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ABSTRACT. Process variables regularly control and evaluate industrial processes. Information with gross 
errors may in some cases not be attenuated by function reconciliation and change the calculation of process 
balance, leading optimization results towards non-feasible regions or to optimal sites. A promising 
alternative for reconciling functions is the use of robust functions. Current paper considers the above 
scenario and evaluates the fitness of some robust functions in solving in steady state chemical processes 
data reconciliation problems represented by linear and nonlinear systems in the presence of gross errors. 
Traditional Cauchy, Fair, Contaminated Normal and Logistic robust functions are used in the 
reconciliation problem where their estimates are compared to those obtained with the use of the latest 
features, such as New Target and Alarm. Rates for gross errors in tests were limited between 4 and 10σ of 
the measured current and elaborated a region of outliers. Results showed that New Target and Alarm 
functions are different from the others as the magnitude of the gross error increases, tending towards true 
rates specified by set point. 
Keywords: set measures, robustness, efficiency, nonlinear systems. 

Avaliação de funções robustas para reconciliação de dados em sistemas térmicos 

RESUMO. Variáveis de processo são regularmente utilizadas para controlar e avaliar os processos 
industriais. As informações contendo erros grosseiros podem, em alguns casos não ser atenuadas por 
funções reconciliadoras e, desta forma, alterar os cálculos de balanços de processo, conduzindo os 
resultados de otimização a regiões inviáveis ou a ótimos locais. Neste sentido, uma alternativa promissora 
para função reconciliadora é a utilização das funções robustas. O presente trabalho leva em consideração 
este cenário e avalia a aptidão de algumas funções robustas na resolução de problemas de reconciliação de 
dados em processos químicos em estado estacionário representados por sistemas lineares e não lineares na 
presença de erros grosseiros. As tradicionais funções robustas Cauchy, Fair, Normal Contaminada e 
Logística são utilizadas, onde, as suas estimativas são comparadas com as obtidas com o uso de funções mais 
recentes, como a New Target e Alarm. Nos testes realizados, os valores gerados para os erros grosseiros 
foram limitados entre 4 a 10σ da medida da corrente, configurando assim uma região de grandes desvios. 
Os resultados indicaram que as funções New Target e Alarm diferenciam-se das demais à medida que 
aumenta a magnitude do erro grosseiro indicando uma tendência ao valor verdadeiro especificado pelo set-
point. 
Palavras-chave: ajuste de medidas, robustez, eficiência, sistemas não lineares. 

Introduction 

Data reconciliation may be seen as a step towards 
improving the accuracy of data for use in modeling 
and optimization processes. According to technique 
precursors Kuehn and Davidson (1961), data 
reconciliation is a tool that, among a wide range of 
applications, allows optimum adjustment measures 
and estimates based on spatial redundancy and 
model conceived by conservational balances of mass 
and energy. Its effectiveness for accuracy is achieved 

even when the estimated standard deviation of 
errors is different from the actual ones or when 
errors follow standard distribution (Jiang, Liu, & Li, 
2014). However, errors, especially gross ones, 
cannot be accurately explained or predicted. 

Robust functions have been studied by Huber 
and Ronchetti (2009) with the use of robust 
statistical tools to find solutions to problems that 
lacked the normal Gaussian distribution. An 
important feature in the reconciliation procedure is 
the low sensitivity of these functions when the data 
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are corrupted with gross errors (Ozyurt & Pike, 
2004). 

The ability to predict robustness and to process 
data with gross errors has been dealt with in many 
research papers. Ozyurt and Pike (2004) tested the 
robust functions in case studies mentioned in the 
literature to establish a criterion for error detection 
and data reconciliation simultaneously. The good 
results obtained with different functions 
underscored the efficiency of Hampel, Cauchy and 
Logistics functions. Prata, Schwaab, Lima, and Pinto 
(2010) analyzed the ability to predict robust Welsch 
function for data reconciliation and detection of 
outliers in a propylene polymerization reactor 
represented by a nonlinear dynamic model. Zhang, 
Shao, Chen, Wang, and Qian (2010) analyzed the 
robustness of the Least Squares Quasi-weighted 
function by comparing it to the Weighted Least 
Square, Fair and Redescending functions. Loss of 
quality of the Weighted Least Squares function was 
evident when compared to the proposed function. 
The focus of the study was to analyze the potential 
of this strategy for the application of online 
detection of gross errors. Nicholson, Negrete, and 
Lorenz (2014) used a sequential approach to 
numerical integration of nonlinear dynamic models 
and data reconciliation by using Huber, Fair and 
Hampel redescending robust functions in an 
advanced method of moving horizon. Process 
measures were "contaminated" with large errors to 
demonstrate the ability to reconcile the robust 
functions used in data reconciliation. 

Even with a motivating panorama in this 
thematic area, there is still no consensus on the 
criteria for the selection of robust features. In fact, 
few studies have been proposed to develop and 
evaluate new robust functions. Jin, Hung, and Liu 
(2012) proposed a new formulation called New 
Target to reconcile data. The reconciliation of 
results obtained with this function was compared to 
those in the Cauchy functions and Huber and 
showed that the New Target provided more 
accurate data especially when there were one or two 
gross errors in the measurements. 

Alamgir, Khan, Khan, and Khalil (2013) 
proposed a function called Alamgir Redescending 
M-estimator (Alarm) based on the modification of 
the hyperbolic tangent function. Even without 
having been evaluated in a data reconciliation 
problem, the results obtained by the Alarm function 
in the detection of outliers were compared to results 
of such robust functions such as Tukey Biweight, 

Andrew Sine, Hampel of three parts, Huber and 
Ordinary Least Squares, and showed that the 
increased robustness of the other estimators for the 
elimination of outliers decreased their efficiency, 
which was not the case with the Alarm function. 

Despite the good results obtained from the New 
Target, the prediction capacity of this new function 
only coped with two robust functions. In fact, the 
question is how it behaves when compared with 
other robust features including Alarm function 
which showed good performance in the detection of 
outliers. 

In the case of thermal systems, Jiang et al. (2014) 
proposed to apply data reconciliation and gross 
errors detection in steam turbine on-line of a coal-
fired power generation unit. Results showed 
whether data reconciliation had contributed towards 
the reduction of uncertainties of the estimated rate 
of primary flow rates, steam turbine heat rate and 
the heat rate sensitivity coefficients. Martínez-
Maradiaga, Bruno, and Coronas (2013) studied data 
reconciliation technique to the steady state 
operational data for absorption refrigeration systems 
and a single-effect ammonia-water absorption 
chiller was observed. Data reconciliation technique 
was executed with gross error detection procedure 
and efficient results were obtained in two steps. The 
identification and removal of gross errors enabled a 
data reconciliation step consistent with results. Szega 
and Nowak (2015) simulated a model of the thermal 
system of power unit for data reconciliation and 
proposed a mathematical simulation model of a 
supercritical steam power unit. The data 
reconciliation step relied on redundancy and 
observable measurements. Reconciled data show a 
decrease in the system´s entropy. 

Current paper compares the classical Cauchy, 
Fair, Contaminated Normal and Logistic functions, 
applicable to data reconciliation problems containing 
gross errors with the new robust functions, New 
Target and Alarm. The key aim is to evaluate the 
potential of these new functions for real time 
applications. The criterion for selection of functions 
was based on the average relative error between the 
amount reconciled and the true rate for the variable. 
The parameter setting of robust functions was 
obtained from the literature with a 95% confidence 
interval. Two cases represented by model processes 
in steady states, linear and nonlinear, were selected 
for current analysis. Data were corrupted with gross 
errors between four and ten times the standard 
deviation rate randomly generated to simulate real-
time behavior. 
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Methodology 

Formulation of data reconciliation problem with robust 
functions 

The data reconciliation problem for processes in 
steady states represents a class of optimization 
problem (Sanchez & Romagnoli, 1996) formulated 
by minimizing an objective function subject to 
constraints. The optimization problem for data 
reconciliation may be represented by Equation 1. 
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where: 

Nmed is the number of measured variables;  
N is the number of equality constraints, in this 

case, the issue number of equations;  
Ndes is the number of inequality constraints;  
Nunmed is the number of unmeasured variables; 

( )iρ ε is the merit function;  

f is equality constraint, in this case, the mass 
balance or energy;  

g is the inequality constraint imposed on the 
problem; 

z is the unmeasured variables of the process, 
estimated concomitantly with reconciliation.  

The variables reconciled and unmeasured are 
limited by inf

ix , inf
jz (in the lower region) and sup

ix , 
sup
jz (in the upper region). In the merit function,  

ε represents the relative error between the 
measured and reconciled rates, as shown in 

Equation 2, with mx = the measured variables of 

the process; rx = the reconciled rates for the 

variables of the process and σ  = standard deviation 

of the measurements. 
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In the case of reconciliation data with robust 

functions, the merit function is modified according 

to the functional form of interest, i.e. if the robust 
function is a weighted least square function, the 
merit function is represented according to  
Equation 3. 
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In an assessment of the functions used in the 

literature, it became clear that the robust functions 
employed belonged to the redescending  
M-estimators families which in turn are based on 
the maximum likelihood function (Hodouin & 
Everell, 1980). Due to this agreement, the functions 
Cauchy, Fair, Contaminated Normal, Logistic and 
new functions New Target and Alarm were selected 
to analyze the data reconciliation problem, 
represented by Equations 4 to 10, under function 
merit. 

Weighted least squares (WLS) 
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New Target 
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Alarm Redescending 
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In Equation 5 to 10, the variables cc, cf, pCN, bCN, 

cLo, cNT, a, A, B and cAl are set parameters of robust 
functions. Parameters may be estimated according to 
a known distribution (normal) and with specified 
accuracy, or even estimated together with the 
reconciliation problem. Rates in Table 1 were used 
for the study of cases of interest. They were 
retrieved from Ozyurt and Pike (2004), Jin  
et al. (2012) and Alamgir etal. (2013), with 95% 
efficiency. 

Table 1. Constants for different ρ functions, with 95% efficiency. 

Function ρ  Set parameters 
Cauchy cC = 2.3849 
Fair cF = 1.3998 
Contaminated Normal bCN = 10 pCN = 0.235 
Logistic cLo = 0.602 
New Target cNT = 3. A = 0.65 
Alarm cAl = 3 
 

Figure 1 denotes the performance of different 
robust functions in the analysis of the influence 
function (IF) representing the sensitivity of the 
function with respect to error or contamination 
related to gross errors and outliers (Zhang  
et al., 2010; Prata, Schwaab, Lima, & Pinto, 2010). 
The behavior designed to influence the function is 
that as the error increases, the function converges to 
a small, constant rate, and becomes indifferent to 
contamination by big errors. Figure 1 reveals that all 

robust functions, Contaminated Normal, New 
Target and Alarm, have the same behavior within 
the minimum region, when the influence function 
approaches a value close to zero. 

 

 
Figure 1. Behavior of influence functions with regard to error 
(Table 1 setting parameters). 

In defining performance criterion for the 
selection of functions, Equation 11 represents 
aspects, such as convergence, and reduction of 
relative error (Zhang et al., 2010). The first aspect 
indicates whether the function may be employed for 
real time applications; the latter aspect refers to the 
ability to function closer to true rates and may be a 
possible indicator for gross error detection 
procedures. 
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In Equation 11, MRE is the measure´s relative 

error and RRE is the relative reconciled error, 
represented by Equation 12 and 13. 
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where: 

ix is the true rate; 
m
ix is the measured rate; 
r
ix is the reconciled rate. 

Cases of interest in current paper have been 
implemented in a computing environment and 
reconciled by a nonlinear programming strategy as 
optimizer (Narashimham & Jordache, 2000). A final 
tolerance of the objective function 10-6 was specified 
for all. 
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Results 

The two cases analyzed deal with a processing 
unit studied by Narashimham and Jordache 
(2000) and Knopf (2012), comprising a mixer, 
heat exchanger, splitter and recycle controlled by 
a bypass valve. The first application study is 
represented by a linear system of equations and 
has six streams measured with a single gross error. 
The energy flow is discarded and only mass flow 
is taken into consideration. The second 
application study is a modification of the previous 
case, with energy and mass flow. The problem 
represented by a nonlinear system of equations 
has eleven streams measurements (flows and 
temperatures) and two gross errors. Figure 2a and 
b illustrate the two cases, especially the nonlinear 
system in which streams of energy for the heat 
exchanger may be noted. 

 

 
Figure 2. a) Linear model of process and b) nonlinear model of 
process. 

Application study 1: linear model 

Flow sheet details are shown in Figure 2a and the 
information on the measured variables are presented 
in Table 2 in which a gross error in stream F2 

referring to the exit of the separator and entrance of 
the heat exchanger, with magnitude 4σ, may be 
perceived. 

Table 2. Information on measured variables in application  
Study 1, with standard deviation equal to 1. 

Streams True Flow Rates Measured Flow Rates 
F1 100 101.9 
F2 64 68.45 
F3 36 34.65 
F4 64 64.20 
F5 36 36.64 
F6 100 98.88 

Figure 3 demonstrates that robust feature WLS 
showed a low 19% relative error reduction. Other 
robust features that have proven performance in the 
literature, such as Contaminated Normal, Fair and 
Logistic, were also below 50%. On the other hand, 
New Target and Alarm functions showed a high 
70% error reduction which proved to be more 
accurate than the other functions. 

 

 
Figure 3. Comparison of the performance of robust functions 
with regard to reduction of relative error – Application Study1. 

Mitigation of inability of Fair and Logistics 
functions for great errors may be justified by  
Figure 1. After a certain magnitude of error, the IF 
rate of the above functions reaches constant and 
high level. This behavior has not been observed in 
the New Target and Alarm Functions that tend to 
zero posterior to the referred error. This aspect 
confirms the robustness idealized for the new 
functions especially in the presence of big errors. 

An important point to be highlighted was the 
lack of robustness of the Contaminated Normal 
function in this case. Although not commented in 
the literature, the possible loss of robustness may be 
attributed to the adjustment parameters of the 
function. 

Application study 2: nonlinear model 

Figure 2b demonstrates information on energy 
balances. Table 3 shows the rates of the measured 
variables. Two gross errors may be observed in the 
streams F2 and T7, with regard to the input stream of 
the hot flow in the heat exchanger and the inlet 
temperature of the cold flowof heat exchanger 
respectively with magnitude 4 and 5σ. 

Figure 4 shows that the function New Target has 
a less than 15% rate to reduce relative error and 
indicates that the reconciled rate approaches the 
measured value, albeit not mitigating the gross error. 
The other functions showed rates close to 30% for 
the reduction of relative error. However, tests on the 
magnitude of errors close to those in current test 
and big errors in the two streams also obtained an 
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error reduction between 26 and 35%, which was 
considered satisfactory (Zhang et al., 2010). 

Table 3. Information on measured variables in application Study 
2, with standard deviation equal to 1. 

Streams True rates Measured rates 
F1 100 101.91 
F2 64 68.45 
F3 36 34.65 
F4 64 64.20 
F5 36 36.44 
F6 100 98.88 
F7 140.6 140.0 
T2 90 90 
T4 51 51 
T7 20 25 
T8 43 43 

 

 
Figure 4. Comparison of performance of robust functions with 
regard to reduction of relative error for application Study 2. 

A new test was performed at a magnitude of 
gross error 10σ for stream F2 and T7. Table 4 gives 
the new rates. 

Table 4. Information on measured variables with gross error of 
10.σ with standard deviation equal to 1. 

Streams True rates Measured rates 
F1 100 101.91 
F2 64 74.20 
F3 36 34.65 
F4 64 64.20 
F5 36 36.44 
F6 100 98.88 
F7 140.6 140.0 
T2 90 90 
T4 51 51 
T7 20 30.41 
T8 43 43 
 

Figure 5 reveals that rise in the magnitude of 
error in streams F2 and T7 resulted in an increase in 
the reduction of the relative error of functions 
Alarm and New Target. In this case, a reduction of 
over 90% occurred. 

The behavior by New Target function has been 
reviewed by Jin et al. (2012) who highlighted 
increasing function of accuracy according to the 
increased magnitude of the error. However, the 
above performance was not followed by the other 
functions which showed a lower than 10% 

reduction, with the exception of Contaminated 
Normal function with an 80% reduction. Although 
developed for outlier detection, Alarm function also 
presented an error reduction according to increasing 
magnitude. In fact, it is a promising alternative for 
data reconciliation problems. When compared to 
other functions, Alarm proved to have consistent 
results, without any loss of accuracy in situations 
where the magnitude of the error was small. 

 

 
Figure 5. Comparison of performance of robust functions with 
regard to the reduction of relative error with 10.σ. 

Conclusion 

A general analysis of robust functions New 
Target and Alarm with regard to data reconciliation 
problem in linear and nonlinear systems showed 
great precision for gross errors between 4 - 5 times 
the standard deviation. New Target lost efficiency 
and demonstrated a different behavior to that 
presented by Jin et al. (2012). In the same context, 
the Alarm function was shown to have efficiency 
compatible with the Normal Contaminated 
function. When gross error increased, New Target 
and Alarm functions revealed higher results than 
those of functions and indicated a trend to mitigate 
major errors. 
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