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ABSTRACT. This paper presents a discrete event simulation employed in a Brazilian automotive 
company. There was a huge waste caused by one family scrap. It was believed one reason was the company 
functional layout. In this case, changing from current to cellular layout, employee synergy and knowledge 
about this family would increase. Due to the complexity for dimensioning a new cellular layout, mainly 
because of batch size and client’s demand variation. In this case, discrete event simulation was used, which 
made possible to introduce those effects improving accuracy in final results. This accuracy will be shown 
by comparing results obtained with simulation and without it (as company used to do). To conclude, 
cellular layout was responsible for increasing 15% of productivity, reducing lead-time in 7 days and scrap in 
15% for this family. 
Keywords: productivity, efficiency, scrap, lead-time. 

Utilização da simulação de eventos discretos para alterar o leiaute funcional em celular em 
uma empresa de auto peças 

RESUMO. O presente artigo apresenta um projeto de simulação de eventos discretos realizado em uma 
empresa do setor automotivo do Brasil. Nela existia uma grande perda em decorrência do índice de refugo 
elevado de uma família de produtos. Acreditava-se que um dos motivos era a organização funcional do 
leiaute, pois os funcionários não ficavam especializados em um tipo de produto. Portanto, se o leiaute fosse 
alterado para o celular, a sinergia dos funcionários e a especialização em um determinado produto seriam 
maiores. Devido à complexidade no dimensionamento da célula, principalmente pela variação no tamanho 
do lote de produção e na demanda do cliente, foi utilizada a simulação, possibilitando introduzir essas 
variações no modelo computacional, tornando o resultado do estudo mais preciso. Por fim, com a criação 
da célula a empresa aumentou em 15% a produtividade, reduzindo 7 dias do seu tempo de atravessamento e 
15% do seu refugo. 
Palavras-chave: produtividade, eficiência, refugo, tempo de atravessamento. 

Introduction 

Computational simulation allows studying a 
dynamic process and its effects. Different 
scenarios can be created and its outputs analyzed 
helping managers in the decision making process. 
Furthermore, simulation results are more precise 
and function as an indicator to predict how a 
system will react when subjected to a specific 
modification.  

An advantage of this operation is that 
simulations try to repeat the same behavior which 
real process would have in the same conditions. A 
simulation model is used, particularly, as a tool to 
obtain answers to questions like: “what-if…” 
(BANKS et al., 2010). For example, Choi et al. 
(2013) used a discrete event simulation to analyze 

three different configurations of ship-to-yard 
vehicles in a container terminal.  

The results indicated which scenario 
performances are dependently connected with the 
workload requirements and profile. Moreover, 
layout is another important subject to be studied in 
order to improve the system. Hasan et al. (2012) 
identified five most commons layouts: by process, 
by product, fixed-position, cell and a hybrid cell. 

According with Jiang and Nee (2013), choosing 
the right layout for a specific process may reduce 
operational costs in 50%. Lu et al. (2011) built a 
mathematic model to propose a more efficient 
layout in a Chinese company. The model results 
prompted this new layout, which would increase 
machine rate in operation, productivity and reduce 
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waste with displacement. Wherefore, nothing more 
natural than using simulation to test different 
layouts, and then, choosing the most profitable. 

Jerbi et al. (2010) claimed that, once a developed 
model is validated (representing a real system), 
managers could forecast any kind of combination 
defined on research scope. In other words, a 
simulation model may serve as a tool to help 
choosing the most appropriated layout for the 
studied object. 

Thus, cellular layouts reduce production cost 
and increase system flexibility for small batches, a 
current tendency (GHOTBODDINI et al., 2011). 
The main benefits for this layout are reduction and 
simplification of the maintenance cost of stock, 
work in process, setup time and lead-time. 

Hence, the aim of this study is to design a 
cellular layout using discrete event simulation, 
considering the most adequate distribution for each 
stochastic data such as client demand, batch size, 
mean time to repair, mean time between failures, 
and, finally, generate a scheduling for the first 
machine to impact its utilization rate. At the end, 
this paper presents the results achieved through this 
study.  

The Section 2 presents the theoretical 
foundation and is divided in discrete event 
simulation and layout. The third part addresses the 
methodology used. The fourth part presents the 
results and discussion, and is divided in industry, 
conception, implementation and analysis. The fifth, 
and last part, presents the final conclusion. 

Material and methods 

Discrete event simulation 

Simulation is a simplified system representation, 
made and understood by a specialist, who intends to 
identify its potentials improvements (TAKO; 
ROBINSON, 2010).  

Simulations allow the evaluation and analysis of a 
real system from a computational model which can 
answer question as 'what-if...' rendering itself a 
powerful tool on the decision making process 
(BANKS et al., 2010; LAW; KELTON, 2000; LAW, 
2007). 

Simulation and modeling was increasingly used 
as a decision-helping tool; its most important 
feature, which awakes an interest for simulation, is 
the prospect of working with complexes systems and 
the possibility of analysis of the dynamics’ behavior 
(BANKS et al., 2010). 

According to Sandanayake et al. (2008) discrete 
event simulation allied with production system 
analysis, aiming at performance improvement, 

became more relevant in the last decades. Together 
with advancements on computers, discrete event 
simulation helps specialists in visualizing, analyzing 
and optimizing complex production processes, in a 
reasonable period of time and with a reasonable 
investment. 

For example, Hernandez and Librantz (2013) 
used discrete event simulation to evaluate 12 
scenarios’ behavior of supply chain process in sugar 
cane exportation. In the end, they chose the last 
scenario because it provided a better productivity.  

Simulation is a reality imported to a controlled 
environment, where its behavior may be studied 
under a sort of condition, without involving physical 
risks and/or costs (BANKS et al., 2010). Those 
conditions can be studied aiming at productivity and 
quality improvement, machine acquisition, changes 
in layout and process parameters.  

Simulation is one of the most used research 
tools, mainly due to its versatility, flexibility and 
power of analysis (RYAN; HEAVEY, 2006). So 
discrete event simulations are a powerful tool, which 
can be applied to investigate any stochastic system 
(HILLIER; LIEBERMAN, 2010). 

Layout 

Accordingly to Slack et al. (2010) layout changes 
can affect efficiency and operational costs. Thus, 
nothing more natural than the use of simulations to 
test different layouts configurations, and choose the 
one that brings more profits. In this case, a 
simulation model serves as a tool to help choosing 
which layout is more appropriated for the company. 

Many researches have been done to evaluate and 
study the best layout for a specific reality, especially 
when they integrate simulation with a possibility to 
test a sort of layout configuration and machines 
positions. 

The key indicators used to compare those layouts 
were time cycle, work in process and machine rate 
utilization. They concluded that in a scenario 
without client’s demand variation, the classic cell is 
better than the other two layouts. However, in a 
scenario with client demand variation (more 
common in current days), the last cell layout was 
better than the other two types. 

Kurkin and Šimon (2011) used discrete event 
simulation to propose a new production layout. The 
study was performed at the Daimler and VW 
company line. According to both researchers, the 
main advantage of using a discrete event simulation 
with layout is the possibility to try a sort of new 
designs without moving machines in real life. Thus, 
only when the best configuration is found out it is 
time to start working. 
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Modeling and simulation 

The object of this study is a modern 
manufacturing system, so its analysis is complex. 
Therefore, to help solving this problem, a 
computational simulation was used. According to 
Hillier and Lieberman (2010) computational 
simulations should be used to solve complex 
problems. 

According to Leal et al. (2011) a simulation 
model development presents three steps: conception 
or problem formulation, implementation, and, 
finally, model results analysis.  

In the conception phases, the researchers define 
the simulation’s main objective. Then, a conceptual 
model is built and all required data are collected. 
IDEF-SIM (PEREIRA et al., 2015) technic was 
choosen to build the conceptual model. Exemples of 
collected data are: batch size, production frequency 
for each product, setup time, downtime and time to 
machine be repaired. 

Once the conceptual model is validated, 
implementation phase can be initiated. In this stage, 
the conceptual model is transformed in a 
computational model, and all collected data are used 
to program it. After that, the computational model 
must be verified and statistically validated. Sargent 
(2012) and Leal et al. (2011) proposals were used for 
computational model verification and validation 
respectively. 

Finally, if the computational model is approved, 
the analysis phase can begin. Now, any change in 
computational model represents the same 
modifications and results in the real system. For this 
study, the computational layout model was changed 
to infer some results in real life. 

The next section will present the results and 
discussion as proposed by Leal et al. (2011). 

Results and discussion 

Industry 

The company in question is an auto part 
industry, and is located in Southeast Brazil. This 
company presented 38% of scrap for a specific 
family product.  

It was believed that part of the scrap was due to 
the functional layout presented, since in the 
functional layout there is no focus on a particular 
product, as mentioned in the section Layout. Any 
product can be produced in any idle machine 
nearby. Thereby, an employee does not become 
specialized on one product.  

One reason for choosing a cellular layout is that the 
employee becames more specialized in the product 
than in the process (D’ANGELO et al., 2000). 

The company has more then 6,000 different 
products to be manufactured. As a characteristic from 
this company, all machines are manual and completely 
man dependent. Some dimensional controls are 
milesymal, so, changing layout to another one that 
provides more knowledge, restricting other passing by 
Families, would help to decrease scrap. 

Conception 

According to Leal et al. (2011), the first step to be 
worked on is to define the objectives of the study, 
the construction and validation of the conceptual 
model and modeling of the data input. 

Objectives and definition of the system 

First of all, product’s flow was mapped. Two different 
families were identified, with minimal distinction 
between both. There were 271 products available among 
both families, responsible for 180 thousand pieces 
produced each month, about 2 millions in a year. As one 
Family was responsible for 92% of the volume produced, 
this study was conduced for this family. 

The employment of discrete event simulation 
was obtaining better results with the possibility of 
considering batch size and client demand variation 
as computational model inputs. All cited factors 
would be tough to consider algebraically, in other 
words, without simulation.  

At the end, an expected result is how many 
machines will be necessary to reach the client’s 
demand in a new cellular layout. 

Construction and validation of the conceptual model 

Continuing with the proposed method, the next 
step corresponds to the creation of a conceptual 
model. For this, IDEF-SIM mapping technique was 
used (PEREIRA et al., 2015), in order to map 
process and resources activities. 

The family products arrive at the dock of the 
company and employees are responsible to make 
them available in the first machine inventory 
(Machine 1). This first step does rough-machining 
operations, so, dimensional control is not strict. 

After passing by the first machining, the product 
goes to an area to be galvanically coated on its surface, 
which reduces its wear, extending its life. At the end of 
this stage, the product goes to the second part of 
mechanical process, which are still thinning operations. 

Finally, at the third and final stage, the product 
undergoes to final operations, finishing processes, 
and consequently the tolerance measures are smaller 
than in first stage. Figure 1 represents the mapping 
of this last stage. It was decided that only a part of 
IDEF-SIM would be presented, due to the 
complexity of production flows. 
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Figure 1. IDEF-SIM from last flow production stage.  

It is noteworthy that all mappings performed 
were validated, using face-to-face validation 
(SARGENT, 2012), by supervisors and engineers in 
charge of the area. 

Modeling of the input data 

The input data used to create the computer 
model were standard time, plant layout, sales market 
forecasting, maintenance reports, setup time, batch 
variation in production and variation in the arrival of 
the different products of the same family A. 

The first survey was conducted with respect to 
layout, movement and distance between operations, so 
that the entire computational model was created taking 
into account the actual distances between operations. 

Moving the product is marked on the plant 
layout in Figure 2 (totaling more than 900 m). 

The standard times were based on the database 
used by the company. These same data are used to 
feed the ERP (Enterprise Resource Planning) 
system that calculates the time of production to 
meet the submission deadline established by the 
client, as well as its production cost. The machine 
setup times were also obtained by consulting the 
default time table of the operation. 

Analyzing the various products of which the 
family consisted, it was concluded that only 9 
products accounted for over 80% of its production 
volume. Therefore, the layout would be adjusted for 
that product 9. 

Once which products would be produced on the 
new layout were set, a study was carried out to evaluate 
the size production lot for each of the items and the 
interval between productions of the same item. 

The study consisted of analyzing the outliers 
from each of the samples of the batch size and 
production interval. After the analysis of outliers’ 
samples, an analysis was performed to evaluate the 
dispersion trend in the absence of samples. 

Finally, after validating the samples data, a stage 
of adjustment of their statistical distributions was 
initiated. According to Banks et al. (2010) the most 
commonly used distributions are Exponential, 
Normal, Weibull, Gamma and Johnson. 

After obtaining the best-fit results, statistical 
software Stat::Fit® was used to calculate the 
appropriate parameters of each distribution to be 
programed into the computer model. 

At the end of the study to determine the best-fit 
distributions for the production batch size of the 
items, the study was initiated to determine the range 
of production of 9 items, namely to find the best-fit 
distribution to the arrival frequency of the product 
for its manufacturing. 

Then, we studied the data of machine downtime 
and maintenance time (mean time to repair and mean 
time between failures). The same care to adjust the size 
and frequency of arrival of lots of production was 
adopted for the fit of stochastic data for MTTR (Mean 
Time To Repair) and MTBF (Mean Time Between 
Failures). 
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Figure 2. Product flow indicated on the plant layout. 

Implementation 

According to Banks et al. (2010), the 
implementation phase is composed of the 
construction, verification, and finally, the validation 
of the computational model. 

Computational model: construction and verification 

In the model’s programing phase, ProModel® 
was used to create a computational model with more 
than 600 process lines, 87 places, 9 entities with 
deferent flows and 39 employees. 

The model also considered machine breakdown, 
setup time, displacement and employee availability. 
Besides that, in this model, the batch size for each 
entity varies according to the historical logistic log 
file. The rule for feeding the first operation, when 
the part leaves the stock, was adopted as random. 
Otherwise, the rule would be FIFO (First In, First 
Out), what would not bring up an impact in the 
operation, because the production sequence would 
not change during each run. 

So, in each replica, there was a variation as 
consequence of the production mix, as well in the 
machines’ utilization rate. These elements made the 
model more realistic and helped in its validation, as 
will be presented below. 

The 3D model (Figure 3) was built facilitate 
stack holder analysis in the company. The project 
was approved and the new layout configuration is 
presented in Figure 4. 

Validation of the computational model 

Computational model validation was performed 
using two methods: model behavior and statistical 
comparison between simulation and historical data.  

First of all, the computational model was 
validated using the verification performed by model 
behavior (SARGENT, 2012). In this process, 
production engineers and the head of the area can 
see if model behavior is correct, or else they may 
suggest any improvements. 

After verification, the computational model was 
set to simulate 20 replicas during 7 months of 
production period. Besides that, a warm up period 
of 90 days was implemented in the programing. 
Warm up periods ensure that simulation data 
collection had not occurred before the line up had 
been established. 

Replicas results obtained were: mean 1,579,530 
pieces and standard deviation of 124,270 pieces. The 
real data for the same period were: 1,555,753 pieces 
and standard deviation of 55,790 pieces.  
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Figure 3. 3D computational model. 

Hereafter, statistical validation was made with 
real and simulation data using the proposal of Leal  
et al. (2011). In this paper, the authors present all 
steps required for discrete event simulation 
statistical validation.  

All steps required for validation were followed. 
In the first step, a normality test was performed 
(MONTGOMERY; RUNGER, 2010), using the 
Anderson-Darling’s proposal (ANDERSON; 
DARLING, 1954), with real and simulation data. 
The result for real data normality test was a p-value 
of 0.505, and simulation data normality test 
presented a p-value of 0.951. Both results were 
higher than 5% (adopted significant level), which 
proves data’s normality.  

Then, a variance analysis (MONTGOMERY; 
RUNGER, 2010) between real and simulation data 
was conducted using an F test (SNEDECOR; 
COCHRAN, 1967). The p-value for this test was 
0.029, which cannot prove variance similarity. Based 
on Leal et al. (2011), if the F test failed, it is 
necessary to use the Smith-Satterthwaite method 
(SATTERTHWAITE, 1946) before a T test 
(STUDENT, 1908). 

According to the authors, the Smith-
Satterthwaite method is used when real and 
simulation data are normal, but present different 
variances. This method adjusts liberty of freedom 
regarding the difference in variances for a critical 
value.  

Finally, a T test using Smith-Satterthwait 
method was conduct to prove computational model 
validation. The result showed a p-value of 0.442, 
which is higher than the adopted significant level 

(5%), so null hypothesis about real and simulation 
average data is validated and equal. 

Thus, using Leal et al. (2011) proposal, 
computational model is statistically validated for 
production quantity. 

Analysis 

According to Leal et al. (2011), this phase will 
use the operational model, execution of 
experiments, analysis of the results and conclusions. 

Among the results obtained, the most interesting 
for the present purpose was the use of machines in 
comparison with the amount of available machines 
(limit of occupation). The occupancy limit is the 
amount of machines that are available in the factory 
and were programmed in the simulation. What means 
100% of the occupancy limit represents an operation 
with only one machine in the system, since an 
operation with 1,600% of occupancy limit represents 
an operation with 16 machines in the system. 

The operation 1 presented an occupation of 29.3 
for a limit of 100%, operation 2 47.4 of 200%, 
operation 4 59.6 of 300%, the operation 5 32.1 of 
300%, operation 14 67.5 of 100%, operation 15 24.8 
of 400%, the operation 16 31.3 of 1,600%, operation 
17 22.6 of 200%, the operation 18 175.1 of 700%, the 
operation 19 35.4 of 300%, operation 20 19.8% of 
500%, operation 21 66 of 200% operation 22 25.2 of 
100%, the operation 24A 97.3 of 400%, the operation 
24B 97.3 of 400%. 

The difference between the use of the machine 
and the limit of the operation is the number of 
machines required for the manufacture of all 9 
products. Thus, leaving for the analysis stage of the 
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simulation and creating scenarios to assist in 
decision-making, machines that were not required 
were withdrawn from the computational model: one 
machine of operation 2, two machines of operation 
4, two machines of operation five, three machines of 
operation 15, fifteen machines of operation 16, one 
machine of operation 17, five machines of operation 
18, two machines of operation 19, four machines of 
operation 20, one machine of operation 21, three 
machines of operations 24A and B. 

By reducing the number of machines, it can be 
concluded that the displacement of the product is 
decreased and the area to be occupied by each cell 
would be smaller. The results obtained with the 
simulation, which represents the changes mentioned 
above, were the same percentage of use of the 
machines presented previously. That is because only 
the unnecessary machines were withdrawn from the 
system, which proved no impact in the delivery end. 

The machines that perform operations 24AA 
24AB remain in use for about 97.3% of the time, 
that is, they require little maintenance in order not 
to compromise the delivery of the products. Due to 
the high-value of the machines used, it was decided 
to create the cell with only 2 machines present and if 
any of them presented problems, the product would 
have to come out of the cell and perform the 
operation in one of the other 20 machines present in 
the company, but they were allocated in other areas. 

However, if DES (Discrete Event Simulation) 
were not applied, Table 1 presents the number of 
machines that would be required. In Table 1 it is 
noted that the deterministic model would be 
necessary to allocate more than one machine in 
operation 4, more than one machine in operation 18, 
and two more machines in operation for 24AA and 
BB, which would result in a loss of over $1 million 
in investments in these machines. 

Table 1. Comparison between the utilization rates of the 
machine obtained by the deterministic and the validated models. 

Operation 
Deterministic 

Model 
(% Utilization) 

Stochastic Model with 
inbound rule  

in OP1 standard (% 
Utilization) 

Validated Model
(% Utilization) 

Operation 1 45.7 27.1 29.3 
Operation 2 84.2 37.1 47.4 
Operation 4 110.2 46.3 59.6 
Operation 5 46.2 25.1 32.1 
Operation 14 90.8 49.1 67.5 
Operation 15 39.5 19.8 24.8 
Operation 16 51.7 22.9 31.3 
Operation 17 31.0 17.2 22.6 
Operation 18 273.6 129.7 175.1 
Operation 19 50.1 26.6 35.4 
Operation 20 34.2 14.7 19.8 
Operation 21 99.1 49.0 66.0 
Operation 22 52.0 18.4 25.2 
Operation 24AA 216.5 74.1 97.3 
Operation 24AB 234.4 74.2 97.3 

This is because all of the data used were considered 
in average for the deterministic model, mean time to 
breakdown and repair of machinery, average frequency 
of customer demand, medium batch production. Table 
1 presents the number of machines that would be 
required if the randomness of the products into the 
first operation were not created. 

The analysis of Table 1 shows that without 
creating the input randomness of products in the 
first operation, the occupation of machines would be 
smaller. This is due to the fact that for the model 
with default inbound rule, the sequence produced in 
the first machine is always the same. However, in 
real life there is a variation in the sequence to be 
produced, either by customer demands, either by 
the providing part of the previous operation. This 
variation in the sequence generates the occupancy 
rate of the machine differently, because producing 
the parts in the order 1-2-3 is different than 
producing them in the order 2-3-1. 

With the use of discrete event simulation, it was 
easier to make the decision. Managers had more 
safety and comfort to scale and compare the number 
of machines needed to meet customer demand. 

However, the operations 1, 2A, 4A and 5A together 
represent 1.1% of the overall waste family. Therefore, 
we preferred not to move those operations to the new 
cell, maintaining productivity of the factory. The 
proposed cell layout is shown in Figure 4.  

 

 

Figure 4. Proposed cellular layout. 

The layout has been implemented in the 
company for one year and has achieved earnings, 
presented in Table 2. 

Table 2. Summary of results. 

KPI Past Layout New Layout Earnings % 
Distance  (m) 992.1 228.0 764.1 77.0% 
Employees/shift 39 37 2 5.1% 
Productivity (pieces/men/day) 223.4 227.0 3.6 1.6% 
Lead Time (day) 33.2 22.5 10.7 32.2% 
Throughput Time / Lead Time 0.0072 0.0087 0.0015 20.8% 
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Conclusion 

The data obtained from the simulation were 
more accurate than those obtained by the 
deterministic model, in the way it was used by the 
company in the change of the project layout. If the 
company continued to employ the same technique, 
it would be led to erroneously invest more than US$ 
2 million in buying machines that would be idle. 

The company in question has adopted the 
suggested layout, with the number of machines 
obtained as the final result of the simulation.  

Suggestion for future studies is: dimension 
employees’ utilization rate to balance the activities 
inside the cell. 
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