

by ]csc[rdrddS  . Furthermore, the mean 

curvature of a cone is given by .2/]cos[ rH   
Therefore, the free energy’s first term is described 
by the following equation 
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In equation (5), minr  and maxr are the distances from 

the core of the defect to the size of the membrane. The 
second term of the free energy becomes 
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Therefore, the total free energy is 
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Let us first examine the case for a defect of the 
“aster” configuration, which means, 0 . In this 
case, the equilibrium situation is found by setting 

.0/  F  We find: 
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Clearly, 2/   is solution, which means a flat 
membrane. Nonetheless, the solution for   is 
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which is a minimum only when .2/1/ AK  
Therefore, there is a ratio between elastic constant 
and bend rigidity that determines the buckling of 
the membrane. If the ratio is smaller than 2/1 , than 
the stable configuration is the one where the 
membrane remains flat. However, as the ratio grows 
larger than ,2/1  the system smoothly changes from 
flat to buckled, in a second order-like change 
transition. In Figure 2, we show the plot of 

])/ln[/(2' minmax rrFF   against the angle .  
Notice that in Figure 2(a), we have ,1/ AK  
resulting in a buckled configuration whose angle 

.3.35   In Figure 2(b), ,2.0/ AK  so the 

membrane lies flat with .0.90   
Now, we can examine the vortex case, where 

.2/   In such case, the total free energy, equation 
(8), becomes: 
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By setting 0/  F  we can find the stable 
solution. In this case, the only   that satisfies the 
equation is ,2/   which means the membrane is 
always flat if defects of the vortex kind exists. Figure 
3(a) shows a 3D curve of ])/ln[/(2' minmax rrFF   
against   and   for 3/ AK plotted from 0  
to   and   from 0  to .2/  It is possible to 

observe that buckled configurations happen only for 
defects near the aster arrangement. 
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Figure 2. ])/ln[/(2' minmax rrFF   against the angle   for 

(a) 1/ AK ,  and (b) .2.0/ AK  

A more general solution 

In the previous section, we have analyzed the 
morphology change of a membrane by assuming 
it would buckle into a cone. This means the 
function for the height was written as ].cot[rh   

Now, we shall look for profiles that are different 
from the conical shape. However, it is 
straightforward to foresee that the actual 
morphology of a buckled membrane in the 
presence of +1 defects should not differ much 
from the conical shape. This is indeed expected 
from the famous scape to the third dimension in 
bulk nematic (CLADIS; KLEMAN, 1972; JAKLI; 
SAUPE, 2006; MEYER, 1973). In fact, our first 
approach is to solve the problem imagining the 
following situation: ],cot[rh  where   is a 

coefficient to be determined. By numerically 
integrating and finding the minimum of the free 
energy, equation (11), we encounter that the 
stable configuration of the buckled membrane 
happens for ,95.0  assuming ,1/ AK  1min r  
nm  and 1max r .m  The behavior of F  against   

is shown in Figure 3(b). 

 
 

 
Figure 3. (a) ])/ln[/(2' minmax rrFF   against and   for 

3/ AK  plotted from 0  to   and   from 0  to .2/  (b) 

Numerical minimization of the free energy when 
],cot[rh  showing that the   coefficient slightly smaller than 

one leads to lower energy. 

In order to seek for a more general solution of 
the problem, we assume that height of the surface 
depends only on the radial distance from the core, 
or, ).(rhh  In this situation, the tangent vectors, as 
well as the normal vector k̂  are given by 
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where: 

./)( drrdhhr   The total free energy, equation (1), is 
then written as 
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Now, we perform the following change of variables 
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where: 

)(r  is an unknown function of the variable .r  
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Furthermore, based on previous results, we look for 
solutions in the case where .0  Then, equation (11) 
becomes: 
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The profile that minimizes the free energy is the one 
that satisfies the Euler-Lagrange equation 
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where: 
f  is the integrand of the total free energy in 

equation (12). Hence 
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First, we notice that if ,0 rrr   we obtain 
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whose solution is  
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which corresponds to the conical solution. The 
next step requires solving equation (14). 
Unfortunately, equation (14) is very complicated 
and has no analytical solution. Nonetheless, we 
can use our previous results to infer about solving 
it. The numerical minimization showed that the 
actual minimum of energy is slightly different 
from the conical configuration. Therefore, we 

assume the solution for equation (16) can be 
written as 
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where: 

)(rm  is a function to be determined, considered small. 
By replacing equation (17) in (14), we get an equation 
depending only on ).(rm  Since it is small, we can 
expand this equation and take only linear terms on 

).(rm  The usual minimization procedure allows the 
following equation for )(rm : 
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where: 

./ drdmmr   Equation (18) is solved by setting 
],tan[)( min rrm   where   is given by equation 

(10), so near the core the membrane remains flat; 
and ,0)( max rm  meaning that far away from the 
core the configuration is basically the same as a 
cone. Therefore, we find that 
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Figure 4 shows a graphic of the height profile, 

equation (20) as a function of r for 1/ AK , 
1min r nm  and 1max r .m  The profile is known as 

pseudosphere, with negative Gaussian curvature, in 
agreement with results reported before (FRANK; 
KARDAR, 2008).   
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Figure 4. height profile calculated when the membrane buckles 
due to a +1 defect in the director field. The pseudosphere 
morphology is the one that minimizes the free energy. 

Conclusion 

In conclusion, the problem of a membrane with 
bend rigidity and a nematic vector field (nematic 
membrane) has been studied when defects of +1 kind 
exist in the director. We were able to show that the 
conical shape minimizes, in a first approximation, the 
free energy of the system when the ratio between the 
bend rigidity and elastic constant are in the appropriate 
range and that the transition between the flat and 
buckled state is second-order like. Further analyzes 
have shown that without any approximation the lowest 
energy is slightly different than the cone, which was 
first numerically calculated. Then, by using a 
perturbation method, we were able to analytically 
calculate the shape of the buckled membrane and show 
that it is a pseudosphere. 
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