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ABSTRACT. The Generalized Extreme value Distribution (GEV) has been widely used to assess the 
probability of extreme weather events and the parameter estimation method is a key factor for improving 
its quantile estimates. On such background, this study aimed to indicate under which conditions (sample 
size and tail behavior) the Conditional Density Network (CDN) leads to better GEV quantile estimates 
than the widely used Maximum likelihood method (MLE) does. With Monte Carlo simulations and 
rainfall series of several Brazilians regions, we highlight the following results: the return period and the tail 
behavior of the GEV (specified by the shape parameter) are two of the main factors affecting the quantile 
estimates. For -0.1 ≤ shape ≤ 0.1 and sample size ≤ 50, the CDN outperformed the MLE. For  
shape ≥ 0.20 the CDN outperformed the MLE for all sample sizes (30-90). The results also suggested that 
the CDN is more suitable than the MLE for fitting the GEV parameter to the Brazilian extreme rainfall 
series. We conclude that when the shape parameter are equal to or greater than -0.1 the CDN should be 
preferred over the MLE.  
Keywords: neural network, sample size, extreme precipitation. 

A Conditional Density Network é mais apropriada do que a máxima verossimilhança para 
ajustar a distribuição geral dos valores extremos? 

RESUMO. A distribuição geral dos valores extremos (GEV) vem sendo largamente utilizada para calcular a 
probabilidade de eventos climáticos extremos sendo que a escolha do método de estimação paramétrica é 
fundamental para aprimorar as estimativas dos quantils dessa distribuição. Assim, o objetivo deste trabalho 
foi indicar sob quais condições, comprimento da série (n) e comportamento de cauda, a Conditional Density 
Network (CDN) mostra-se mais apropriada do que o método da máxima verossimilhança (MLE) para 
estimar os quantils da GEV. Com base em simulações de Monte Carlo e em séries de precipitação extrema 
de diversas localidades Brasileiras apontam-se os seguintes resultados: o período de retorno e o 
comportamento de cauda (descrito pelo parâmetro shape) são dois dos principais fatores que afetam as 
estimativas dos quantils. Para -0.1 ≤ shape ≤ 0.1 e n ≤ 50, o CDN apresenta melhor resultados do que 
MLE. Para shape ≥ 0.20 o CDN supera o MLE para todos os valores de n (30-90). Os resultados também 
sugerem que o CDN é mais adequado do que o MLE para ajustar a GEV às séries brasileiras de precipitação 
extrema. Conclui-se que quando o parâmetro shape for maior ou igual à -0.1 o CDN deve substituir o 
MLE.  
Palavras-chave: redes neurais, cumprimento, precipitação extrema. 

Introduction 

The Extremal Types Theorem states that the 
highest values of independent and identically 
distributed data converge to one of the three types of 
extreme value distributions: Gumbel (type I), 
Fréchet (type II) or Weibull (type III). Given that 
the General Extreme Value Distribution (GEV) is 
capable of representing these three types of extreme 
distribution into a single equation, several 
meteorological  studies (MARTINS;  STEDINGER, 

2000; COLES, 2001; EL ADLOUNI et al., 2007; 
FELICI et al., 2007; BROWN et al., 2008; 
CANNON, 2010; DELGADO et al., 2010; 
ZWIERS et al., 2011; WILKS, 2011; ANDRADE  
et al., 2012) have used the GEV to assess the 
probability of extreme weather events in virtually all 
parts of the Globe. 

Different methods may be used to estimate the 
parameters of the GEV. Among them, the 
Maximum Likelihood Estimation (MLE) is one of 



418 Meschiatti and Blain 

Acta Scientiarum. Technology Maringá, v. 37, n. 4, p. 417-422, Oct.-Dec., 2015 

the most used (WILKS, 2011). However, in spite of 
this widespread use, the MLE may perform poorly 
for small sample sizes (MARTINS; STEDINGER, 
2000; EL ADLOUNI et al., 2007; WILKS, 2011; 
among many others). As pointed out by several 
studies (e.g. COLES, 2001; EL ADLOUNI  
et al., 2007; WILKS, 2011), the likelihood function 
of the GEV has no analytical solution, hence 
numerical optimization methods must be used to 
calculate the MLE-GEV parameters. When applied 
to small sample sizes, these numerical optimizations 
may lead to absurd shape parameters values 
(MARTINS; STEDINGER 2000; among many 
others). 

In order to overcome the above-mentioned 
drawback, Martins and Stedinger (2000) 
recommended to use a Bayesian prior distribution 
on the numerical optimization process. This latter 
procedure, referred to as Generalized Maximum 
Likelihood method (GMLE), restricts the shape 
parameter estimations to physically reasonable 
values (MARTINS; STEDINGER, 2000). This 
feature is of particular interest given that the shape 
parameter defines the tail behavior of the GEV 
distribution. Therefore, the GMLE procedure 
allows the numerical optimizations to be applied to 
small sample sizes (MARTINS; STEDINGER, 
2000; EL ADLOUNI et al., 2007).  

After the studies of Martins and Stedinger (2000) 
and El Adlouni et al. (2007), Cannon (2010) 
proposed using a flexible nonlinear model to 
estimate the parameters of the GEV. As 
recommended by this latter study, which is strongly 
recommended reading, the parameters of the GEV 
may be calculated by means of a probabilistic 
extension of the Multilayer Perceptron Neural 
Network referred to as Conditional Density 
Network (CDN). From the CDN, the parameters 
of the GEV (GEV-CDN) are calculated following 
the GMLE method proposed by Martins and 
Stedinger (2000). In other words, under the CDN 
framework, the numerical optimization process also 
restricts the shape parameter to physically reasonable 
values. This feature allows one to suppose that the 
CDN is more suitable than the MLE for estimating 
the parameters of the GEV from small sample sizes.  

Regardless the advantages and drawbacks of each 
parameter estimation procedure, the idea behind of 
studies, such as Martins and Stedinger (2000), El 
Adlouni et al. (2007) and Cannon (2010), is to 
improve the quantile estimates obtained from the 
GEV. More specifically, the main idea is to decrease 
the human vulnerability to extreme (hydro/agro) 
meteorological events by improving the GEV 

parameter estimates for each region or case of 
interest. However, to the authors’ best knowledge, 
there is no study comparing the performance of the 
GEV-MLE to the GEV-CDN. Such studies would 
be of particular interest given that several parts of 
Brazil (including both rural and urban populations) 
are particularly exposed to weather extremes (IPCC, 
2013; VÖRÖSMARTY et al., 2013).  

On such background, this study aimed to 
indicate under which conditions (sample size and 
tail behavior) the CDN leads to better quantile 
estimates than the MLE does.  

Material and methods 

The GEV is a three parameter distribution, in 
which the probability of occurrence of an extreme 
event [Pr(x)] is described as Pr {x ≤ zt} = GEV  
(zt; μ, σ, ξ). The Greek characters are, respectively, 
the location, scale and, shape parameters. While μ 
specifies the position of the GEV function with 
respect to the origin, σ specifies the spread of the 
GEV distribution (DELGADO et al., 2010). The 
shape parameter describes the tail behavior of the 
GEV defining which types of extreme distribution 
(I, II and III) the GEV is representing. The type I 
class of extreme value distribution corresponds to 
the case ξ = 0. The type II and type III correspond, 
respectively, to the cases ξ > 0 and ξ < 0 (COLES, 
2001). The probability density function (pdf) of the 
GEV is described in the Equation 1:  

 

only if  

( )
σ

μξ −+ x1  > 0 

(1)

 

Parameter estimation procedure 

The principle of the MLE is to find the 
parameter values that lead to the highest 
probabilities to the observed data. Thus, the MLE 
estimates for the GEV are obtained by specifying the 
parameter values that maximize the following 
likelihood function (Equation 2). 

 

(2)
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As pointed out by several authors, it is frequently 

more convenient to work with the log-likelihood 
function (Equation 3), which presents its maximum 
at the same point as Equation 2.  

 

(3)

 
As suggested by its own name, the GMLE is 

based on the same principle as the MLE. However, 
the GMLE method presents an additional constraint 
that avoids physically invalid values of the shape 
parameter (MARTINS; STEDINGER, 2000; EL 
ADLOUNI et al., 2007). Based on practical 
considerations, Martins and Stedinger (2000) 
proposed using the Beta distribution as a constraint 
for the shape parameter values. 

As previously described, the CDN specifies the 
GEV parameters by means of the GMLE approach 
using the conditional density network. However, 
Cannon (2010) recommend setting c1 to 2.0 and  
c2 to 3.3 (Equation 4), so that the shape parameter may 
vary in a wider interval with approximately 90% of its 
probability mass situated between -0.4 and 0.2 (mode 
≈ -0.2). Under the stationary approach, the CDN-
GEV estimation procedure has three outputs 
corresponding to the μ, σ, ξ parameters of the GEV 
distribution (CANNON, 2010). As described by this 
latter study, the neural network architecture of the 
stationary GEV-CDN may be represented by Figure 1. 
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Figure 1. Neural network architecture of the stationary  
GEV-CDN. Adapted from Cannon (2010).  

Monte Carlo simulation 

The performance of each parameter estimation 
procedure for several sample sizes and shape 
parameter values (representing distinct tail 
behaviors) was firstly evaluated by means of a Monte 
Carlo Experiment divided into three steps. The first 
step was based on Equation 4 extracted from the 
GEVcdn-package, according in the Equation 5  
(R DEVELOPMENT CORE TEAM, 2009; 
CANNON, 2011). 

 
( )ξσμ ,,,nrgevY =  (5)

 
The location and scale parameters were 

respectively set to 0 and 1 without loss of generality 
(SHIN et al., 201 1; HEO et al., 2013). The shape 
parameter was left to vary from -0.4 to 0.4 by 
discrete steps of 0.1. The sample size (n) was left to 
vary from 30 to 90 by discrete steps of 10. It is worth 
mentioning that n = 30 is the length of record 
required for obtaining climatological normal values. 
10,000 trials were generated from function 1 for 
each set of parameters and sample sizes. 

The second step was based on Equation 6: 
 

( ) ( )[ ]{ }1ln1 −−+= −− ξ

ξ
σμ ppF  (6)

 
Equation 6 was calculated for the same sets of 

parameters used in step 1 giving the true quantiles 
[F-1 (p)] for the following non-exceedance 
probabilities (p = 0.50, = 0.60, = 0.70, = 0.80,  
= 0.90, = 0.95, = 0.975, = 0.980, = 0.990 and  
= 0.999). The values of n, μ, σ, ξ and p used in steps 
1 and 2 where chosen by following (MARTINS; 
STEDINGER, 2000; EL ADLOUNI et al., 2007; 
CANNON, 2010).  

The third step consisted of fitting the GEV-MLE 
and GEV-CDN to each random sample generated 
in step 1 and calculating the quantile estimates for 
each fitted model by means of Equation 6. The root 
mean squared error (RMSE) of each quantile 
estimate was calculated with respect to the 
corresponding true quantile as suggested by Martins 
and Stedinger (2000), El Adlouni et al. (2007) and 
Cannon (2010). The RMSE, described in several 
studies including Camparotto et al. (2013), can be 
regarded as a measure for the magnitude for the 
errors of each quantile estimates (WILKS, 2011).  

As a study case, the parameter estimation 
procedures were applied to the annual daily 
maximum rainfall series of 26 Brazilian locations 
(Figure 2).  
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Figure 2. Meteorological Weather Stations. 

The Anderson-Darling (ANDERSON; 
DARLING, 1952) described in several studies 
including Blain (2013) was used to assess the fit of 
the GEV-MLE, and GEV-CDN to the series 
because it is better than other tests (e.g. Akaike 
Information Criterion and Bayesian Information 
Criterion) in recognizing a 3-parameter parent 
distribution such as the GEV (HADDAD; 
RAHMAN, 2011). Further details on this 
goodness-of-fit test can be found in Shin  
et al. (2011), Heo et al. (2013) and Blain (2013). 
The RMSE of each quantile estimate was 
calculated with respect to the corresponding 
observed (empirical) quantile and, as for the  
Monte Carlo Simulations, it was used to compare 
the performance of the GEV-MLE to the GEV-
CDN. 

Results and discussion 

Regardless the parameter estimation 
procedure, the Monte Carlo simulations (Figure 
3) indicated that the return period is one of the 
main factors affecting the quantile estimates 
obtained from the GEV distribution. For a 
particular ξ and n value, the RMSE increases as 
the return period increases. This statement is 
consistent with the results found by Martins and 
Stedinger (2000), Coles (2001), El Adlouni  
et al. (2007), Blain (2014), Blain and  
Meschiatti (2014) and indicates that the 
magnitude of the errors of the quantile estimates 
increases as the return period of an extreme event  
increases. 

 
Figure 3. Root mean squared error (RMSE) of quantile estimates 
obtained from the Generalized Extreme value Distribution for 
different return periods (10, 50, 100 and 1000 years). The 
quantile estimates were obtained from the Conditional Density 
Network (CDN) and Maximum likelihood method.  

The results in Figure 3 also indicate that the ξ 
value is another key factor affecting the quantile 
estimates. For a particular sample size and return 
period, the performance of both methods (CDN 
and MLE) varies with ξ (the RMSE values tend to 
increase as ξ increases). Therefore, by considering 
that the same feature was observed by Martins and 
Stedinger, (2000) for the MLE, we may assume that, 
regardless the parameter estimation procedure, the 
errors of each quantile estimates increases as ξ 
increases. These results are particularly important 
because, as previously described, the three different 
extreme distributions types (I, II or III) that the 
GEV is capable of represent are specified according 
to the ξ value (COLES, 2001; WILKS, 2011; among 
many others). Considering the notation adopted in 
this study, negative values of ξ leads to the type III 
(Weibull) distribution (a bounded upper tail 
probability density function). ξ = 0 leads to the type 
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I (Gumbel) distribution (an unbounded upper tail 
probability density function, in which the tail 
decreases exponentially). ξ >0 leads to the type II 
(Fréchet) distribution (an unbounded upper tail 
probability density function, in which the tail 
decreases as a polynomial, i.e. the cumulative 
distribution function slowly converges towards to 1 
(EL ADLOUNI et al., 2007; GILROY; MCCUEN, 
2012; among many others). For this latter type, the 
probability of extreme values is higher than those 
obtained from a type I or III distribution. For 
instance, the 90th quantile estimate obtained from a 
GEV distribution with μ = 0; σ = 1 and ξ = -0.4 
(type III) is ≈ 1.5, while the same quantile obtained 
from a GEV distribution with μ = 0; σ = 1 and  
ξ = +0.4 (type II) is ≈ 3.65. Thus, the results in 
Figure 3 indicate that the errors of the quantile 
estimates are higher for the type II distribution than 
for the types I and III. This last statement is of 
particular interest for meteorological studies since 
the type II is the most common for hydrological data 
(GILROY; MCCUEN, 2012). 

The Monte Carlo simulations also indicated that 
the supposition that the CDN is more suitable than 
the MLE for estimating the parameters of the GEV 
from small sample sizes were met when ξ was set to 
values ranging from -0.1 to 0.1 and n to values equal 
to or lower than 50. By considering the same range 
of ξ values, both methods presented similar 
performances when n was set to values equal to or 
greater than 60. For ξ ≥ 0.20, the CDN 
outperformed the MLE for all sample sizes and for  
ξ ≤ -0.20, the MLE outperformed the CDN for all 
sample sizes. 

Case of study 

Before evaluating the results in Table 1, it is 
worth mentioning that no remarkable difference was 
found between the length of time (running time) of 
GEV-MLE and GEV-CDN. Both methods were 
able to fit the GEV parameters in less than 5 seconds 
for each location. However, we are aware that these 
running times vary according to each computer 
processing capability. Finally, it is also worth 
emphasizing both GEV-MLE and GEV-CDN can 
be easily computed by means of R-software codes 
available at https://www.r-project.org. 

As expected, the AD test indicated that both 
GEV-MLE and GEV-CDN can be used to assess the 
probability of extreme rainfall data. However, as can 
be observed from Table 1, the CDN outperformed 
the MLE for 23 of the 26 rainfall series. By 
considering that the majority of the rainfall series 
presents sample sizes lower than 60 and 24 out of 

the 26 rainfall series presents ξ greater than -0.15, 
this result is consistent with those obtained from the 
Monte Carlo simulations. In addition, the shape 
parameter estimates obtained from the CDN are 
more consistent than those obtained from the MLE 
with statement that extreme rainfall series are more 
likely to produce positive shape parameter (~ 0.0 to 
0.2; FOWLER et al., 2010; GILROY; MCCUEN, 
2012). As can be noted (Table 1), while the CDN 
produced 14 positive values of the shape parameter, 
the MLE produced only seven positive values. 
Therefore, we assume that the results of Table 1 
suggest that the CDN is more suitable than the 
MLE for fitting the GEV distribution to the rainfall 
series obtained from the Brazilian locations. Finally, 
the results listed in Table 1, along with those of the 
Monte Carlo simulations, indicate that the CDN 
method may be used to evaluate the probability of 
extreme events at a regional scale. 

Table 1. Root mean squared error (RMSE) and parameter 
estimates obtained from CDN and MLE for annual maximum 
rainfall series of 26 Brazilian locations. 

Location Sample Size 
(years) 

CDN MLE 
RMSE ξ RMSE ξ 

Aracaju/SE 43 6.59 -0.03 6.11 -0.13 
Barcelos/AM 68 4.53 0.00 4.93 -0.06 
Boa Vista/RR 35 3.90 -0.03 4.22 -0.10 
Brasília/DF 51 2.89 -0.07 3.07 -0.10 
Catanduva/SP 34 4.75 0.06 5.32 0.03 
Colinas/MA 36 3.95 0.03 4.13 -0.03 
Conceição do Araguaia/PA 49 6.04 0.00 6.35 -0.02 
Cruzeiro do Sul/AC 31 3.85 0.01 4.41 -0.03 
Diamantino/MT 42 2.43 -0.09 2.67 -0.16 
Fortaleza/CE 44 7.45 -0.05 7.84 -0.08 
Garanhus/PE 43 2.67 0.01 2.92 -0.04 
Goiás/GO 51 4.35 0.05 4.66 0.03 
João Pessoa/PB 45 5.48 -0.25 4.96 -0.36 
Londrina/PR 40 9.75 0.18 9.84 0.18 
Macapá/AP 92 5.35 0.02 5.83 0.00 
Montes Claros/MG 37 4.98 0.08 5.28 0.05 
Natal/RN 36 8.28 0.30 8.38 0.38 
Palmeira dos Índios/AL 60 4.54 0.03 4.90 -0.02 
Paranaiba/MS 35 6.72 0.29 5.34 0.34 
Passo Fundo/RS 40 3.43 -0.01 3.97 -0.05 
Paulo Afonso/BA 84 5.17 -0.06 5.76 -0.10 
Picos/PI 33 6.15 0.30 7.16 0.41 
Resende/RJ 36 3.10 -0.12 3.44 -0.18 
São Joaquim/SC 39 2.52 -0.19 2.47 -0.29 
Taguatinga/TO 44 2.82 0.00 3.27 -0.03 
Vitória/ES 40 4.22 0.01 4.92 -0.03 
 

Conclusion 

When the shape parameter of the Generalized 
Extreme Value Distribution is greater than -0.2, 
the Conditional Density Network should be 
preferred over the Maximum likelihood method 
for quantile estimates. Otherwise, the Maximum 
likelihood method should be adopted. These two 
statements hold for sample sizes ranging from  
30 to 90. 
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