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ABSTRACT. This paper has the objective to evaluate the use of different methods to obtain an initial 
solution for the branch and bound algorithm with the objective of minimizing the makespan in a flowshop 
with zero buffer environment. As the problem is known to be NP-Hard, the branch and bound algorithm 
may take long computational time to find the best solution. The use of an initial solution may reduce the 
computational time, by providing an initial upper bound. In this work, the efficiency of the use of an initial 
solution to the Branch and Bound algorithm was evaluated by comparison of the algorithms. The branch 
and bound algorithm used, as well as the lower bound, was proposed by Ronconi (2005). Four heuristic 
methods (MM, PF, wPF, and PW) were tested using a 180 problems data. Results show that the use of an 
initial solution does considerably reduce the computational time. 
Keywords: Branch and Bound, heuristics, flowshop, block, makespan, scheduling. 

Avaliação de heurísticas para um algoritmo branch e bound para minimizar o makespan 
em um flowshop com bloqueio 

RESUMO. Este trabalho tem o objetivo de avaliar o uso de diferentes métodos heurísticos para obtenção 
de uma solução inicial para um algoritmo branch e bound, tendo como objetivo minimizar o makespan em 
um ambiente flowshop com buffer zero. Como o problema é conhecido por ser NP-Hard, o algoritmo 
branch e bound pode necessitar de elevado tempo computacional para encontrar a melhor solução. A 
utilização de uma solução inicial pode reduzir o tempo de processamento, proporcionando um limite 
superior inicial. Neste trabalho, a eficiência da utilização de uma solução inicial para o algoritmo branch e 
bound foi avaliada com a comparação dos algoritmos. O algoritmo branch e bound utilizado, bem como o 
limitante inferior foram propostos por Ronconi (2005). Cinco métodos heurísticos foram avaliados  
(MM, PF, wPF e PW) utilizando um conjunto de problemas teste composto de 180 problemas. Os 
resultados mostraram que a utilização da heurística para obter uma solução inicial para o algoritmo branch 
e bound reduz significativamente o tempo computacional. 
Palavras-chave: Branch e Bound, heurísticas, flowshop, bloqueio, makespan, programação. 

Introduction 

Scheduling is a decision-making process that is 
used on a daily basis in many services and 
manufacturing in industry with the goal of 
optimizing one or more objectives, such as the 
makespan, number of delayed jobs, among others. It 
handles the allocation of resource operations 
(Pinedo, 2008; Nagano & Januário, 2012; Nagano, 
Silva, & Lorena, 2014; Sobreiro, Mariano, & 
Nagano, 2014; Nagano, Miyata, & Araújo, 2015; 
Sagawa & Nagano, 2015a; 2015b). 

Scheduling is the decision process of the 
processing order, that is, which job should be 
processed first and which should be processed next. 
According to Pinedo (2008) a good programming 
can lead to a minimization of costs, waste and 

manpower of a company, allowing much greater 
projection of growth. 

In flowshop environments with zero buffer 
constraint, there are no intermediate queues 
between machines, hence, after a job j is processed 
in machine k and machine k+1 has not finished 
processing job j-1, job j remains in machine k 
blocking it from starting the process of job j+1. 

Branch and Bound algorithms can be used to 
solve scheduling problems in flowshop environment 
with blocking. However, the computational time 
required to solve big sized problems may be too 
long. So, an initial solution may be used to try to 
reduce the number of nodes explored, thereby 
reducing the total computational time. 

The initial solution may be given by heuristics 
methods. When solving permutational flowshop 
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problems, the heuristic methods may consist of 
three phases, they are (Framinan; Gupta, & Leisten, 
2004): 

• Phase I –Index Development: in this phase, 
jobs are arranged according to a certain property 
based on the data of the problem; 

• Phase II – Solution Construction: in this 
phase, a solution is constructed in a recursive 
manner, trying one or more unscheduled jobs to be 
inserted in one or more positions of a partial 
schedule until the schedule is complete; 

• Phase III – Solution improvement: In this 
phase, an initial solution is improved by some 
procedure, usually a descending local search or a 
metaheuristic. This phase has two main 
characteristics: it requires an initial solution; the 
quality of the solution is always equal to or better 
than the initial solution. 

A single heuristic method may consist of one or 
more of these phases. However, a heuristic 
consisting of more than one phase must perform 
them in the given order. 

The use of an initial solution does not necessarily 
reduce the total computational time required by the 
Branch and Bound algorithm for some reasons:  
1. The initial solution may not reduce the number 
of nodes explored. As the method used to provide an 
initial solution also requires some computational 
time, the total computational time required by the 
algorithm to solve the problem is increased; 2. The 
computational time required for the method used to 
provide an initial solution may be longer than, or 
equal to the computational time reduced by 
reducing the number of nodes explored. 

During the past 40 years, the scheduling problem 
with the objective of minimizing the makespan in 
flowshop environment with blocking constraint has 
been studied by many researchers such as 
Companys & Mateo (2005); Ronconi (2005); 
Ronconi & Armentano (2001). This problem, which 
is described as Fm|block|Cmax according to Pinedo 
(2008), consists of scheduling n jobs that must be 
processed by m machines always with the same flow. 

McCormick, Pinedo, Shenker, and Wolf (1989) 
developed an algorithm named Profile Fitting (PF), 
which is an algorithm for environments with finite 
size buffer, blocking occurring when these buffers 
are full. This algorithm takes as the first job in the 
sequence the one with the smallest sum of 
processing times in all machines. The result 
obtained from 5 tests between two variations of PF 
reveals that the two algorithms have good results for 
the developed tests, and qualified as one of the best 
heuristic methods already programmed. 

Ronconi & Armentano (2001) presented a 
Branch and Bound algorithm to minimize the total 
lateness in flowshop environments with blocking 
constraint. They proposed a lower bound for this 
criterion, and lower bounds for the makespan and 
the flow time. Ronconi & Armentano (2001) 
obtained satisfactory results, significantly reducing 
the number of nodes to be computed. 

Ronconi (2004) analyzed the minimization of 
makespan of a problem in flowshop environment 
with blocking. An algorithm called MinMax (MM) 
was compared to the PF heuristic, considered the 
best algorithm proposed in the literature so far. The 
results showed that although the MM heuristic 
achieved good results, it was outperformed by the 
PF heuristic, which showed potential for major 
problems. 

Companys & Mateo (2005) proposed an 
improved Branch and Bound algorithm to solve 
these problems and auxiliary heuristics to get a good 
initial solution in Fm|prmu|Cmax and 
Fm|block|Cmax problems, in which, prmu refers to 
the permutational environment. The auxiliary 
heuristics are built in two steps: in the first step, a 
permutation is obtained, and in the second step, a 
local search procedure is applied. Companys & 
Mateo (2005) concluded that the computational 
time required to solve Fm|block|Cmax problems is 
higher than for Fm|prmu|Cmax problems. 
Companys & Mateo (2005) also presented a 
Lompen algorithm, which runs two algorithms 
simultaneously of Branch and Bound. They solved 
eight problems unsolved by other methods. 

Ronconi (2005) developed an algorithm that 
exploits the occurrence of blocking in order to 
minimize the makespan time. Computational 
experiments proved that the proposed lower bound 
works better than the lower bound from Ronconi & 
Armentano (2001). As an extension of his work, 
Ronconi (2005) proposes the development of a 
dominance rule, some different node selection 
strategies, and the use of different methods to 
provide an initial solution for the Branch and Bound 
algorithm. 

Pan & Wang (2012) adapted the PF algorithm 
(McCormick, Pinedo, Shenker, & Wolf, 1989), 
creating an improved form called PW and the 
algorithm Weighted Profile Fitting (wPF) that 
follows the same rules as the PF method, except that 
there is a weight factor wi. The results showed that 
both wPF and PW achieved better results than MM 
and PF. Also an insertion algorithm was applied, 
resulting in an improvement of 1.5% in CPU 
processing time. 
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Material and methods 

Branch and Bound is a widely used method for 
solving difficult combinatorial optimization 
problems. Typically, the Branch and Bound method 
is characterized by two fundamental procedures 
(Rios-Mercado and Bard, 1999): 

• Branching: problem division into one or 
more smaller sub-problems. 

• Bounding: Process of calculating a bound 
(lower and/or higher) to the evaluation criteria used. 

The branching procedure replaces the initial 
problem with a new smaller set of problems than the 
original. This method is used to find the most 
accurate solution, systematically analyzing the 
subsequences of possible solutions. 

For the scheduling problem, each node of the 
Branch and Bound corresponds to one sub-
problem, which is defined by a subsequence of jobs. 
Each subsequence is called partial sequence (PS) and 
the set of jobs that are not in PS is called non-partial 
sequence (NPS). When a node is branched, one or 
more nodes can be generated by adding one or more 
jobs to the partial sequence associated with the node 
that was branched. The next node to be branched is 
the one with more jobs in the partial sequence. In 
case of ties, the algorithm selects a node with the 
smallest lower bound (Ronconi, 2005). The lower 
bound is calculated for each node. 

The Branch and Bound method can consume a 
high computational time when dealing with larger 
problems. One way to reduce the computational 
time is to implement an initial solution to the 
problem, which can result in a possible gain in terms 
of computational time by decreasing the number of 
explored nodes. 

An initial solution provided by a phase I heuristic 
method was applied together with the Branch and 
Bound algorithm, as an initial upper bound for the 
problem, this may result in a reduced computational 
time. The initial upper bound may reduce the need 
to explore nodes, therefore reducing the number of 
nodes to be branched. However, the computational 
time required to generate an initial solution may be 
longer than the computational time required to 
solve the nodes that were not explored, thus 
resulting in an even longer computational time. 

In this paper, we evaluated the efficiency of an 
initial solution to reduce computational time and 
which phase I heuristic method provides the best 
improvement to the computational time. The 
Branch and Bound algorithm as well as the lower 
bound were proposed by Ronconi (2005). 

Lower bound 

The lower bound for the makespan is obtained 
by calculating the lower bound for the completion 
time of the last job in NPS on machine m. The 
lower bound used for the Branch and Bound 
algorithm was proposed by Ronconi (2005). The 
completion time of the last job on machine m is 
longer than or equal to LB2, according equations 1 
and 2: 
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where: 
m is the number of machines; 

[ ] kPSD ,
 is the departure time of the last job in PS in 

machine k; 

q
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g
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among the jobs in NPS; 
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Initial Solution 

The best phase I heuristics methods for 
Fm|block|Cmax were used to provide an initial 
solution for the Branch and Bound algorithm. 
Those are MinMax (MM), Profile Fitting (PF), 
Weighted Profile Fitting (wPF) and PW. 

MinMax (MM) algorithm, proposed by Ronconi 
(2004), initially sets the job with the shortest 
processing time on the first machine as the first job 
in the sequence, and then sets the job that has the 
shortest processing time on the last machine as the 
last job in the sequence. For the remaining jobs, the 
next job in the sequence (c) after the already 
scheduled job (i) is the one that gets the smallest 
result in equation 3. Where α is a constant used to 
weight the two terms of the expression. 
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The Profile Fitting (PF) algorithm, created by 

McCormick, Pinedo, Shenker, and Wolf (1989), 
works in two phases: 1. Sets the first job in the 
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sequence as the one with the smallest sum of 
processing times on all machines; 2. Then, the next 
position in the sequence (c+1) belongs to the job 
with the smallest sum of idle and blocking times. 
Equation 4 is used to calculate the possible sum of 
idle and blocking times provided by the insertion of 
each job that has not yet been sequenced in position 
(c+1) of the sequence. The job (j) that obtains the 
smallest value for ߜ௝,௖ is determined as the next job 
(c+1) in the sequence equation 4. 
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Idle and blocking times caused by earlier jobs 

and by earlier machines may have larger effects on 
the makespan value than those caused by later jobs 
and machines. Therefore, the Weighted Profile 
Fitting (wPF) algorithm, proposed by Pan & Wang 
(2012), applies a weight factor (wk) to δj,c, which 
differentiates the effects of idle and blocking times 
on machines in different stages and jobs in different 
positions. As in the PF algorithm, the first job of the 
sequence is the job with the smallest sum of 
processing times on all machines. Then, the next job 
(c+1) in the sequence is the job j with the smallest 
value of δj,c calculated by equation 5. 

 

[ ] [ ]( )m

, ,1 , ,
1

j c k j kc k c k
k
w D D Pδ +

=
= − −  (5)

 
In which, wk is defined by equation 6: 
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where: 
n is the number of jobs; 
c is the position of the last scheduled job. 

The job j selected may also affect the idle and 
blocking times of the remaining jobs in |NPS|. 
Therefore, Pan & Wang (2012) proposed the PW 
algorithm, which seeks to minimize the idle and 
blocking times and the effects on the starting and 
completion times of later jobs. Equation 5 is used to 
estimate the idle and blocking times caused by the 
indexing of job j in position (c+1) of the sequence. 
Then, equation 7 is used to estimate the idle and 
blocking times of the remaining jobs in |NPS|: 
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where: 

kvP ,  is the average processing time of all the 

remaining jobs in |NPS|, and is calculated by 
equation 8; 

[ ] kcD ,2+  is the departure time of kvP , . 

 

( ), , 1v k q k
q NPS
q j

P P n c
∈
≠

= − −  
(8)

 
Combining the idle and blocking times caused 

by the insertion of jobs j in position (c+1) and the 
estimated idle and blocking times caused by the 
insertion of the artificial job v in position (c+2), it is 
obtained fj,c, calculated by equation 9.  

 
( ), , ,2j c j c j cf n c xδ= − − +  (9)

 
where: 
(n – c – 2) is used to balance the idle and blocking 
times caused by job j and the effects of job j on later 
jobs. The first job in the sequence is the job j with 
the smallest value for fj,0. Then, for the remaining 
positions of the sequence, the job j that obtains the 
smallest value for fj,c is scheduled as the next job in 
the sequence (c+1). 

Results and discussion 

This paper proposed programming the Branch 
and Bound algorithm using the lower bound 
proposed by Ronconi (2005). Then, the best Phase I 
heuristic methods for Fm|block|Cmax problems 
were used in order to obtain an initial solution to the 
Branch and Bound algorithm. The heuristic 
methods used were: MM (Ronconi, 2004);  
PF (Mccormick, Pinedo, Shenker, and Wolf, 1989); 
PW and wPF (Pan & Wang, 2012). For the MM 
heuristic, the value of α is 0.6, which, according to 
Ronconi (2004), is the value in which the heuristic 
presents its best performance. 

The tests were executed in an Intel® CoreTM  
i5-4460 processor with 3.2 GHz, 8 GB RAM and 
Windows 7 operating system. The Branch and 
Bound algorithm was applied to 180 problems 
proposed by Ronconi (2005), divided into 9 groups, 
all computed by MatLab© (R2014b) software. The 
groups vary in number of jobs and machines, 
represented by matrices n x m: 10 x 2; 10 x 5;  
10 x 10; 12 x 2; 12 x 5; 12 x 10; 14 x 2; 14 x 5; and  
14 x 10. In this paper, the full database provided by 
Ronconi (2005) was not used due to the time 
required. However, as an extension of this, it is 
suggested using the complete database with the 540 
suggested problems. 
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In order to evaluate the efficiency of using an 
initial solution to reduce computational time, it was 
compared the algorithms to find out which had the 
lowest computational time and the lowest number 
of nodes explored. To determine the best algorithm, 
it was used as a parameter the relative deviation, 
equation 10, which measures the relative distance of 
the solution found by this algorithm (DM) to the 
best result obtained (DM*) by all the algorithms. 

 
*

* *100DM DMDR
DM

−=  (10)

 
In this paper, the mean relative deviations were 

used to compare computational times and number 
of nodes explored to find the best algorithm for each 
class. First, it was compared the mean relative 
deviation of the computational time (CPU time) of 
each class of problems, as shown in Table 1. Table 2 
lists the mean relative deviation of the number of 
nodes explored for each class of problems. 

Table 1. Mean relative deviation of CPU times of each problem 
class. 

 
Mean relative deviation of CPU time (%) 

wPF PF PW MM Classic 
10x2 52340.36 50471.35 50582.37 4.53 50739.78 
10x5 2.91 1.91 1.16 1.63 2.18 
10x10 4.43 3.29 0.47 2.80 3.68 
12x2 6.92 3.78 3.10 1.49 2.52 
12x5 1.15 0.37 0.43 0.19 0.26 
12x10 1.80 2.34 1.32 1.80 2.15 
14x2 3.78 2.43 3.27 1.98 2.74 
14x5 1.26 0.13 0.25 0.47 0.40 
14x10 7.72 9.09 0.16 9.32 9.35 

 

Table 2. Mean relative deviation of number of nodes explored of 
each problem class. 

 
Mean relative deviation of Number of nodes (%) 

wPF PF PW MM Classic 
10x2 58607.5 58607.5 58607.5 0.00 58607.5 
10x5 0.87 1.04 0.09 0.97 1.14 
10x10 2.50 2.81 0.38 2.41 2.98 
12x2 0.00 0.00 0.00 0.00 0.00 
12x5 0.04 0.06 0.01 0.07 0.07 
12x10 0.90 1.83 1.23 1.51 1.86 
14x2 0.001 0.001 0 0.001 0.001 
14x5 0.00 0.02 0.01 0.02 0.02 
14x10 6.58 8.36 0.09 8.48 8.50 

 

Table 3 presents the mean relative deviation of 
the computational time (CPU time) and number of 
nodes explored of all nine classes of problems to 
determine which, among the compared methods, 
had the shortest computational time and the 
minimum number of nodes explored. 

Analyzing Table 1, it can be noted that in the 
first problem class (with 10 jobs and 2 machines), 
the MM method associated with Branch and Bound 

greatly outperformed all other methods. The results 
obtained in this class may distort the final result. 
Therefore, another comparison was made without 
considering the first class of problems. The new 
comparison is presented in Table 4. 

Table 3. Mean relative deviation of CPU times and number of 
nodes explored for all problem classes. 

Algorithm CPU time (%) Number of nodes (%) 
wPF 5818.93 6513.15 
PF 5610.52 6513.51 
PW 5621.39 6512.15 
MM 2.69 1.50 
Classic 5640.34 6513.56 
 

Table 4. Mean relative deviation of CPU times and number of 
nodes explored for all problem classes without considering the 
first class of problems. 

Algorithm CPU time (%) Number of nodes (%) 
wPF 3.75 1.36 
PF 2.92 1.76 
PW 1.27 0.23 
MM 2.46 1.68 
Classic 2.91 1.82 

 

With data in Table 4, it is possible to observe that 
PW was the heuristics that reduced most the total 
computational time and the number of nodes 
explored by the Branch and Bound algorithm. 

Analyzing Table 1, it can be verified that the PW 
method associated with Branch and Bound tends to 
provide better results as the number of machines 
increases. With fewer machines, the MM method 
associated with Branch and Bound seems to provide 
better results than PW. This can be explained by the 
quality of the results obtained by the PW algorithm, 
which is better than that provided by MM algorithm 
(Pan & Wang, 2012), however requiring a longer 
computational time. In some cases, even when the 
number of nodes explored in smaller problems for 
the MM method associated with Branch and Bound 
algorithm is greater than or equal to the number of 
nodes explored for the PW method associated with 
Branch and Bound algorithm, the computational 
time of the MM method associated with Branch and 
Bound algorithm was shorter. This is due to the 
computational time required to calculate the lower 
bound for each node, which is shorter for fewer 
machines. In this way, for problems with fewer 
machines, the computational time required to solve 
the heuristics (which provides the initial solution) 
seems to affect more the total computational time 
than the quality of the initial solution itself. 

The experiments showed that the use of the 
Branch and Bound algorithm achieves a good 
performance for problems considered NP-Hard. In 
terms of computational time and number of nodes 
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explored, the use of an initial solution obtained 
better results than the classic application of Branch 
and Bound in eight out of the nine classes of the 
analyzed problems. 

Conclusion 

The best heuristic methods in the literature were 
applied to get an initial solution to the Branch and 
Bound algorithm. Computational tests suggest that 
the use of an initial solution improves the results in 
terms of computational time to execute the 
algorithm. It is recommended to run the tests in a 
more diversified database. Other heuristics can be 
used with the Branch and Bound algorithm to 
compare the results. Some other lower bounds for 
the makespan can also be tested for comparison. 
Also, a dominance rule may be applied to reduce the 
number of nodes that need to be explored. 
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