
Acta Scientiarum
http://www.uem.br/acta
ISSN printed: 1806-2563
ISSN on-line: 1807-8664
Doi: 10.4025/actascitechnol.v38i3.28438

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

Evaluation of heuristics for a branch and bound algorithm to
minimize the makespan in a flowshop with blocking

Felipe Borreiro Sanches1, Mauricio Iwama Takano1 and Marcelo Seido Nagano2*

1Universidade Tecnológica Federal do Paraná, Cornélio Procópio, Paraná, Brazil. 2Universidade de São Paulo, Avenida do Trabalhador
São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil. *Author for correspondence. E-mail: drnagano@usp.br

ABSTRACT. This paper has the objective to evaluate the use of different methods to obtain an initial
solution for the branch and bound algorithm with the objective of minimizing the makespan in a flowshop
with zero buffer environment. As the problem is known to be NP-Hard, the branch and bound algorithm
may take long computational time to find the best solution. The use of an initial solution may reduce the
computational time, by providing an initial upper bound. In this work, the efficiency of the use of an initial
solution to the Branch and Bound algorithm was evaluated by comparison of the algorithms. The branch
and bound algorithm used, as well as the lower bound, was proposed by Ronconi (2005). Four heuristic
methods (MM, PF, wPF, and PW) were tested using a 180 problems data. Results show that the use of an
initial solution does considerably reduce the computational time.
Keywords: Branch and Bound, heuristics, flowshop, block, makespan, scheduling.

Avaliação de heurísticas para um algoritmo branch e bound para minimizar o makespan
em um flowshop com bloqueio

RESUMO. Este trabalho tem o objetivo de avaliar o uso de diferentes métodos heurísticos para obtenção
de uma solução inicial para um algoritmo branch e bound, tendo como objetivo minimizar o makespan em
um ambiente flowshop com buffer zero. Como o problema é conhecido por ser NP-Hard, o algoritmo
branch e bound pode necessitar de elevado tempo computacional para encontrar a melhor solução. A
utilização de uma solução inicial pode reduzir o tempo de processamento, proporcionando um limite
superior inicial. Neste trabalho, a eficiência da utilização de uma solução inicial para o algoritmo branch e
bound foi avaliada com a comparação dos algoritmos. O algoritmo branch e bound utilizado, bem como o
limitante inferior foram propostos por Ronconi (2005). Cinco métodos heurísticos foram avaliados
(MM, PF, wPF e PW) utilizando um conjunto de problemas teste composto de 180 problemas. Os
resultados mostraram que a utilização da heurística para obter uma solução inicial para o algoritmo branch
e bound reduz significativamente o tempo computacional.
Palavras-chave: Branch e Bound, heurísticas, flowshop, bloqueio, makespan, programação.

Introduction

Scheduling is a decision-making process that is
used on a daily basis in many services and
manufacturing in industry with the goal of
optimizing one or more objectives, such as the
makespan, number of delayed jobs, among others. It
handles the allocation of resource operations
(Pinedo, 2008; Nagano & Januário, 2012; Nagano,
Silva, & Lorena, 2014; Sobreiro, Mariano, &
Nagano, 2014; Nagano, Miyata, & Araújo, 2015;
Sagawa & Nagano, 2015a; 2015b).

Scheduling is the decision process of the
processing order, that is, which job should be
processed first and which should be processed next.
According to Pinedo (2008) a good programming
can lead to a minimization of costs, waste and

manpower of a company, allowing much greater
projection of growth.

In flowshop environments with zero buffer
constraint, there are no intermediate queues
between machines, hence, after a job j is processed
in machine k and machine k+1 has not finished
processing job j-1, job j remains in machine k
blocking it from starting the process of job j+1.

Branch and Bound algorithms can be used to
solve scheduling problems in flowshop environment
with blocking. However, the computational time
required to solve big sized problems may be too
long. So, an initial solution may be used to try to
reduce the number of nodes explored, thereby
reducing the total computational time.

The initial solution may be given by heuristics
methods. When solving permutational flowshop

322 Sanches et al.

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

problems, the heuristic methods may consist of
three phases, they are (Framinan; Gupta, & Leisten,
2004):

• Phase I –Index Development: in this phase,
jobs are arranged according to a certain property
based on the data of the problem;

• Phase II – Solution Construction: in this
phase, a solution is constructed in a recursive
manner, trying one or more unscheduled jobs to be
inserted in one or more positions of a partial
schedule until the schedule is complete;

• Phase III – Solution improvement: In this
phase, an initial solution is improved by some
procedure, usually a descending local search or a
metaheuristic. This phase has two main
characteristics: it requires an initial solution; the
quality of the solution is always equal to or better
than the initial solution.

A single heuristic method may consist of one or
more of these phases. However, a heuristic
consisting of more than one phase must perform
them in the given order.

The use of an initial solution does not necessarily
reduce the total computational time required by the
Branch and Bound algorithm for some reasons:
1. The initial solution may not reduce the number
of nodes explored. As the method used to provide an
initial solution also requires some computational
time, the total computational time required by the
algorithm to solve the problem is increased; 2. The
computational time required for the method used to
provide an initial solution may be longer than, or
equal to the computational time reduced by
reducing the number of nodes explored.

During the past 40 years, the scheduling problem
with the objective of minimizing the makespan in
flowshop environment with blocking constraint has
been studied by many researchers such as
Companys & Mateo (2005); Ronconi (2005);
Ronconi & Armentano (2001). This problem, which
is described as Fm|block|Cmax according to Pinedo
(2008), consists of scheduling n jobs that must be
processed by m machines always with the same flow.

McCormick, Pinedo, Shenker, and Wolf (1989)
developed an algorithm named Profile Fitting (PF),
which is an algorithm for environments with finite
size buffer, blocking occurring when these buffers
are full. This algorithm takes as the first job in the
sequence the one with the smallest sum of
processing times in all machines. The result
obtained from 5 tests between two variations of PF
reveals that the two algorithms have good results for
the developed tests, and qualified as one of the best
heuristic methods already programmed.

Ronconi & Armentano (2001) presented a
Branch and Bound algorithm to minimize the total
lateness in flowshop environments with blocking
constraint. They proposed a lower bound for this
criterion, and lower bounds for the makespan and
the flow time. Ronconi & Armentano (2001)
obtained satisfactory results, significantly reducing
the number of nodes to be computed.

Ronconi (2004) analyzed the minimization of
makespan of a problem in flowshop environment
with blocking. An algorithm called MinMax (MM)
was compared to the PF heuristic, considered the
best algorithm proposed in the literature so far. The
results showed that although the MM heuristic
achieved good results, it was outperformed by the
PF heuristic, which showed potential for major
problems.

Companys & Mateo (2005) proposed an
improved Branch and Bound algorithm to solve
these problems and auxiliary heuristics to get a good
initial solution in Fm|prmu|Cmax and
Fm|block|Cmax problems, in which, prmu refers to
the permutational environment. The auxiliary
heuristics are built in two steps: in the first step, a
permutation is obtained, and in the second step, a
local search procedure is applied. Companys &
Mateo (2005) concluded that the computational
time required to solve Fm|block|Cmax problems is
higher than for Fm|prmu|Cmax problems.
Companys & Mateo (2005) also presented a
Lompen algorithm, which runs two algorithms
simultaneously of Branch and Bound. They solved
eight problems unsolved by other methods.

Ronconi (2005) developed an algorithm that
exploits the occurrence of blocking in order to
minimize the makespan time. Computational
experiments proved that the proposed lower bound
works better than the lower bound from Ronconi &
Armentano (2001). As an extension of his work,
Ronconi (2005) proposes the development of a
dominance rule, some different node selection
strategies, and the use of different methods to
provide an initial solution for the Branch and Bound
algorithm.

Pan & Wang (2012) adapted the PF algorithm
(McCormick, Pinedo, Shenker, & Wolf, 1989),
creating an improved form called PW and the
algorithm Weighted Profile Fitting (wPF) that
follows the same rules as the PF method, except that
there is a weight factor wi. The results showed that
both wPF and PW achieved better results than MM
and PF. Also an insertion algorithm was applied,
resulting in an improvement of 1.5% in CPU
processing time.

Different heuristics to obtain an initial solution to a branch and bound algorithm 323

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

Material and methods

Branch and Bound is a widely used method for
solving difficult combinatorial optimization
problems. Typically, the Branch and Bound method
is characterized by two fundamental procedures
(Rios-Mercado and Bard, 1999):

• Branching: problem division into one or
more smaller sub-problems.

• Bounding: Process of calculating a bound
(lower and/or higher) to the evaluation criteria used.

The branching procedure replaces the initial
problem with a new smaller set of problems than the
original. This method is used to find the most
accurate solution, systematically analyzing the
subsequences of possible solutions.

For the scheduling problem, each node of the
Branch and Bound corresponds to one sub-
problem, which is defined by a subsequence of jobs.
Each subsequence is called partial sequence (PS) and
the set of jobs that are not in PS is called non-partial
sequence (NPS). When a node is branched, one or
more nodes can be generated by adding one or more
jobs to the partial sequence associated with the node
that was branched. The next node to be branched is
the one with more jobs in the partial sequence. In
case of ties, the algorithm selects a node with the
smallest lower bound (Ronconi, 2005). The lower
bound is calculated for each node.

The Branch and Bound method can consume a
high computational time when dealing with larger
problems. One way to reduce the computational
time is to implement an initial solution to the
problem, which can result in a possible gain in terms
of computational time by decreasing the number of
explored nodes.

An initial solution provided by a phase I heuristic
method was applied together with the Branch and
Bound algorithm, as an initial upper bound for the
problem, this may result in a reduced computational
time. The initial upper bound may reduce the need
to explore nodes, therefore reducing the number of
nodes to be branched. However, the computational
time required to generate an initial solution may be
longer than the computational time required to
solve the nodes that were not explored, thus
resulting in an even longer computational time.

In this paper, we evaluated the efficiency of an
initial solution to reduce computational time and
which phase I heuristic method provides the best
improvement to the computational time. The
Branch and Bound algorithm as well as the lower
bound were proposed by Ronconi (2005).

Lower bound

The lower bound for the makespan is obtained
by calculating the lower bound for the completion
time of the last job in NPS on machine m. The
lower bound used for the Branch and Bound
algorithm was proposed by Ronconi (2005). The
completion time of the last job on machine m is
longer than or equal to LB2, according equations 1
and 2:

[]

|NPS|
g
k 1 minPS ,k

1 1
2() max (a ,)

q

m
g
k

g q k
L k D b p+

= = +
= + +  (1)

1
2 max{ 2()}

k m
LB L k

≤ ≤
= (2)

where:
m is the number of machines;

[] kPSD ,
 is the departure time of the last job in PS in

machine k;

q
pmin is the shortest processing time on machine k

among all jobs in NPS;
g
ka is the g-th shortest processing time on machine k

among the jobs in NPS;
g
kb 1+ is the g-th lowest value between

1|,| +kPSD -
k|,|PSD

and the processing times of jobs in NPS on machine
k among the jobs in NPS on machine k+1 without

1min +k
p and g

mb 1+
= 0 for all g.

Initial Solution

The best phase I heuristics methods for
Fm|block|Cmax were used to provide an initial
solution for the Branch and Bound algorithm.
Those are MinMax (MM), Profile Fitting (PF),
Weighted Profile Fitting (wPF) and PW.

MinMax (MM) algorithm, proposed by Ronconi
(2004), initially sets the job with the shortest
processing time on the first machine as the first job
in the sequence, and then sets the job that has the
shortest processing time on the last machine as the
last job in the sequence. For the remaining jobs, the
next job in the sequence (c) after the already
scheduled job (i) is the one that gets the smallest
result in equation 3. Where α is a constant used to
weight the two terms of the expression.

[] [] () []

m-1

, , 1 ,
1 1

1
m

c l i l c k
l k
P P Pα α+

= =
− + −  (3)

The Profile Fitting (PF) algorithm, created by

McCormick, Pinedo, Shenker, and Wolf (1989),
works in two phases: 1. Sets the first job in the

324 Sanches et al.

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

sequence as the one with the smallest sum of
processing times on all machines; 2. Then, the next
position in the sequence (c+1) belongs to the job
with the smallest sum of idle and blocking times.
Equation 4 is used to calculate the possible sum of
idle and blocking times provided by the insertion of
each job that has not yet been sequenced in position
(c+1) of the sequence. The job (j) that obtains the
smallest value for ߜ௝,௖ is determined as the next job
(c+1) in the sequence equation 4.

[] []()m

, ,1 , ,
1

j c j kc k c k
k
D D Pδ +

=
= − − (4)

Idle and blocking times caused by earlier jobs

and by earlier machines may have larger effects on
the makespan value than those caused by later jobs
and machines. Therefore, the Weighted Profile
Fitting (wPF) algorithm, proposed by Pan & Wang
(2012), applies a weight factor (wk) to δj,c, which
differentiates the effects of idle and blocking times
on machines in different stages and jobs in different
positions. As in the PF algorithm, the first job of the
sequence is the job with the smallest sum of
processing times on all machines. Then, the next job
(c+1) in the sequence is the job j with the smallest
value of δj,c calculated by equation 5.

[] []()m

, ,1 , ,
1

j c k j kc k c k
k
w D D Pδ +

=
= − − (5)

In which, wk is defined by equation 6:

() ()()2kw m k c m k n= + − − (6)

where:
n is the number of jobs;
c is the position of the last scheduled job.

The job j selected may also affect the idle and
blocking times of the remaining jobs in |NPS|.
Therefore, Pan & Wang (2012) proposed the PW
algorithm, which seeks to minimize the idle and
blocking times and the effects on the starting and
completion times of later jobs. Equation 5 is used to
estimate the idle and blocking times caused by the
indexing of job j in position (c+1) of the sequence.
Then, equation 7 is used to estimate the idle and
blocking times of the remaining jobs in |NPS|:

[] [](), ,2 , 1 ,
1

m

j c k v kc k c k
k

x w D D P+ +
=

= − − (7)

where:

kvP , is the average processing time of all the

remaining jobs in |NPS|, and is calculated by
equation 8;

[] kcD ,2+ is the departure time of kvP , .

(), , 1v k q k
q NPS
q j

P P n c
∈
≠

= − −
(8)

Combining the idle and blocking times caused

by the insertion of jobs j in position (c+1) and the
estimated idle and blocking times caused by the
insertion of the artificial job v in position (c+2), it is
obtained fj,c, calculated by equation 9.

(), , ,2j c j c j cf n c xδ= − − + (9)

where:
(n – c – 2) is used to balance the idle and blocking
times caused by job j and the effects of job j on later
jobs. The first job in the sequence is the job j with
the smallest value for fj,0. Then, for the remaining
positions of the sequence, the job j that obtains the
smallest value for fj,c is scheduled as the next job in
the sequence (c+1).

Results and discussion

This paper proposed programming the Branch
and Bound algorithm using the lower bound
proposed by Ronconi (2005). Then, the best Phase I
heuristic methods for Fm|block|Cmax problems
were used in order to obtain an initial solution to the
Branch and Bound algorithm. The heuristic
methods used were: MM (Ronconi, 2004);
PF (Mccormick, Pinedo, Shenker, and Wolf, 1989);
PW and wPF (Pan & Wang, 2012). For the MM
heuristic, the value of α is 0.6, which, according to
Ronconi (2004), is the value in which the heuristic
presents its best performance.

The tests were executed in an Intel® CoreTM
i5-4460 processor with 3.2 GHz, 8 GB RAM and
Windows 7 operating system. The Branch and
Bound algorithm was applied to 180 problems
proposed by Ronconi (2005), divided into 9 groups,
all computed by MatLab© (R2014b) software. The
groups vary in number of jobs and machines,
represented by matrices n x m: 10 x 2; 10 x 5;
10 x 10; 12 x 2; 12 x 5; 12 x 10; 14 x 2; 14 x 5; and
14 x 10. In this paper, the full database provided by
Ronconi (2005) was not used due to the time
required. However, as an extension of this, it is
suggested using the complete database with the 540
suggested problems.

Different heuristics to obtain an initial solution to a branch and bound algorithm 325

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

In order to evaluate the efficiency of using an
initial solution to reduce computational time, it was
compared the algorithms to find out which had the
lowest computational time and the lowest number
of nodes explored. To determine the best algorithm,
it was used as a parameter the relative deviation,
equation 10, which measures the relative distance of
the solution found by this algorithm (DM) to the
best result obtained (DM*) by all the algorithms.

*

* *100DM DMDR
DM

−= (10)

In this paper, the mean relative deviations were

used to compare computational times and number
of nodes explored to find the best algorithm for each
class. First, it was compared the mean relative
deviation of the computational time (CPU time) of
each class of problems, as shown in Table 1. Table 2
lists the mean relative deviation of the number of
nodes explored for each class of problems.

Table 1. Mean relative deviation of CPU times of each problem
class.

Mean relative deviation of CPU time (%)

wPF PF PW MM Classic
10x2 52340.36 50471.35 50582.37 4.53 50739.78
10x5 2.91 1.91 1.16 1.63 2.18
10x10 4.43 3.29 0.47 2.80 3.68
12x2 6.92 3.78 3.10 1.49 2.52
12x5 1.15 0.37 0.43 0.19 0.26
12x10 1.80 2.34 1.32 1.80 2.15
14x2 3.78 2.43 3.27 1.98 2.74
14x5 1.26 0.13 0.25 0.47 0.40
14x10 7.72 9.09 0.16 9.32 9.35

Table 2. Mean relative deviation of number of nodes explored of
each problem class.

Mean relative deviation of Number of nodes (%)

wPF PF PW MM Classic
10x2 58607.5 58607.5 58607.5 0.00 58607.5
10x5 0.87 1.04 0.09 0.97 1.14
10x10 2.50 2.81 0.38 2.41 2.98
12x2 0.00 0.00 0.00 0.00 0.00
12x5 0.04 0.06 0.01 0.07 0.07
12x10 0.90 1.83 1.23 1.51 1.86
14x2 0.001 0.001 0 0.001 0.001
14x5 0.00 0.02 0.01 0.02 0.02
14x10 6.58 8.36 0.09 8.48 8.50

Table 3 presents the mean relative deviation of
the computational time (CPU time) and number of
nodes explored of all nine classes of problems to
determine which, among the compared methods,
had the shortest computational time and the
minimum number of nodes explored.

Analyzing Table 1, it can be noted that in the
first problem class (with 10 jobs and 2 machines),
the MM method associated with Branch and Bound

greatly outperformed all other methods. The results
obtained in this class may distort the final result.
Therefore, another comparison was made without
considering the first class of problems. The new
comparison is presented in Table 4.

Table 3. Mean relative deviation of CPU times and number of
nodes explored for all problem classes.

Algorithm CPU time (%) Number of nodes (%)
wPF 5818.93 6513.15
PF 5610.52 6513.51
PW 5621.39 6512.15
MM 2.69 1.50
Classic 5640.34 6513.56

Table 4. Mean relative deviation of CPU times and number of
nodes explored for all problem classes without considering the
first class of problems.

Algorithm CPU time (%) Number of nodes (%)
wPF 3.75 1.36
PF 2.92 1.76
PW 1.27 0.23
MM 2.46 1.68
Classic 2.91 1.82

With data in Table 4, it is possible to observe that
PW was the heuristics that reduced most the total
computational time and the number of nodes
explored by the Branch and Bound algorithm.

Analyzing Table 1, it can be verified that the PW
method associated with Branch and Bound tends to
provide better results as the number of machines
increases. With fewer machines, the MM method
associated with Branch and Bound seems to provide
better results than PW. This can be explained by the
quality of the results obtained by the PW algorithm,
which is better than that provided by MM algorithm
(Pan & Wang, 2012), however requiring a longer
computational time. In some cases, even when the
number of nodes explored in smaller problems for
the MM method associated with Branch and Bound
algorithm is greater than or equal to the number of
nodes explored for the PW method associated with
Branch and Bound algorithm, the computational
time of the MM method associated with Branch and
Bound algorithm was shorter. This is due to the
computational time required to calculate the lower
bound for each node, which is shorter for fewer
machines. In this way, for problems with fewer
machines, the computational time required to solve
the heuristics (which provides the initial solution)
seems to affect more the total computational time
than the quality of the initial solution itself.

The experiments showed that the use of the
Branch and Bound algorithm achieves a good
performance for problems considered NP-Hard. In
terms of computational time and number of nodes

326 Sanches et al.

Acta Scientiarum. Technology Maringá, v. 38, n. 3, p. 321-326, July-Sept., 2016

explored, the use of an initial solution obtained
better results than the classic application of Branch
and Bound in eight out of the nine classes of the
analyzed problems.

Conclusion

The best heuristic methods in the literature were
applied to get an initial solution to the Branch and
Bound algorithm. Computational tests suggest that
the use of an initial solution improves the results in
terms of computational time to execute the
algorithm. It is recommended to run the tests in a
more diversified database. Other heuristics can be
used with the Branch and Bound algorithm to
compare the results. Some other lower bounds for
the makespan can also be tested for comparison.
Also, a dominance rule may be applied to reduce the
number of nodes that need to be explored.

Acknowledgements

To the National Council for Scientific and
Technological Development (CNPq): Processes:
308047/2014-1 and 448161/2014-1.

The authors are indebted to the University of
São Paulo, campus São Carlos (USP) and the
Federal University of Technological – Paraná State,
campus Cornélio Procópio (UTFPR-CP) for their
support for this paper.

References

Companys, R., & Mateo, M. (2005). Different behavior of
a double Branch-and-Bound algorithm on
Fm|prmu|Cmax problems. Computers & Operations
Research, 34(4), 938-953.

Framinan, J. M., Gupta, J. N. D., & Leisten, R. (2004). A
review and classification of heuristics for permutation
flow-shop scheduling with makespan objective. Journal
of the Operational Research Society, 55(12), 1243-1255.

Mccormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B.
(1989). Sequencing in an assembly line with blocking
to minimize cy. Operations Research, 37(6), 925-935.

Nagano, M. S., & Januário, J. C. S. S. (2012). Evolutionary
heuristic for makespan minimization in no-idle flow
shop production systems. Acta Scientiarum. Technology,
35(2), 271-278.

Nagano, M. S., Miyata, H. H., & Araújo, D. C. (2015). A
constructive heuristic for total flowtime minimization
in a no-wait flowshop with sequence-dependent setup
times. Journal of Manufacturing Systems, 36(1), 224-230.

Nagano, M. S., Silva, A. A., & Lorena, L. A. N. (2014). An
evolutionary clustering search for the no-wait flow
shop problem with sequence dependent setup times.
Expert Systems with Applications, 41(8), 3628-3633.

Pan, Q., & Wang, L. (2012). Effective heuristics for the
blocking flowshop scheduling problem with makespan
minimization. Omega, 40(2), 218-229.

Pinedo, M. L. (2008). Scheduling theory, algorithms, and
systems (3rd ed.). New York City, NK: Springer
Science.

Rios-Mercado, R. Z., & Bard, J. F. (1999). A Branch-and-
Bound Algorithm for Flowshop Scheduling with
Setup Times. IIE Transactions on Scheduling & Logistics,
31(8), 721-731.

Ronconi, D. P. (2004). A note on constructive heuristics
for the flowshop problem with blocking. International
Journal of Production Economics, 87(1), 39-48.

Ronconi, D. P. (2005). A Branch-and-Bound algorithm to
minimize the makespan in a flowshop with blocking.
Annals of Operations Research, 138(1), 53-65.

Ronconi, D. P., & Armentano, V. A. (2001). Lower
bounding schemes for flowshops with blocking in-
process. Journal of the Operational Research Society,
52(11), 1289-1297.

Sagawa, J. K., & Nagano, M. S. (2015a). Modeling the
dynamics of a multi-product manufacturing system: A
real case application. European Journal of Operational
Research, 244(2), 624-636.

Sagawa, J. K., & Nagano, M. S. (2015b). Applying bond
graphs for modelling the manufacturing dynamics.
IFAC-Papers OnLine, 48(3), 2047-2052.

Sobreiro, V. A., Mariano, E. B., & Nagano, M. S. (2014).
Product mix: the approach of throughput per day.
Production Planning & Control, 25(12), 1015-1027.

Received on July 2, 2015.
Accepted on October 6, 2015.

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

