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ABSTRACT. It is researched, in this study, the strengthening technique known as Near Surface Mounted 
(NSM), which consists of the insertion of laminates of Carbon Fiber Reinforced Polymer (CFRP) into 
notches in the covering concrete structures. In the strengthening in beams, the tensile zone is found 
damaged for several reasons (cracking and corrosion, for instance), which demands, in the practice of 
engineering, its preliminary retrofitting. It should be considered that the good performance of the material 
used in this retrofitting is fundamental for a higher efficiency of the strengthening. Therefore, it is 
proposed a methodology that consists of the reconstitution of the tensile zone of the beams with a cement-
based composite of high performance (CCAD), which acts as a substrate for the application of CFRP and 
as an element for the transfer of efforts to the part strengthened. The retrofitting of this tensile zone was 
performed only in the shear span, as well as throughout of the zone with a view to evaluating the influence 
of this aspect on the performance of the beams. The CCAD, produced from Portland cement, steel fibers 
and microfibers, was evaluated using the Rilem (2002), showed to be able to delay the cracking. Tests 
performed in the beams with the tensile zone retrofitting by CCAD and strengthening using the technique 
NSM showed the efficiency of the proposed methodology.  
Keywords: retrofitting, tensile zone, cement-based composite, strengthening, CFRP. 

Polímero reforçado com fibras de carbono (PRFC) inserido em diferentes configurações do 
banzo tracionado reconstituído por microconcreto com fibras de aço para o reforço de vigas  

RESUMO. Estuda-se nesta pesquisa a técnica de reforço conhecida como Near Surface Mounted (NSM), 
que consiste na inserção de laminados de Polímeros Reforçados com Fibras de Carbono (PRFC) em 
entalhes no concreto de cobrimento de estruturas. No reforço de vigas, o banzo tracionado encontra-se 
frequentemente danificado por razões diversas (fissuração e corrosão, por exemplo), o que exige na prática 
da engenharia sua prévia recuperação. Considerando-se que o bom desempenho do material dessa 
recuperação é fundamental para maior eficiência do reforço. Nesse sentido, propõe-se aqui uma 
metodologia que consiste na reconstituição da face tracionada de vigas com um compósito cimentício de 
alto desempenho (CCAD) que sirva como substrato para aplicação do PRFC e também como elemento de 
transferência de esforços à peça reforçada. A reconstituição desse substrato tracionado foi executada apenas 
no vão de cisalhamento, bem como ao longo da extensão do banzo com vistas a avaliar a influência desse 
aspecto no desempenho das vigas. Produzido à base de cimento Portland, fibras e microfibras de aço, o 
CCAD, avaliado usando-se conceitos da Rilem (2002), demonstrou ter condições de retardar a fissuração. 
Ensaios realizados em vigas com o banzo reconstituído pelo CCAD e reforço pela técnica NSM 
demonstraram a eficiência da metodologia proposta.  
Palavras-chave: reconstituição, banzo tracionado, compósito cimentício, reforço, PRFC. 

Introduction 

The strengthening of structural elements of 
reinforced concrete with carbon fiber reinforced 
polymer (CFRP) has become ever more widely 
known due to characteristics such as the high tensile 
strength and corrosion resistance, low weight, and 
ease and speed in application. However, in many 
countries such as Brazil, there is still no specific 

standardization on the issue. Professionals use the 
foreign standards, recommendations of catalogs 
from the manufacturers of products of CFRP and 
the results of existing researches. 

The issue becomes even more delicate, because 
in most case studies of engineering, the parts of 
reinforced concrete need to be restored even before 
their strengthenings. 
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Retrofitting the reinforced concrete beams has been 
considered by many researchers. In recent years much 
research has been performed about bending and shear 
retrofitting of reinforced concrete beams with different 
materials such as steel plates, FRP and high 
performance fibre reinforced cement-based composite 
(Ferrari, Hanai, & Souza, 2013; Moatasem, Fayyadh, & 
Abdul, 2014; Hamdy, Afefy, & Hussein, 2015).  

In this regard, according to Ferrari, Hanai, and 
Souza (2013), the preliminary retrofitting of the 
tensile zone of reinforced concrete beams (as 
indicated in Figure 1) with a cement-based 
composite of high performance (CCAD), based on 
steel macro and microfibers, prevents the quick 
spread of critical crack at the edge of the 
strengthening and delays the early detachment of the 
blanket of CFRP. Such procedure is extremely 
interesting for the increase in stiffness of the part, in 
its load capacity and for a greater use of the resistant 
properties of the strengthenings. 

Also according to the author, the presence of a 
material of higher resistance to cracking in the 
tensile zone of the beams, promotes a better 
distribution of the cracks with smaller openings 
along the length of the strengthening.  

Based on such already existing considerations, the 
present study complements the study of the proposal 
initially made by Ferrari et al. (2013) and applied here 
to the strengthening through the Near Surface 
Mounted (NSM) technique, performed at the tensile 
zone and retrofitting the beams by the CCAD. 

Thus, in this study the tensile zone of the beams is 
retrofitting with a CCAD that functions as a transition 
layer between the CFRP and the beam in a way to 
allow a better performance to the strengthened beam.  

In this sense, it is proposed in this study a 
methodology that consists of the retrofitting of the 
tensile zone of beams with a cement-based 
composite of high performance (CCAD) that serves 
as layer for the application of the CFRP and also as 
an element for the transfer efforts to the part that 
will be strengthened. The retrofitting of the tensile 
zone was performed to the part that will be 
strengthened. The retrofitting of this tensile zone 
was performed only in the shear span of the beam, as 

well as throughout the entire extension of the tensile 
zone with a view to evaluating the influence of this 
aspect on the performance of the beams. To evaluate 
the effect of the total or partial retrofitting of the tensile 
zone, a beam was retrofitting in the entire tensile zone 
and other beam had only the shear span.  

Material and methods 

Development of the CCAD 

Composites analyzed  

Six different cement-based composites were 
analyzed. They are formed from the variation in the 
volume of steel microfibers and fibers as indicated in 
the Table 1. The steel fiber specified by the letter ‘A’ 
has 25 mm in length and terminal hooks. On the 
other hand, the steel microfiber specified by the 
letter ‘C’ is not yet produced for commercial 
purposes and has 13 mm in length only, terminal 
hooks and 0.75 mm in diameter, as are the fiber type 
A. For each group, five composites with the same 
characteristics were molded. The composites were 
stored at + 20°C and humidity of 95% until 
preparation for testing. 

In order to produce the cementitious matrix of 
microconcrete the following materials have been 
used: Portland cement of high early strength and 
density of 3.15 g cm-3, medium sand with a finemess 
modulus of 2.60 and an apparent specific gravity of 
2.70 g cm-3, and a maximum aggregate size of  
10 mm and a particle density of 2.78 g cm-3. A 
superplasticizer that acts as a dispersant of the 
cementitious material has also been used and all 
composites had 0.5% of superplasticizer by weight of 
cement. The cement consumption for the 
microconcrete was 443 kg m-3.  

Table 1. Composites analyzed. 

Cement matrix Group Composites Fiber volume Fiber type

Microconcrete (M) 

1 CPM1A1C 1 + 1% A + C 
2 CPM1A1.5C 1 + 1.5% A + C 
3 CPM1A2C 1 + 2% A + C 
4 CPM1.5A1C 1.5 + 1% A + C 
5 CPM1.5A1.5C 1.5 + 1,5% A + C 
6 CPM1.5A2C 1.5 + 2% A + C 

 

 
Figure 1. Beam previously recovered with CCAD and then strengthened with CFRP (Ferrari et al., 2013). 

strengthening with CFRP-sheets
bond the transition layer

CCAD: transition layer control
the beam cracking

transition layer conected to the
concrete and reinforcements
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Three-point bending test configuration 

In order to evaluate the tensile strength of the 
CCAD, the three point bending test of prismatic 
specimens with central notch, as recommended by 
the RILEM TC 162-TDF (Rilem, 2002), has been 
applied. In the Figure 2, it is observed the general 
configuration of the test that was conducted under 
control of the crack mouth opening displacements 
(CMOD – crack mouth opening displacement) 
using, for this purpose, an electrical extensometer of 
the clip gauge type. 

 

 
Figure 2. General setup of the three point test of prismatic 
specimens. 

Results of the three-point bending tests: loads, strengths 
and P-CMOD curves 

In order to determine the flexural toughness of 
the composites, the recommendations prescribed by 
the work group of the RILEM TC 162-TDF 
(Rilem, 2002) have been followed. The Table 2 
shows the average values of loads and strengths 
calculated based on these recommendations. These 
values were extracted directly from the mean curve 
that is representative of the group. 

Table 2. Loads and strengths calculated according to Rilem 
(2002). 

Composites 
Loads (kN) Strengths (MPa) 

FL FM FR,1  FR,4 ffct,L feq,2 feq,3 fR,1 fR,4

CPM1A1C 12.2 13.0 11.4 1.0 3.6 3.5 2.4 3.4 0.3
CPM1A1.5C 12.0 15.2 12.1 2.7 3.5 3.8 2.5 3.6 0.8
CPM1A2C 14.4 18.9 15.9 1.8 4.1 4.9 3.0 4.5 0.5
CPM1.5A1C 12.8 18.5 16.0 2.4 3.7 5.0 2.4 4.6 0.7
CPM1.5A1.5C 15.2 20.7 17.5 1.3 4.3 5.3 3.6 5.0 0.4
CPM1.5A2C 11.0 15.6 13.7 3.2 3.2 4.4 2.9 4.0 1.0
FL: maximum load of offset within the interval of vertical displacement (δ) equal to  
0.05 mm; FM: maximum load of the composite; FR.1 and FR.4: residual loads 
corresponding to the displacements δR1 = 0.46 mm and δR4 = 3.00 mm; ffct.L: stress 
corresponding to FL; feq.2 and feq.3: equivalent flexional tensile strengths; fR.1 and  
fR.4: residual strengths. 

In the Figure 3, the behavior of each composite 
is compared based on the P-CMOD. The curve 
used to each composite is the curve of intermediate 
behavior, which can be representative of the other 
curves of the group. 

All composites presented an initial behavior 
characterized by a linear stretch, where the cement 

matrix is presented in full. In this behavior phase it 
is highlighted the performance for the composites 
CPM1A2C, CPM1.5A1C and CPM1.5A1.5C, 
characterized by higher stiffness, higher values of 
loads applied until the matrix cracking (FM) and 
higher strengths (ffct.L). As special focus, it is 
emphasized the values obtained for the composite 
CPM1.5A1.5C. The behavior of this composite is 
also emphasized in relation to other composites, 
after the matrix cracking, when it is noticed the 
existence of a stretch with horizontal plateau  
(Figure 2) due to the contribution given by the 
fibers and microfibers.  

 

 
Figure 3. P-CMOD curves of the composites.  

Reinforced concrete beams 

Characteristics 

Eight beams were molded with cross section of 
170 x 350 mm, length of 3600 mm and free span of 
3200 mm. The lower longitudinal reinforcement 
was composed of two CA-50 steel bars with  
12.5 mm in diameter and the upper reinforcement 
of two CA-50 bars with 6.3 mm in diameter. The 
stirrups were formed by steel bars with 6.3 mm in 
diameter with a uniform spacing of 120 mm. The 
beams were divided into four groups and their 
characteristics are described in the Table 3. 

Table 3. Characteristics of the reinforced concrete beams. 

GroupsBeams Characteristics 

A VA1 Beams of reference without strengthening. VA2

B VB1 Beams strengthened with two sheets of CFRP VB2

C 

VC1 Beams in which the region of concrete of the tensile zone 
was removed in the entire extension of the span and 

subsequently reconstituted with the composite CPM1.5A1C 
and strengthened with two sheets of CFRP 

VC2

D 

VD1 Beams in which the region of concrete of the tensile zone 
was removed only in the extension of the shear span and 

subsequently reconstituted with the compositeCPM1.5A1C 
and strengthened with two sheets of CFRP 

VD2
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The beams of the group A, without 
strengthening, are references for other beams that 
were strengthened. The beams of this group were 
sized with low rate of longitudinal reinforcement so 
that the ultimate limit state could be characterized 
by the excessive strain of the reinforcement without 
breaking the compressive zone. 

The beams of the group B were strengthened 
through the insertion of two sheets of CFRP into 
notches performed in the covering concrete of the 
reinforcement. On the other hand, beams of the 
group C and D were subjected to a removal process 
of concrete from the tensile zone and the retrofitting 
with the composite CPM1.5A1C. In the Figure 4, it 
is showed the region of the tensile zoned that was 
retrofitting and strengthened on the beams. 

The only difference between the group C and D 
is related to the extension of the region of concrete 
removal of the tensile zone. In the group C, this 
removal was performed in the entire extension of 
the span of the beams, while in the group D, it was 
restricted only to the region of the shear span of the 
beams. 

Another aspect to be mentioned is in relation to 
the depth of 80 mm used for the concrete removal 
of the tensile zone. This measure was used based on 
the recommendations of Ferrari et al. (2013), i.e., for 
allowing partial exposure of the reinforcement of the 
stirrups and, therefore, a greater connection between 
the concrete of the beam and the cement-based 
composite.    

Reconstitution of the tensile zone of the beams and 
application of the strengthening 

Fourteen days after concreting, markings for the 
regions to be removed from the tensile zone of each 
beams were performed. This removal was done 
mechanically with hammer drill and concluded with 
club hammer, flat chisel and pointed chisel. In order to 
remold the tensile zone from the beams of the groups 
C and D, it was applied the composite CPM1.5A1C.  

It is important to mention that despite the best 
responses obtained with the composite 
CPM1.5A1.5C, the CPM1.5A1C was the composite 
applied in the reconstitution of the tensile zone of 
the beams, solely because of the low supply of steel 
microfibers, which is not commercially available and 
was produced on request for the present research. 

The exposed surface of the concrete of the tensile 
zone received a cleaning with air jet, followed by water 
to remove all dust accumulated. It was sought to keep 
the surface of the concrete dry, however, saturated. 

The composite was applied using two wooden 
formworks in plastic-coated plywood positioned on the 
two sides of the beams. The composite was manually 
inserted inside these formworks (Figure 5). In order to 
characterize the cement-based composite, six 
cylindrical specimens (100 x 200 mm) were molded. 

The strengthening was performed on the beams 
eight days after the remolding of the tensile zone. 
The notches were made with the help of a cutting 
disc, seeking to keep them with an opening of  
5 width and 18 mm depth. It was used a two-
component epoxy resin, of brand name Sikadur 30, 
for fixing the sheets in the notches.  

 

 
Figure 4. Beams of the groups C and D. 

strengthening with CFRP laminate
embedded in grooves cut onto surface
of the beam

transition layer control the beam
cracking

transition layer conected to the
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Figure 9. Evolution of the vertical displacement of the beams in the 
middle of the span versus load.  

The highlighted behavior of the beams of the 
group C in relation to the other beams, both in 
terms of stiffness and load capacity, is the result of 
the retrofitting of the tensile zone by the CCAD. 
Such behavior revealed by the Figure 9, indicates 
that the material CCAD contributed to delay the 
beginning of the cracking of the beam and to reduce 
the opening and the spread of the cracking.  

In the Table 5, there are the comparisons of the 
values of loads supported by each beams for the 
maximum vertical displacement allowed (span/250 
= 12.8 mm), considering the limit state of service. 
Highlighted is the load capacity of the beams of the 
group C, achieving an increase of up to 30% in 
relation to the reference beam and of up to 16% in 
relation to the strengthened beam. Thus, it is 
verified that the beams of the group C, both for the 
ultimate limit state and for the limit state of service 
present the best load capacity. 

Table 5. Loads supported by the beams for the limit state of 
service. 

Groups Beams P* (kN) Increase (%) 

A VA1 69.1 - VA2 66.8 
B VB2 76.5 13 

C VC1 88.5 30 
VC2 84.8 25 

D VD1 78.0 15 
VD2 78.0 15 

*P: load corresponding to the vertical displacement of 12.8 mm in the middle of the 
span. 

Strain in the laminate 

In Figure 10, it is showed the strain progress in 
the laminate registered in the middle section of the 
span of each beam. The maximum strains registered 
in the strengthening, ranged between 8.0 (beam 
VD2) and 9.6‰ (beam VC2), reaching, therefore, 
88% of the maximum capacity of strain of the CFRP 
sheets, which is of 10.9‰. 

 
Figure 10. Evolution of the strains of the strengthening in the 
middle of the span versus load.  

Conclusion 

In the present study, it was employed the 
technique of flexural strengthening NSM, by which 
strips of sheets of CFRP were inserted into notches 
performed on the tensile zone of reinforced 
concrete beams. Some of these beams had their 
tensile zone previously removed and reconstituted 
through the application of a cement-based 
composite of high performance. The following 
conclusions were, thus obtained: 

It was possible to develop a cement-based 
composite with the addition of conventional steel 
microfibers and fibers in order to potentiate a 
greater contribution of the cement matrix for the 
composite strength and for the improvement of the 
transfer mechanism of stresses from the matrix to 
the fibers; 

The developed composite presented a behavior 
of pseudo strain-hardening, because, with the 
cracking of the matrix, the transfer of stresses was 
facilitated, firstly, by the steel microfibers that, in 
great amount in the matrix, conditioned the progress 
of the cracks with the increase of the level of 
loading; 

Comparatively to the beam that was only 
strengthened, it was verified that the complete 
reconstitution of the entire tensile zone of the beams 
provided increase of load capacity and increase of 
stiffness due to the reduction in the opening of the 
cracks and consequently to a better use of the sheets 
of strengthening; 

The presence of the material CCAD in the 
tensile zone that was completely reconstituted 
provided a better use of the resistant capacity of the 
flexural strengthening with sheet of CFRP; 

The partial reconstitution of the tensile zone did 
not significantly improve the beam stiffness, and not 
even the load capacity, when compared to the beam 
that was only strengthened. For the history of 

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40

L
oa

d 
(k

N
)

Vertical displacement (mm)

VA1
VA2
VB2
VC1
VC2
VD1
VD2

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

Lo
ad

 (k
N

)

Strain (‰)

VB2

VC1

VC2

VD1

VD2



444 Ferrari et al. 

Acta Scientiarum. Technology Maringá, v. 38, n. 4, p. 437-444, Oct.-Dec., 2016 

loadings in which the beams were subjected, the 
cracking in the span central zone was more 
pronounced than the cracking that occurred in the 
shear span.   
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