
Acta Scientiarum  
http://www.uem.br/acta 
ISSN printed: 1806-2563 
ISSN on-line: 1807-8664 
Doi: 10.4025/actascitechnol.v38i3.28314 

314 

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 345-352, July-Sept., 2016 

Mixed models in cerebral ischemia study 

Matheus Henrique Dal Molin Ribeiro1*, Humberto Milani2 and Isolde Previdelli3 
1Departamento de Matemática, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, Km 1, 85503-390, Pato Branco, Paraná, 
Brazil. 2Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil. 3Departamento de Estatística, Universidade 
Estadual de Maringá, Maringá, Paraná, Brazil. *Author for correspondence. E-mail: mribeiro@utfpr.edu.br 

ABSTRACT. The data modeling from longitudinal studies stands out in the current scientific scenario, 
especially in the areas of health and biological sciences, which induces a correlation between measurements 
for the same observed unit. Thus, the modeling of the intra-individual dependency is required through the 
choice of a covariance structure that is able to receive and accommodate the sample variability. However, 
the lack of methodology for correlated data analysis may result in an increased occurrence of type I or type 
II errors and underestimate/overestimate the standard errors of the model estimates. In the present study, a 
Gaussian mixed model was adopted for the variable response latency of an experiment investigating the 
memory deficits in animals subjected to cerebral ischemia when treated with fish oil (FO). The model 
parameters estimation was based on maximum likelihood methods. Based on the restricted likelihood ratio 
test and information criteria, the autoregressive covariance matrix was adopted for errors. The diagnostic 
analyses for the model were satisfactory, since basic assumptions and results obtained corroborate with 
biological evidence; that is, the effectiveness of the FO treatment to alleviate the cognitive effects caused by 
cerebral ischemia was found. 
Keywords: longitudinal data, random effect, covariance structure, latency, fish oil. 

Modelos mistos em estudo de isquemia cerebral 

RESUMO. A modelagem de dados provenientes de estudos longitudinais destaca-se no cenário científico 
atual, principalmente nas áreas da saúde e ciências biológicas, o que induz a uma correlação entre as 
medidas para uma mesma unidade observada. Assim, é necessária a modelagem da dependência intra-
indivíduo por meio da escolha de uma estrutura de covariância que seja capaz de captar e acomodar a 
variabilidade amostral. Contudo, o desconhecimento da metodologia para análise de dados correlacionados 
pode implicar no aumento da ocorrência do erro tipo I ou erro tipo II e subestimar/superestimar os erros-
padrão das estimativas do modelo. Neste estudo, adotou-se um modelo misto gaussiano para variável 
resposta latência de um experimento que investiga o déficit de memória em animais submetidos à isquemia 
cerebral quando tratados com óleo de peixe (OP). A estimação dos parâmetros do modelo baseou-se em 
métodos de máxima verossimilhança. Com base no teste da razão de verossimilhança restrita e critérios de 
informação, adotou-se para os erros a matriz de covariância autorregressiva. As análises de diagnóstico para 
o modelo foram satisfatórias, visto que suposições básicas e resultados obtidos corroboraram com as 
evidências biológicas, isto é, constatou-se a eficácia do tratamento com OP para amenizar os efeitos 
cognitivos provocados pela isquemia cerebral. 
Palavras-chave: dados longitudinais, efeito aleatório, estrutura de covariância, latência, óleo de peixe. 

Introduction 

In the past few years, there have been an 
increasing number of experiments in the areas of 
health and biological sciences, where the response 
variables are analyzed over time for the same 
experimental unit in order to check, for example, 
the performance of alternative treatments that could 
come to be used in healing patients with some  
kind of disease. Pharmacological studies with these  
characteristics were done by Ferreira et al. (2014)  
and Bacarin et al. (2015) wherein the  
authors longitudinally evaluated (memory tests) the  

cognitive performance of animal groups submitted 
to cerebral ischemia and control groups with 
treatments of different durations, in the same way as 
when treated with different medications. Studies 
with such characteristics belong to the category of 
repeated measurements, in which one or more 
response variables are assessed repeatedly in the 
same unit. 

A special case of repeated measures studies is the 
longitudinal studies. The measurements are 
performed under different evaluation conditions and 
they are arranged over time, respecting an analysis 
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order. When thus characterized, the data presents a 
hierarchical structure, where the observations for 
same individual have a dependency structure. This 
requires the modeling of a covariance structure to 
capture and accommodate the variability of the 
longitudinal data. One way to consider this 
dependence on modeling data is to use linear 
models with the assumption of correlated errors 
when using a correlation matrix to accommodate 
individual variation. Alternatively, the data can be 
modeled including a random effect in the model. In 
this case, there is a model with fixed and random 
effects, which is called mixed model, whose focus is 
to accommodate the correlation between repeated 
measurements and evaluate individual and collective 
behavior (of groups) over time. This is a class of 
quite flexible models, since they offer greater 
versatility in modeling the data covariance structure 
to settle variations within and between individuals. 
In general, they investigate and simultaneously 
accommodate the random effect and the correlation 
structure of repeated measurements.  

For these models it is common to consider the 
response variable following a normal distribution 
(when it is the best choice to model the biological 
characteristic), since this approach is theoretically 
consolidated from the formulation, adjustment 
methods and diagnostic analysis (residual analysis 
and influence), as observed in Diggle, Heagerty, 
Liang, and Zeger (2002), Fitzmaurice, Laird, and 
Ware (2004), Nobre and Singer (2007), Nobre and 
Singer (2011) with availability of use in applications 
such as R and SAS as verified in Pinheiro and Bates 
(2000) and Littel, Stroup, Wolfinger, and 
Schabenberger (2006). 

The main scope of this article is to use the 
methodology of Gaussian mixed models (GMM) to 
model the response variable latency (lat - time taken 
by the animal to find the real hiding place) of a 
pharmacological experiment that aims at evaluating 
the effect of fish oil (FO) to the treatment on 
animals submitted to cerebral ischemia, checking if 
treated animals showed improvement in their 
clinical condition (amnesia) in relation to the 
animals that were not treated with FO. 

Material and methods 

Material 

The data used in this article are a result of an 
experiment performed in the Cerebral Ischemia and 
Neuroprotection Laboratory of Maringá State 
University during the second semester of 2014. The 

aim of this study is to evaluate how the antiamnesic 
effectiveness of FO (300 mg kg-1) varies over time 
according to the time that the treatment started after 
ischemia (known as the therapeutic window, TW), 
i.e. 4, 8, or 12 hours. 

The experiments were carried out following an 
entirely randomized design, with seven treatments 
(groups) and five repeated longitudinal measures 
(testing days). According to treatment regimen, the 
following groups were tested: Sham-operated  
(n = 15), Vehicle 4 hours TW (Vehସ, n = 10),  
FO 4 hours TW (FOସ, n = 16), Vehicle 8 hours TW 
(Veh଼, n = 10), FO 8 hours TW (FO଼, n = 13), 
Vehicle 12 hours TW (Vehଵଶ, n = 10), and  
FO 12 hours TW (FOଵଶ, n = 13). The sham-
operated animals were subjected to all experimental 
manipulations, including surgery, except that they 
did not have cerebral ischemia nor received vehicle 
or FO administration. The vehicle and FO groups 
underwent cerebral ischemia and were treated with 
olive oil or FO, respectively, according the different 
therapeutic time window (4, 8 or 12 hours).  
Intact rats were trained in the aversive radial maze 
task (ARM) (Paganelli et al., 2004) for  
10 consecutive days, and allocated to different 
groups. One or two days after training, they were 
submitted to cerebral ischemia; then the treatment 
with FO or Veh started at 4, 8 or 12 hours post-
ischemia and continued for 7 days consecutively. On 
the 15th day of ischemia, the animals begun to be 
evaluated for their ability to remember the task that 
was learned preoperatively, i.e, retrograde memory. 
The memory tests (MT) were applied once a week, 
for 5 weeks. The ability of rats to learn the shelter 
location across sessions (days) and trials was 
measured by response variable Latency, as well by 
other variables not discussed. This response 
expresses the time spent (seconds) by the animal to 
find the hiding place during each attempt. For each 
animal, and in each testing day (session), the 
recorded latency was the arithmetic mean of three 
attempts (trials). The operational procedures for 
ischemia induction followed the ‘Basic principles for 
animal use’, as approved by the Ethics Committee 
on Animal Experiments of the Maringá State 
University. 

Methods 

Gaussian mixed models (GMM) 

The GMM are used in the context of health 
when it is desired to evaluate the behavior of 
experimental units and treatment groups observed 
over time. In the field of brain ischemia, many 
studies have utilized mixed models to evaluate data. 
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For instance, Liu et al. (2007) used a mixed model 
regression to quantitate the longitudinal effect of 
minocycline on the recovery of learning and 
memory function measured in the water maze task 
after inducing focal cerebral ischemia in rats, an 
effect that was associated with increased 
neurogenesis and reduced activation of microglia. 
Sussman et al. (2012) evaluated the longitudinal 
effects of hypoxia/ischemia on the cerebral blood 
flow hemodynamic. Dhungana et al. (2013) adopted 
mixed models to examine whether advanced age 
aggravates ischemic brain damage in mice with 
chronic peripheral infection. Further, a mixed 
model with a random effect on the experimental 
unit was used by Heikkinen et al. (2014) to evaluate 
the susceptibility to neural loss after global or local 
cerebral ischemia in a mice model of Alzheimer's 
disease. Overall, these studies indicate the 
importance of using mixed models to evaluate 
experimental data related to the long-term outcomes 
of cerebral ischemia. 

According to West, Welch, and Galecki (2014) a 
mixed model is a parametric linear model for data in 
clusters, repeated measurements and longitudinal 
data, which quantifies the relationship between a 
dependent variable and several linear predictors, 
containing fixed and random effects. Using these 
models, it is possible to correct the distortions that 
appears when regression models with independent 
responses are used to analyze correlated data. 

The general form of a mixed model is given by 
Equation 1: 

ܑ܇  = ઺ܑ܆ + ܑ܊ܑ܈ + ૓ܑ,	 (1)
 

where: Y୧ is the response vector for the ith subject;  X୧	is a design matrix of fixed effects, which 
represents known values of p covariates;  β	is a vector of unknown parameters, linked to the 
fixed effects; ܼ୧	is a design matrix of random effects, 
which represents known values of q covariates;  b୧	is a vector of random effects and ε୧	is a vector of 
assumed independent random errors between them. 
It is assumed that b୧ 	∼ 	 ௤ܰ(0, and ϵ୧	(ܩ 	∼ ௡ܰ೔(0, R୧), 
which follow a multivariate normal distribution 
with mean vector 0 and matrixes (symmetric) of 
variance and covariance G and R୧	respectively, with b୧ and ϵ୧	independent of each other. 

According to Laird and Waire (1982), marginally 
the Y୧	is independent and follows a multivariate 
normal distribution with mean X୧β	and variance and 
covariance matrixes, according as Equation 2: 

'
i i i iV = ZGZ +R  (2)

 
where: V୧		is the ith block of V diagonal matrix, whose 
elements are called variance components, which 
compose the vector θ. Alternatively it is written as 
Equation 3: 

 
~ N( )i i iY X β,V  (3)
 
To analyze the experimental data presented 

initially, a GMM with a random effect on the 
intercept and inclination is specified, on the 
assumption that the probability distribution of the 
latency variable response is approximately normal. 

The mixed model initially proposed is given by 
Equation 4: 

 

ijk 0 i0 1 i1 ik j j ik ijky =(β +b )+(β +b )t +α +γ(α t )+ε  (4)

 
where: y୧୨୩ is the latency to the ith animal, i = 1, ..., 85, of 
the jth, j = 1, 2, 3, 4, 5, 6, 7 treatment observed in 
the kth MT, k = 1, 2, 3, 4, 5; β଴ is the parameter 
associated with the intercept (general average); α୨ is 
the effect of the jth treatment; t୧୩ = 1, 2, 3, 4, 5 is the 
kth memory test measured as a continuous 
variable;	ߛ is the interaction parameter for the jth 
treatment with the kth day of MT; b୧଴ and b୧ଵ are 
the random effects in the intercept and individual 
inclination; ϵ୧୨୩ is the random error. In the above 
model, it is assumed that G is a second-order matrix 
where the main diagonal is the variances associated 
with random effects (ߪ௕బ೔ଶ  and ߪ௕భ೔ଶ ) and the 
secondary diagonal is the covariance (ߪ௕బ೔,௕೔భ), ܑ܀ is a 
fifth-order, symmetric, positive-definite matrix. 

Covariance structures 

Several covariance structures are found in the 
literature, where the G and R୧ matrices can be 
assumed. Accordingly, the Variance Components 
(VC), Compound Symmetry (CS), First-Order 
Autoregressive [AR (1)], and Unstructured (UN) 
matrices are most often used. In the VC structure, it 
is assumed that the variance is constant at ݊௜ separate 
occasions. The CS structure assumes that variances 
and covariances are homogeneous. For the AR (1) 
structure, the variances are homogeneous and the 
covariances decrease exponentially as the interval of 
time increases. For the UN structure, all variances 
and covariances are uneven. Other covariance 
structures are presented by Fitzmaurice et al. (2004) 
among others. 
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Parameters estimation 

Generally, the methods used to estimate the 
parameters of the mixed models are based on the 
theory of Maximum Likelihood, i.e., the methods of 
Maximum Likelihood (ML) and Restricted 
Maximum Likelihood (REML). The ML method 
tends to be biased for the components variance 
estimates. A way to solve this problem is to use the 
REML method, which corrects the bias of these 
estimates, as it takes into account the loss of the 
degrees of freedom of the fixed effect parameters 
estimation (Perri & Iemma, 1999). 

Selection models 

The most common ways of model selection rely 
on the Likelihood Ratio Test (LRT), the Akaike 
Information Criterion (AIC) and Bayesian Schwarz 
Criterion (BIC), which will be used in this study 
because they are consolidated theoretically and 
computationally. To compare models with different 
nested covariance structures, the Restricted 
Likelihood Ratio Test (RLRT) is used, as well as the 
BIC Criterion, since it penalizes models with a 
larger number of parameters. In this case, the RLRT 
statistics follow a ߯ௗ௙ଶ  distribution asymptotically, 
where the degrees of freedom (df) are equal to the 
difference between the number of parameters of the 
covariance structures. When it is desired to test the 
inclusion of random effects in the model, the 
asymptotic distribution of RLRT will be a mixture 
of the ߯ଶ distributions with q and q + 1 df, each one 
weighting 0.5 with q and q + 1 representing the 
number of random effects of each model (Self & 
Liang, 1987; Verbeke & Molenberghs, 2000). 

The test F-Snedecor and contrasts was used to 
check which fixed effects were significant and 
comparisons between treatments, respectively 
(Littel, Stroup, Wolfinger, & Schabenberger, 2006). 
All hypotheses were tested with a significance level 
of 5%. 

Diagnostic analysis 

Through diagnostic analysis, it is possible to 
verify the suitability of the adjusted model. This is 
an important step, as it helps to verify the adequacy 
of assumptions and allows the detection of extreme 
observations that may affect results. It is possible to 
divide this stage in residual and influence analysis.  

By residual analysis, it is verified if the adjusted 
model is adequate, that is, it checks if the 
independence assumptions, homoscedasticity and 
normality are satisfied. According to Nobre and 
Singer (2007), for mixed models, the most common 
residuals are marginal, conditional and from random 
effects.  

With marginal residuals it is possible to detect to 
which units the matrix adopted variance and 
covariance within-subject is adequate. In this case, a 
graph of the observed units versus a standardized 
measure of Lesaffre - Verbeke is built (Lesaffre & 
Verbeke, 1998; Nobre & Singer, 2007). Units 
outside the established limits imply that the 
covariance structure was inadequate.  

To verify the homoscedasticity assumption, a 
graph of the predicted values versus standardized 
conditional residuals (SCR) must be used where a 
random behavior around zero is expected. By a QQ 
plot graph verifies the normality assumption for 
minimal residual confounding, which minimizes 
SCR confounding in verification of the assumption 
of normality (Nobre & Singer, 2007). The presence 
of outlier units is checked through the random 
effects residuals. According to Nobre and Singer 
(2007), a graph of observed units versus Standardized 
Mahalanobis Distance should be used. Measurements 
falling outside the established limits are considered 
outliers. 

Influential points are interpreted as those that, 
once present, can change important aspects of the 
adjustment of the models. The basis of influence 
analysis is associated with the diagnosis of a 
particular observation (or subset of observations) for 
quantifying the effect of these data set observation 
omissions on the analysis results of the entire data 
set. Among the most common ways to evaluate the 
influence of observations that affect the model 
parameters estimates disproportionately, it is 
possible to highlight the omission/removal of 
observations/measurements. Omitting observations 
with these of data set characteristics, the positive and 
negative effects caused by their absence are 
evaluated. This technique was first carried out by 
Cook (1977) and explored by several authors since 
then. 

According to Nobre and Singer (2007), for 
mixed models, Cook's distance is given by  
Equation 5: 

 

(5)

 
where: 
I is the set of observations omitted from the data set, Y෡ and Y෡୍ indicate that the estimates of the model 
were obtained from the complete data set, and from 
the reduced data set without the observations 
indexed by I, respectively; Vିଵ is the inverse of the 
variance and covariance matrix and c is the scale 
parameter. Clearly I can be composed of a set of 
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influential observations for each experimental unit, 
as well as all observations for each identified 
sampling unit. To identify influential observations, a 
graph of observed units versus Cook’s distance 
should be used. Points identified outside of the 
established limits are influential candidates. 

By omitting one observation or set of 
observations of data set, it is possible to verify the 
accuracy of the parameter estimates of β and θ using 
the covariance ratio (CovRatio). In this case, the 
determinants of the covariance matrices of the 
reduced data set are compared with the covariance 
matrices of the full data set. The expression to 
calculate this measure for β and θ is given by 
Equation 6: 

 



det[Var( )]CovRatio( )=
det[Var( )]

Iββ
β

 and 




det[Var( )]CovRatio( )= ,
det[Var( )]

Iθθ
θ

 
(6)

 
where: 

( ) -1Var =( )' -1β XV X . For the components of variance, 

the variance matrix used here is the inverse matrix of 
second derivatives, known as the Hessian matrix. A 
ratio higher than one indicates greater precision in 
estimates with complete data, while a CovRatio less 
than one implies greater precision considering the 
reduced data. To investigate the influence, a graph 
of experimental units versus their respective CovRatio 
is visually built.  

More details about diagnostic analysis for mixed 
models are presented by Nobre and Singer (2007), 
Nobre and Singer (2011).  

Results were generated using the software R  
(R Core Team, 2015) with use of the nlme package 
(Pinheiro, Bates, Debroy, & Sarkar, 2014) and SAS 
version 9.4 (Statistical Analysis System [SAS], 2015) 
with use of the mixed procedure. 

Results and discussion 

Figure 1 shows the average latency of the groups 
subjected to sham-operation (Sham), ischemia + 
FO (FO), or ischemia + vehicle (Veh), when the 
FO and vehicle administration started at 4 (left, 
FO4), 8 (middle, FO8), or 12 hours (right, FO12) 
after ischemia. It is observed that as the MT are 
applied, the animals of the FO group, regardless of 
the time window of treatment, take less time to find 
the actual hiding place as compared with the Veh  
(4, 8 and 12 hours) groups. This memory-protective 
effect of FO was apparently robust in the 4 hours 
TW group, given that latency was reduced to the 

level of the sham group throughout the various test 
days. When the treatment started at 8 or 12 hours 
post-ischemia, the latency was also reduced, but not 
so robustly as in the 4-h TW group, suggesting that 
the antiamnesic effect of FO was more effective the 
earlier the treatment started, which suggests the 
occurrence of a time effect (days of test) for the FO 
group. 

 

 
Figure 1. Average profiles for latency variable response in 
treatment started 4, 8 and 12 hours post-ischemia regarding 
different treatments.  

Considering descriptive analysis of the data, 
average and standard deviation respectively, the 
latency of FOସ group (90.92 – 72.44 s; 72.44 –  
33.90 s, 61.11 – 26.29 s; 74.32 – 28.80 s; 73.73 – 
31.77 s) was inferior to Vehସ group (148.36 –  
50.40 s; 151.70 – 49.95 s; 146.89 – 53.55 s; 146.67 – 
54.03 s; 131.23 – 48.26 s), independent of the 
memory testing day. This suggests that FO-treated 
animals took less time to learn the shelter location. 
The FO଼ and FOଵଶ groups exhibited similar, but less 
intense performance.  

Taking into account the general model (4), 
model 1, two other models were evaluated: model 2, 
which only has an effect on the random intercept, 
and model 3 with a random effect only in the 
inclination, to verify the need to keep these random 
effects in the model. Through the RLRT it is 
concluded that there is sampling evidence to reject 
the null hypothesis in both cases (p < 0.05), 
meaning that both the random effect in the intercept 
and the individual inclination should be maintained. 
A model without interaction between treatments 
and time,	Mସ,	was compared with the model Mଵ. 
The results of the comparisons (AIC୑భ= 4289.85 
and AIC୑ర	= 4287.25) indicate it should maintain 
interaction in the model. When observing both 
settings, the more coherent biological results were 
obtained with the model without the interaction, 
and thus, it was adopted. 
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To select the R୧	covariance structure, given the 
mixed model with the restrictions already obtained, 
models were adjusted with covariance structures VC 
(Mସ.ଵ), CS (Mସ.ଶ), AR (1) (Mସ.ଷ) and UN (Mସ.ସ)	to 
evaluate which would capture and appropriately 
accommodate the variability inherent to the data. 
Considering the proposed models’ sets of 
adjustments with different structures evaluated, 
models with CS (BIC୑ర.మ= 4300.42) and UN 
structures (BIC୑ర.ర= 4303.00) did not accommodate 
adequate variability, because the parameter estimates 
showed elevated se. After evaluating the information 
criteria, the value of BIC indicated favorability in 
choosing the AR (1) structure (BIC୑ర.భ= 4290.90), 
although the value of BIC for the VC structure was 
very close to the prior one (BIC୑ర.య= 4291.06). The 
RLRT was used to decide which of these two 
structures should be adopted. There was sample 
evidence to reject the null hypothesis, i.e., that the 
AR (1) structure for errors (χଵଶ = 6.19, p < 0.05) 
should be adopted. Thus, considering the 
restrictions obtained, the model was adjusted. 

The fixed effects test revealed a difference 
between treatments (F଺,଻଼ 	= 	10.84, p < 0.05), as well 
as between the performance of the rats over the 
course of the various memory tests (ܨଵ,ଷଷଽ= 8.57,  
p < 0.05). Table 1 presents estimates of REML, 
standard error (se), p-value and confidence intervals 
(CI) of 95% for the fixed effects model and variance 
components, considering the Sham group as a 
reference. 

Table 1. Estimates, se, p-value and CI of 95% for the model 
parameters.  

Effect Estimates  
(se) p-value 

CI (95%) 
 Estimates 

CI (95%) 
LB UB LB UB 

Intercept 80.84 (9.67) < 0.05 61.81 99.87 ௕బ೔ଶߪ  1165.20 1098.26 1232 FOସ 7.12 (12.13) > 0.05 17.04 31.28 ௕బ೔ଶߪ  42.85 29.83 55.46FO଼ 20.47 (12.79) > 0.05 -4.99 45.95 ௕బ೔,௕భ೔ -124.82 -209.72ߪ -39.74FOଵଶ 36.32 (12.79) < 0.05 10.84 61.80 ଶ 1071.63 1007.491135.78Vehସ 75.73 (13.78) < 0.05 48.28 10.3ߪ 0.0199 0.2980 ߩ 0.5334Veh଼ 61.42 (13.78) < 0.05 33.97 88.87     Vehଵଶ 81.39 (14.78) < 0.05 51.96 110.83     
Time -4.11 (1.40) < 0.05 -6.88 -1.35     
Where ²ߪ and ߩ are parameters of the matrix R = AR (1). 

The adjusted marginal models for the FOସ , FO଼ 
and FOଵଶ treatment are given by Equations 7 at 9: 

(௜ଶ௞ݕ)ܧ  	= 	87.96 − ௜௞ݐ	4.11 ܨ	݂݅ ସܱ;	 (௜ଷ௞ݕ)ܧ(7) = 	101.31 − ௜௞ݐ	4.11 	;଼ܱܨ	݂݅ (௜ଷ௞ݕ)ܧ(8) = 	117.16 − ௜௞ݐ	4.11 ܨ	݂݅ ଵܱଶ	 (9)
 
The results suggest that latency tends to decrease 

over the course of the by 4.11 units in comparison to 
the initial value. Based on parameter estimates, the FOସ treatment regimen has a value lower than its 

standard error. Such occurrence might be associated 
with the presence of influential points. 

The Figure 2a shows that there are observations 
located in the left area of the graph, some of them 
concentrated around zero, while others are more 
dispersed in the right area of the graph. In addition, 
observations were present even outside of the limits, 
some closer, others further away, mainly the 
experimental units 39, 43, 51, 57, 80. However, 
there is no evidence that violates the assumption of 
homoscedasticity for SCR. The Figure 2b shows 
that the normality assumption is met. 

 

 
Figure 2. SRC and simulated envelope with CI of 95% for the 
residual minimal confounding. 

Experimental outlier units were identified, as 
well as those whose covariance structure was not 
adequate (standardized Mahalanobis Distance and 
standardized measure of Lesaffre - Verbeke). 
However, the majority of these units were treated 
with Veh (4, 8 or 12 hours post-ischemia) or with 
FO8 or FO12, indicating a coherent behavior. 

Considering the influence analysis, units that are 
candidates to have this characteristic (Figure 3a) also 
change the accuracy of the fixed effects estimates 
(Figure 3b). In general, units identified in Figure 3b 
also alter the accuracy in the variance components. 

 

 
Figure 3. Cook’s Distance and covariance ratio for	β. 

Based on the observations with identified 
influential characteristics, about 46.87, 10.9, 12.5, 
9.4, and 20.3% occurred during the 1st, 2nd, 3rd, 4th 
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and 5th day of MT, respectively. Since most of the 
observations occurred on the first MT, when the 
rats returned to the ARM task 15 days after 
ischemia, those observations might explain the 
possible influence. 

When these observations were suppressed of data 
set, the main influences were now closer to the 
parameter estimates related to FO4 and FO8 
treatment regimens. Such exclusion implied a 
decrease of approximately 34% of each estimation. 
On the other hand, these were not changed 
significantly when compared to the original 
estimates. For the remaining estimates, the 
reduction was in a smaller proportion. For the 
influence over variance components, the highest 
reduction was in relation to the estimate	ߪ௕బ೔ଶ , 
approximately 34.71%. Based on these results, the 
influence of the detected observations is evident. 
Considering that such observations are influential 
points, the decisions obtained from the complete 
data set were not changed after adjusting the model 
for the suppression of those observations. Since the 
performance of each animal is intrinsic to their 
biological nature, these observations must stay in the 
data set. 

The GMM met the experiment goals, since the 
statistical results corroborate the biological evidence. 
It was observed that the group given vehicle at 4, 8 
and 12 hours post-ischemia showed higher latencies 
when compared to Sham (Table 1), indicating that 
the animals in this group forgot the task performed 
during the pre-ischemia training phase. The 
memory deficit was significantly reduced by 
treatment with FO, an effect that was robust when 
the treatment started at 4 hours post-ischemia  
(FOସ vs Vehସ t = -5.04 p < 0.05). Significant but 
less robust antiamnesic effect also occurred, 
however, in the FO8 and FO12 groups  (FO଼ vs Veh଼ t=-2.88; FOଵଶ vs Vehଵଶ t=-2.97;  
p < 0.05) implying that the memory was only 
partially restored as the treatment initiation delayed 
from 4 to 12 hours post-ischemia. Likewise, animals 
treated with FOସ	and FO଼ were able to remember 
the tasks performed before the intervention  
(FOସ vs Sham t = 0.59; FO଼ vs Sham  
t = 1.60; p > 0.05). Although the performance of 
animals treated with FOଵଶ was better than that of 
that of the Vehଵଶ group, a moderate memory deficit 
persisted throughout the experiment (FOଵଶ vs Sham 
t = 2.84; p < 0.05). 

Conclusion  

The modeling of the data by a Gaussian mixed 
model proved to be appropriate to evaluate the 

latency response variable. The diagnostic analyzes 
for the model were satisfactory, since basic 
assumptions were checked. It was found that the 
UN and AR (1) covariance structures 
accommodated the dependence and the variability of 
the data appropriately, both within and between 
individuals. Using this methodology, we 
demonstrated that FO was effective in alleviating the 
memory deficit when the treatment initiated at 4 or 
8 hours post-ischemia. However, the effectiveness 
was reduced when treatment initiated at 12 hours 
post-ischemia, indicating that the faster the 
treatment begins, the better the antiamnesic 
effectiveness of FO. 
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