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ABSTRACT. Optimization methods in discrete-event simulation have become widespread in numerous 
applications. However, the methods´ performance falls sharply in terms of computational time when more 
than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the 
simulation optimization capable of achieving satisfactory results in time efficiency and response quality 
when compared to optimization software packages on the market. A series of experiments was elaborated to 
define the algorithm’s most significant parameters and to propose adaptations. According to the results, the 
most significant parameters are population size and number of generations. Further, adaptive strategies 
were proposed for these parameters which enabled the algorithm to obtain good results in response quality 
and time necessary to converge when compared to a commercial software package. 
Keywords: discrete-event simulation, meta-heuristic, optimization methods, computational time. 

Desenvolvimento de um algoritmo genético adaptativo para otimização via simulação 

RESUMO. Métodos de otimização em simulação a eventos discretos se tornaram comuns em diversas 
aplicações. No entanto, o desempenho desses métodos diminui significativamente, em termos de tempo 
computacional, na presença de mais de uma variável de decisão. Dessa forma, o objetivo deste trabalho é 
desenvolver um algoritmo genético adaptativo para a otimização via simulação, capaz de alcançar resultados 
satisfatórios em termos de tempo e qualidade de resposta, quando comparado a pacotes comerciais de 
otimização. De modo a cumprir com este objetivo, o planejamento de experimentos foi utilizado para 
definir os parâmetros mais importantes do algoritmo genético e propor adaptações. Os resultados 
mostraram que os parâmetros tamanho da população e número de gerações foram os mais significativos. 
Com isso, foram propostas estratégias de adaptação para estes parâmetros, o que permitiu que o algoritmo 
obtivesse bons resultados em termos de qualidade de resposta e tempo necessário para convergência, 
quando comparado com um pacote comercial de otimização. 
Palavras-chave: simulação a eventos discretos; metaheurística; métodos de otimização; tempo computacional. 

Introduction 

Computational simulation is increasingly used to 
aid in decision-making (BANKS et al., 2009; LAW, 
2007). It has already been indicated as one of the 
most common research techniques in many areas, 
due to its versatility, flexibility and power of analysis 
(JAHANGIRIAN et al., 2010; RYAN; HEAVEY, 
2006). 

According to Law (2007), one of simulation’s 
disadvantages is that it is not an optimization 
technique in itself, but rather a means to test a single 
scenario. Without the optimization software and in 
search of an optimal solution, simulation 
practitioners are forced to reconfigure their models 
to find that which presents the best system 
performance. This reality has changed due to 
accelerated computational capacity and improved 

heuristic  optimization  search  techniques.  Banks  
et al. (2009) and Fu (2002) report that the use of 
optimization with simulation has been growing 
continuously due to simulation software packages 
with integrated optimization routines.  

According to Hillier and Lieberman (2010), the 
methodology for employing simulation to identify 
optimal system configuration in the light of a 
specific response variable, is known as simulation 
optimization (SO). The same authors emphasize 
that this field has shown growing interest in the field 
of operational research.  

According to Azadeh et al. (2009), SO is one of 
the most important computational developments in 
recent years. These authors highlight that 
methodologies prior to this integration demanded 
complex and difficult changes within simulation 
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models that were often economically unviable, 
especially when a large number of decision variables 
had to be taken into account. 

For Figueira and Almada-Lobo (2014), these 
methods have dominated the optimization routines 
in the discrete-event simulation software because of 
their flexibility of meta-heuristics to tackle almost 
any type of search space and ability to achieve 
quickly good quality solutions.  

Among the various software modules for 
integrated optimization, the available commercial 
software packages include: AutoStat®, OptQuest®, 
Optimiz®, Optimizer® and SimRunner® (FU, 2002; 
LAW, 2007), which use different search methods, 
such as Evolutionary Algorithms, Genetic 
Algorithms, Scatter Search, Taboo Search, Neural 
Networks and Simulated Annealing. 

Fu (2002) registers a predominance of 
Evolutionary Algorithms, such as Genetic 
Algorithms (GA), when using the meta-heuristics 
optimization routines. GA are present in many 
commercial optimization packages such as 
SimRunner® from ProModel® and AutoState® from 
AutoMod® (LAW, 2007).  

In spite of advances in optimization software for 
simulation models, a frequent criticism is that the 
processing time becomes extremely long when 
handling more than one input variable (HARREL  
et al., 2004).  

Kleijnen et al. (2010) allege that SO problems are 
difficult to solve, and state that disadvantages exist in 
their utilization due to the fact that simulation 
model outputs are products of implicit functions 
exposed to noise. The authors assert that, depending 
on the number of inputs in the simulation model, 
the adaptation process may become inefficient or 
expensive due to computational demands and time 
involved.  

According to Steponavičė et al. (2014), SO´s 
greatest limitation is the number of decision 
variables to be evaluated, since the software’s 
performance is considerably reduced in models with 
large numbers of variables. Tyni and Ylinen (2006) 
assert that convergence time is the most significant 
restriction to reaching computational efficiency for 
an optimization algorithm. 

In fact, the optimization softwares for simulation 
models on the market today are true black box data. 
Only a small percentage about their real structure or 
about the supporting optimization algorithm is 
known. It turns out to be practically impossible to 
develop a wider discussion about these optimization 
methods. 

Current research, therefore, develops an adaptive 
genetic algorithm (AGA) for the optimization of 
discrete-event simulation models. In fact, it is able to 
attain good results in terms of efficiency (speed) and 
response quality when compared to a commercial 
optimization package. 

Current paper broadly presents the steps that led 
to the development of an optimization algorithm, 
the discussion of its main configuration parameters 
and the adjustments to the algorithm structure that 
made it capable of simulating model optimization. 
The method is applied to discrete-event simulation 
models, whose decision variables are: discrete, 
deterministic and integer. According to Pinho et al. 
(2012), most papers in the literature on optimization 
via simulation use these boundary conditions. 

The paper is divided into four sections. The 
second section (Materials and methods) is an 
analysis of the GA parameters and presents the 
proposed AGA. The third section (Results and 
discussion) shows the tests used with AGA in the 
simulation optimization models, while the last 
section (Conclusions) offers conclusions based on 
the findings in current study.  

Material and methods  

Genetic algorithm parameter analysis with DOE   

Due to the lack of consensus in the literature 
with regard to the definition of GA parameters, a 
design of experiments (DOE) determined which 
parameters and possible interactions were 
significant, impacted the algorithm’s convergence 
time and attained high quality solutions in SO 
problems.  

The four principal GA parameters, namely, 
population size, number of generations, crossover 
rate and mutation rate were analyzed. These 
parameters were chosen due to the fact that the 
literature treats them as direct influences on the 
necessary time to reach a response, as well as the 
response’s quality (AZADEH; TARVEDIAN, 2007; 
YANG et al., 2007).  

Three simulation models developed for 
manufacturing environments were used for 
optimization and analysis of GA parameters 
(population size, number of generations, crossover 
rate and mutation rate). In fact, GA was employed in 
its classic form to conduct these experiments, 
following Holland (1975). 

In this experiment, the researchers chose to work 
with two levels for each factor. Each level and its 
variations are presented in Table 1. The choice of 
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the values for each of the levels was carried 
following Paul and Chanev (1998) and Pinho et al. 
(2012). 

Table 1. Factors, levels and variations for design of experiments. 

Factors 
Levels 

- + 
A Population size 20 80 
B Number of generations 5 30 
C Crossover rate 50% 90% 
D Mutation rate 1% 10% 
 

A full-factorial design was utilized in the study 
since full-factorial (24 experiments – 4 factors with 2 
levels) design allows for the estimation of main 
effects on the analyzed factors and any possible 
interactions in any order among the factors 
(MONTGOMERY, 2005). 

In the case of the project under analysis, five 
replicas were defined for each experiment, totaling 
80 experiments (24x5) for each simulation model. As 
three simulation models will be used in the study, at 
the end of each stage, there were a total of 240 
experiments. All data collected were stored and 
analyzed statistically.  

Two response variables will be analyzed for this 
experimental design. The first will verify the 
response quality presented by the classic GA in the 
optimization of the simulation models, while the 
second will analyze the time necessary for the 
algorithm to arrive at the solution. 

Table 2 presents a summarized form of the 
principal conclusions of the variance analyses 
(ANOVA) conducted for the three simulation 
models. The GA parameters and the interactions 
that proved to be significant for the variables are 
presented for each case. The solution, the algorithm 
convergence time, and the effect that each parameter 
and interaction show on the variable under analysis 
are provided. 

ANOVA verified the parameter population size 
(A), which is often pointed out in the literature. It 
deserves the greatest attention as it proved to be 
significant in all the variance analyses for the time 
necessary for convergence and for the response quality.  

However, a hurdle exists in the case of the 
parameter. The larger the population size, the better 
the response found by the algorithm will be. 
Likewise, the larger the population size, the greater 
the amount of time necessary will be for the 
algorithm to arrive at this solution. Consequently, 
users may opt for high-quality solutions that take a 
greater amount of computational time, or a more 
rapid solution but a lower quality solution, when 
working with classic GA.  

The number of generations (B) exhibited a 
behavior which was similar to the factor population 
size (A) for the response variable Time, the most 
significant for the algorithm convergence time. In 
the case of this factor, the greater the number of 
generations, the more time will be taken to arrive at 
a solution. The double interaction between the 
factors population size and number of generations 
(A*B) also showed itself to be significant for all 
three cases analyzed for the variable Time, as well as 
for double and triple interactions (number of 
generations, crossover rate and mutation rate). 
However, the latter had reduced effects when 
compared with that interaction. 

Table 2. GA Parameter significance analysis. 

Experiment Variable Factor Effect T P-Value 

First 
Experiment 

Solution A 5240 3.77 0.000 
B 4820 3.47 0.001 

Time 
A 5897.78 152.05 0.000 
B 7018.57 180.95 0.000 

A*B 4130.12 106.48 0.000 

Second 
Experiment 

Solution A 700 6.02 0.000 

Time 

A 4418.48 279.37 0.000 
B 5303.72 335.35 0.000 

A*B 3173.17 200.64 0.000 
C*D 66.07 4.18 0.000 

B*C*D 58.38 3.69 0.000 

Third 
Experiment 

Solution A 375.6 2.25 0.028 

Time 

A 4595.88 144.69 0.000 
B 5452.12 171.65 0.000 

A*B 3193.32 100.53 0.000 
C*D -79.83 -2.51 0.014 

 

One important conclusion from the variance 
analyses was that the parameters: crossover rate (C) 
and mutation rate (D), when analyzed separately, 
were not significant in any of the three experiments 
for the confidence level adopted in the study (95%), 
although this does not mean that these parameters 
may be excluded. 

The genetic operators bring population diversity to 
the GA. They were close to being significant, as the 
mutation rate for solution quality in the second 
experiment, and were significant in second and third 
order interactions, like the interaction between the 
crossover rate and mutation rate for algorithm 
convergence time in the second and third experiments. 

Proposed optimization method 

Necessary adaptations for the optimization algorithm 
parameters 

The analysis carried out with DOE reveals that two 
GA parameters significantly influence the response 
quality and the algorithm convergence time.  

The parameter population size was the most 
significant to obtain a high quality solution and was 
also significant for the time necessary for 
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convergence. For the latter, the number of 
generations also had a significant impact. Thus, 
some adaptations will be proposed for the parameter 
population size and a stop criterion will be defined 
for the GA, albeit not based on number of 
generations, since it takes a long time to be 
processed.  

In the case of the parameters crossover rate and 
mutation rate, which failed to show themselves 
significant in any of the experiments, the rates will 
be discussed for these parameters based on the 
experimentation carried out and also on a review of 
the literature.  

Adaptations to the population size parameter 

In current investigation, each individual in a 
population is represented by a binary solution. 
Taking into consideration the conditions of this 
research (discrete, deterministic and integer 
variables), it becomes necessary to initially 
determine the quantity of bits necessary to represent 
each possible optimization problem solution. 

Therefore, the equation proposed by Mitchell 
(1996) was used, in which the quantity of bits 
necessary to represent a determined individual is 
given by Equation 1.  

 k = 	 logଶ ൬upp୧ −	 low୧precision + 1൰ (1)

 
where: 

- k – number of bits; 
- precision – desired precision to represent a 

solution; 
- lowi, uppi – lower and upper bound for the 

operation range (variation). 
For the models optimized in this investigation, 

with an upper bound equal to 9 and a lower bound 
equal to 1 and a precision equal to 1, Equation 1 
needs a total of 4 bits to represent each decision 
variable for these problems. Consequently, if a 
problem has three decision variables, each solution 
will consist of 12 bits. 

By defining the number of bits necessary to 
represent each solution, one should determine the 
number of individuals to be generated by the 
algorithm to compose the initial population. This 
number, as previously presented, should be chosen 
with care, as it will directly influence the response 
quality found by the algorithm as well as the time 
spent to find the solution. 

In their proposal, Reeves and Rowe (2002) relate 
the number of population individuals with an 
individual size (number of bits) and the probability 

that the population generated may, with a crossover 
operator, generate any possible solution for the 
problem. The proposal is shown in Equation 2.  

 Population Size = ሾ1 + logሺ−݇/ln ଶܲ	ሻ/log2ሿ (2)

 
where: 

- k – number of bits (individual size); 
- P2 – probability of a generated population 

(represented by a binary codification) may generate 
all possible optimization solutions by reproduction 
through the crossover operator only.  

Although Reeves and Rowe´s (2002) proposal 
may be extended to other types of genetic 
representations beyond the binary, these go beyond 
the scope of current investigation. According to the 
authors, a population size equal to 30 is able to 
resolve a great variety of optimization problems 
which use binary representation. Thus, it was 
decided that the formulation for the initial 
population calculation proposed by Reeves and 
Rowe (2002) would be used to define the initial 
AGA population. 

The researchers also opted to increment the 
value of the population size with each generation, 
seeing that the population size calculated by Reeves 
and Rowe (2002) is the smallest population size 
capable of representing all the possible solutions for 
a determined problem. Moreover, as 
aforementioned, the larger the population size, the 
better the response quality will be. Due to this fact 
and to results provided by Kaveh and Shahrouzi 
(2007), Ma and Zhang (2008) and Pinho et al. 
(2012), the researchers opted to increase the initial 
population calculated by Reeves and Rowe (2002) by 
50% in each new algorithm generation.  

A 50% increase for each new generation is 
justified by the fact that the initial population always 
starts with a small rate, when compared to the most 
commonly used values in optimization problems 
using GA.  

Alteration of the number of generations’ parameter 

For the AGA proposed in current assay, a stop 
criterion based on the response quality between 
successive generations was chosen. Essentially, upon 
terminating the fourth generation, the AGA will 
compare the best solution found with the best 
solution found in the previous generation. If the 
difference found between these solutions is inferior 
to 5%, the algorithm will converge and present the 
best result found. This criterion may be seen in 
Equation 3. 
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SC = 	y୧ − y୧ିଵy୧ିଵ  (3)

 
where: 

- SC – Stop criterion; 
- yi – best solution found in generation i;  
- yi-1 – best solution found in generation i – 1; 
Upon finishing a generation, the AGA carries 

out the following test (starting from the fourth 
generation): 

- If SC ≥ 0.05, the algorithm conducts a new 
generation; 

- If SC < 0.05, the algorithm converges and 
forwards the best solution found in generation i. 

So that the occurrence of a premature 
convergence in the first generations could be 
avoided (as these are the smallest populations of the 
AGA), a criterion was added which stipulated that at 
least three generations must be executed. It should 
be noted that yi is always larger or, in the worst 
hypothesis, equal to yi-1, due to elitism, which always 
tends towards better solutions being found for the 
following generation in order not to lose a high 
quality solution during the algorithm processing.  

Crossover, mutation and elitism rate parameters 

Reeves and Rowe (2002) reported that 30 
individuals were more than enough to compose an 
initial population that used binary representation. 
Therefore, the above-mentioned author 
recommended a high crossover rate and a low 
mutation rate (or even no mutation rate at all). 
When the population size is less than 30 individuals, 
the AGA adopts rates of 99% for the crossover 
operator and 1% for the mutation operators. In cases 
in which the initial population is greater than 30, the 
AGA adopts rates of 90% for the crossover operator 
and 10% for the mutation operator. The crossover 
operator used in the optimization method 
development was the one-point crossover, whereas 
the simple binary mutation was used for the 
mutation operator. 

Elitism rates were also defined with regard to the 
initial population size. When the population size 
calculated is inferior to 30 individuals, the AGA 
adopts a rate of 20%; on the other hand, the adopted 
rate is 10%. These rates gave good results in pre-
tests carried out in the algorithm.  

Proposed AGA structure 

Thereby, the optimization method proposed 
takes on the optimization of a non-linear discrete-
event simulation model in which the decision 
variables meet the following boundary conditions: 
discrete, deterministic and integer variables. 

Upon initiating the first generation, the 
algorithm calculates the number of scenarios that 
may be processed and then calculates the number of 
bits necessary to represent an individual of the 
population (MITCHELL, 1996). The initial 
population size is calculated according to Reeves and 
Rowe (2002) and the initial AGA population is 
generated. 

Depending on the population size generated, a 
particular set of crossover, mutation and elitism 
parameters is adopted for the algorithm. If the initial 
population has less than 30 individuals, the AGA 
adopts the rates of 99% for the crossover operator; 
1% for the mutation operator and 20% for elitism 
operator. If there are more than 30 individuals, the 
AGA adopts rates of 90% for the crossover operator, 
10% for the mutation operator and 10% for the 
elitism operator.  

The previous sequence of steps is only executed 
in the first AGA generation. Starting with the second 
generation, the population size is increased by 50% 
for each new algorithm iteration. These new 
individuals are generated randomly and added to 
those already generated by means of reproduction, 
thus composing a new generation. 

Following the algorithm’s steps, each possible 
problem solution (generated individual) is evaluated 
by a discrete-event simulator.  

For the development of the proposed method, a 
computational tool was developed that manipulated 
its parameters and enabled communication between 
the computational tool and the discrete-event 
simulator. This communication occurs through an 
object called ProActiveX provided by the simulator 
manufacturer. 

For optimization, the computational tool sends 
individuals of the population to the ProActiveX 
object. These individuals represent the input 
variables of the simulation model. The object then 
enters those rates into the simulator, waits for the 
simulation to run and retrieves the results of the 
simulated model. Results will evaluate each existing 
individual genetic algorithm. 

All individuals generated in the first three 
generations of the algorithm are evaluated without 
being assessed by the stop criterion. For the first 
three generations after the evaluation, the roulette 
reproduction method and the crossover and 
mutation operators select the individuals according 
to rates defined by the initial population size.  

These new individuals compose a new 
population that is increased by 50% for new, 
randomly generated individuals. Thus, for each 
generation after the second one, the populations are 
formed by individuals generated by means of 
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reproduction using genetic operators (crossover and 
mutation) and for individuals generated randomly, 
thus guaranteeing greater population diversity in the 
proposed algorithm.  

Starting with the fourth generation, the best 
individual is compared with the best individual in 
the previous generation, according to the adopted 
stop criterion. If the difference between the 
individuals is not significant (that is, less than 5%) 
the stop criterion is considered satisfactory and the 
algorithm converges, presenting the best solution. 
Otherwise, the algorithm initiates the composition 
of a new generation and the whole process starts 
again.  

The proposed method has been implemented in 
VB.NET programming language on a computer 
with Intel processor (Core 2 Duo) 1.58 GHz, 2GB 
of RAM and Windows operating system, 64-bit 
platform. The flowchart representing the structure 
of the proposed optimization method may be 
obtained from the authors. 

Results and discussion 

The optimization method proposed in current 
investigation was tested on the optimization of three 
discrete-event simulation models. Every single 
model was checked and then statistically validated 
(SARGENT, 2013). 

The simulation models used are related to the 
allocation of resources in the manufacturing area, 
where the simulation is widely used to support 
decision-making (JAHANGIRIAN et al., 2010). For 
Law (2007), such problems involving the definition 
of the number of people and equipment for 
performance increase in manufacturing, are an 
important class of problems for discrete-event 
simulation. 

SimRunner® was the commercial software for 
comparing methods. The software has three profiles 
(Aggressive, Moderate, Cautious), herein denoted as 
1, 2 and 3. The commercial optimization software 
profile reflects the number of possible solutions the 
optimizer will examine. Profile 3 (Cautious) 
considers a great number of possible solutions and is 
the most complete search. Its thorough nature, 
however, considerably extends the time necessary 
for processing when compared to that of other 
profiles. Profile 1 (Aggressive) works with a small 
population which allows for a quick convergence on 
a solution; however, the demands in time limit the 
response’s quality when compared to that of the 
other two profiles. Finally, Profile 2 (Moderate) 
presents a balance between the former two profiles. 

Optimization aims to find the best combination 
of decision variables to maximize profits in the three 
models. The optimization of the three simulations is 
then presented and analyzed individually. The 
results obtained will be compared to a commercial 
software package as well as to the proposed 
optimization method and its responses, the time 
necessary for the methods to converge and the 
number of experiments run.  

Optimization of the first study object 

The decision variables in current study were 
defined as the number of workers (types 1, 2 and 3) 
(x1, x2, x3) and the number of machines (types 1 and 
2) (x4 and x5). The decision variables are integers 
with lower and upper bounds of 1 and 9, 
respectively. Similar to the previous case, there were 
59,049 possible scenarios.  

In the optimization of the first simulation model, 
the proposed method reached a better solution than 
that of all the commercial software profiles and also 
showed to be more efficient in terms of time than 
other profiles. In fact, it arrived at a better solution 
in less time than the others. In relation to the 
number of experiments, the proposed method 
conducted just 3 experiments more than profile 1 of 
the commercial software. Table 3 shows the results 
reached by the tests.  

Table 3 demonstrates a positive result for efficiency 
(+ξ) and indicates how much “better” (in terms of 
response quality, time and number of experiments) the 
commercial software was in relation to the proposed 
method. A negative result (-ξ) indicates how much 
“worse” (using the same basis for comparison) the 
commercial software was in relation to the proposed 
method. This interpretation is also valid for the other 
study objects. 

Table 3. Optimization results for the first study object. 

Optimizer 
Time (sec) Profit Experiments conducted

Value ξ Value ξ Value Ξ 
Profile 1 2376 -15% 1102218.57 -1.01% 160 +2% 
Profile 2 3714 -79% 1105897.67 -0.68% 246 -51% 
Profile 3 7983 -286% 1110532.16 -0.27% 543 -233% 
Proposed method 2070  1113505.00  163  

Optimization of the second study object 

The variable decisions for this study object were 
defined as the number of operators responsible for 
quality control operations (x1, x2, x3) and the number 
of workbenches for tests 1, 2 and 3 (x4, x5, x6). All 
variables were defined as integers, with lower and 
upper bounds of 1 and 9, respectively. There were 
531,441 possible scenarios for the problem under 
analysis.  
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In the optimization of the second simulation 
model, the proposed method reached the best 
result among all the commercial software profiles, 
with less time to reach the solution than profiles 2 
and 3, while conducting a smaller number of 
experiments than these profiles. In relation to the 
time and number of experiments carried out, the 
proposed method was only inferior to profile 1 of 
the commercial software; however, the latter had 
a low response quality. The results for the tests 
may be seen in Table 4.  

Table 4. Optimization results for the second study object. 

Optimizer 
Time (sec) Profit Experiments conducted
Value ξ Value ξ Value Ξ 

Profile 1 1630 +6% 5061936.67 -0.05% 135 +17% 
Profile 2 2883 -66% 5061936.67 -0.05% 243 -49% 
Profile 3 3090 -78% 5062776.67 -0.03% 255 -56% 
Proposed Method 1733  5064232.00  163  
 

Optimization of the third study object 

The decision variables for this study object were 
defined as the number of grinding operators (x1, x2), 
the number of lapidating operators (x3, x4) and the 
number of grinding machines (x5, x6). All variables 
were defined as integers, with a lower bound of 1 
and an upper bound of 9, with 531,441 possible 
scenarios. 

In the optimization of the last simulation model, 
the proposed method reached the best response 
quality among all the commercial software profiles. 
However, in relation to the number of experiments 
conducted, the proposed method achieved fewer 
experiments than profile 3 of the commercial 
software. In relation to the time of the proposed 
method, it was more efficient than profiles 2 and 3 
of the optimizer. Results of the tests may be seen in 
Table 5. 

Table 5. Optimization results for the third study object. 

Optimizer 
Time (sec) Profit Experiments conducted

Value ξ Value ξ Value Ξ 
Profile 1 24900 +13% 511861.00 -0.57% 197 +46% 
Profile 2 43980 -55% 511904.00 -0.56% 348 +5% 
Profile 3 53640 -88% 513390.00 -0.27% 424 -16% 
Proposed method 28464  514804.00  367  

Conclusion 

AGA proposed for the optimization of discrete-
event simulation models showed good results in 
terms of response quality and efficiency (time and 
number of experiments carried out).  

Thus, the method herein developed has proved 
to be an alternative to existing commercial 
optimization packages, being capable of conducting 
simulation model optimization quickly (low 

computational time) and dependably, while still 
offering high quality solutions.  

Further research along these lines may include 
similar tests with other simulation models. 
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