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ABSTRACT. Current analysis describes the capacity of Bacillus subtilis natto CCT 7712 to produce high 
amounts of nystose by low-cost substrates available in Brazil, such as commercial sucrose, sugarcane 
molasses and sugarcane juice. Optimization resulted in a maximum production of 179.77 g L-1 of nystose, 
averaging 7.49 g L-1 hour-1 of productivity and a 71.73% yield in a medium with 400 g L-1of commercial 
sucrose and 0.8 g L-1 of MnSO4. Fermentations with sugarcane molasses and sugarcane juice also resulted 
in a satisfactory production reaching 97.93 and 42.58 g L-1 nystose, respectively. High nystose production in 
a medium with sugarcane derivatives suggests submerged fermentation with Bacillus subtillis natto CT 7712 
as a promising strategy to produce nystose at industrial level. 
Keywords: Bacillus subtilis natto CT 7712, commercial sucrose, nystose, sugarcane juice, sugarcane molasses. 

Utilização de substratos de baixo custo para produção de nistose por Bacillus subtilis 
natto CCT 7712 

RESUMO. Este estudo descreve a capacidade do Bacillus subtilis natto CCT 7712 para produzir quantidades 
elevadas de nistose usando sacarose comercial, melaço de cana-de-açúcar e caldo de cana-de-açúcar que 
constituem substratos de baixo custo e gerados em grande quantidade no Brasil. A optimização resultou na 
produção máxima de 179,77 g L-1 de nistose, correspondente a 7,49 g L-1 hour-1 de produtividade e um 
rendimento de 71,73%, em meio contendo 400 g L-1 de sacarose comercial e 0,8 g L-1 de MnSO4. As 
fermentações utilizando melaço de cana e caldo de cana também resultaram em produção satisfatória 
atingindo 97,93 e 42,58 g L-1 de nistose, respectivamente. A produção elevada de nistose obtida em meio 
contendo derivados da cana-de-açúcar sugere a fermentação submersa utilizando o Bacillus subtilis natto CT 
7712 como uma estratégia promissora para sintetizar nistose para uso industrial.  
Palavras-chave: Bacillus subtilis nattoCT 7712, sacarose comercial, nistose, caldo de cana, melaço de cana.  

Introduction 

Owing to growing demands for natural, healthy 
and low-calorie food, large numbers of alternative 
sweeteners emerged since the early 1980s, among 
which fructooligosaccharides (FOS) may be 
underscored. They represent an important source of 
prebiotic compounds widely used as ingredients in 
functional foods (Patel & Goyal, 2011). Several 
studies have shown that FOS may stimulate the 
Bifidobacterium growth in the human colon, help gut 
absorption of calcium and magnesium and decrease 
the plasma levels of phospholipids, triglycerides and 
cholesterol. Indeed, FOS have low caloric rates and 
anticariogenia properties and are useful in the 
formulation of diabetic products (Mussatto & 
Mancilha, 2007). Further, since 295.5 million euro 
were earned on the  prebiotics  market  in  2008  and  

766.9 million euro are estimated for 2015, an 
extraordinary market growth for prebiotics foods has 
been predicted (Morris & Morris, 2012). In the case 
of nystose, the commercial value is 39 dollars for  
25 mg, corresponding to US$ 1.56 g-1. 

FOS are oligosaccharides of fructose containing a 
single glucose moiety in which fructosyl units are 
bound at the β (2→1) position of a sucrose molecule 
(Yun, 1996). Indeed, a particular branched structure 
in which fructosyl units are bound at  
β (2→6) position of sucrose molecule could be also 
found in FOS (Lim, Lee, Kang, Park, & Kim, 2007). 
Nystose is a tetrasaccharide formed by two fructosyl 
units linked in position β (2→1) of sucrose. Due to 
its chemical structure, nystose has anticariogenic 
properties and approximately possess about 30% the 
sweetness of sucrose and are largely applied in the 
food industry in replacement of conventional sugar 
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(Ikeda, Kurita, Hidaka, Michalek, & Hirasawa, 
1990).  

FOS are industrially produced from sucrose by 
microbial fructosyltransferases derived from several 
fungi and bacteria (Nemukula, Mutanda, Wilhelmi, 
& Whiteley, 2009; Prata, Mussatto, Rodrigues, & 
Teixeira, 2010; Patel & Goyal, 2011; Belghith, 
Dahecha, Belghithb, & Mejdouba, 2012; Chen, 
Sheu, & Duan, 2014; Ganaie, Rawatb, Wania, 
Gupta, & Kango,2014). Bacillus subtilis natto is a 
member of B. subtilis species used in the 
manufacture of natto, a traditional food in Japan. 
The microorganism has proved to be a good 
producer of levan and FOS by expressing large 
amounts of enzymes involved in the sucrose 
metabolism (Shih,Chen, & Wu, 2010; Gonçalves, 
Mantovan, Ribeiro, Borsato, & Celligoi, 2013; Silva, 
Borsato, & Celligoi, 2014).The production of FOS 
by microbial fermentation occurs through the 
activity of β-fructosyltransferase and  
β-frutofuranosidases with three enzymatic reactions: 
(1) polymerization, in which fructose units are 
linked to a fructan polymer; (2) hydrolysis, in which 
sucrose is split into fructose and glucose; and  
(3) transfers of fructose to an acceptor forming an 
oligosaccharide (Hijum, 2003). 

Low yield (55–60%) is themain problem of 
commercial FOS production by transfructosylation 
(Yun, 1996).Consequently, the search for new 
substrates and economically viable biotechnological 
processes for the industrial production of FOS is 
still necessary to obtain higher yield and 
productivity. Further, the political priorities of a 
sustainable society have pointed towards the use of 
renewable resources, such as residual agricultural 
biomass and wastes, which may be transformed into 
valuable biomolecules (Angenent, Karim, Al-
Dahhan, & Domiguez-Espinosa, 2004). These 
aspects have enhanced studies on alternative media 
in fermentation processes. Furthermore, resources 
are very cheap and allow the production of valuable 
main components and supplements of culture media 
metabolized as carbon and energy sources 
bymicroorganisms (Thomsen, 2005). 

In this sense, the aim of this study was to 
evaluate the production of nystose by Bacillus subtilis 
natto CCT 7712 using low-cost substrates such as 
commercial sucrose, sugarcane molasses and 
sugarcane juice. These compounds are highly 
available in Brazil, which is the biggest producer of 
sugarcane in the world. To our knowledge, current 
analysis is one of the few to describe the high 
production of nystose by Bacillus subtilis nattoCCT 
7712 using sugarcane derivatives.  

Material and methods 

Microorganism 

Bacillus subtilis natto CCT 7712 was isolated from 
fermented soybeans, a Japanese food called ‘natto’, at 
the Department of Biochemistry and Biotechnology 
of the State University of Londrina, Londrina, 
Paraná State, Brazil, and identified by the Fundação 
André Tosello, Campinas SP Brazil. The strain was 
maintained in a medium containing (g L-1): peptone 
50, meat extract 30 and agar 20, and subcultured 
every 45 days and preserved at 4 ºC. 

Preparation of inoculum and fermentation of medium 

The inoculum was prepared from stock culture 
by transferring two wire loops from solid medium 
to 125 mL Erlenmeyer flasks containing 25 mL of 
medium (g L-1): sucrose 100; yeast extract 2; 
KH2PO4 2, (NH4)2SO4 1 and MgSO4(7H2O) 0.5. 
After incubation (150 rpm, 37ºC, 48 hours), the 
medium was centrifuged at 9056 xg and cells were 
re-suspended in saline solution 0.9% (w v-1). The 
inoculum containing 0.2 g L-1cells was used in all 
fermentations. The fermentation occurred in  
125mL Erlenmeyer flasks with 25 mL of medium  
(g L-1): sucrose 2.0, yeast extract 2.0; KH2PO4 1.0, 
(NH4)2SO4 3.0, MgSO4(7H2O) 0.6, MnSO4 0.2. 
The pH was set at 7.7 and the flasks were incubated 
under orbital shaking at 230 rpm, as previously 
described (Silva et al., 2014). Temperature, 
incubation period and concentration of sucrose were 
adjusted following statistical design (Table 1). In 
experiments with molasses and sugarcane juice, the 
total sugar of the compounds was previously 
quantified by Phenol-Sulfuric Method (Dubois, 
Gilles, Hamilton, Rebers, & Smith, 1956), with total 
sugar respectively at 166 and 570 g L-1. Total sugar 
concentrations were set at 200, 300 and 400 g L-1 for 
comparison. In the case of medium composed of 
molasses commercial sucrose was added to adjust 
the final concentration. The pH was set at 7.7 and 
the flasks were incubated under orbital shaking at 
230 rpm, for 24 hours. All fermentations were 
interrupted by centrifugation at 9056 × g for  
15 min, at 4°C and the supernatant was used to 
determine nystose production.  

Optimization of nystose production  

Two experimental designs optimized the 
production of nystose by Bacillus subtilis natto CCT 
7712. In the first one, the influence of sucrose (X1), 
temperature (X2) and incubation period (X3) on 
nystose production was evaluated by Box-Behnken 
design (Hill & Lewicki, 2006). with three repetitions 
on the central point (Table 1). In the second 
experiment, the effect of concentration (NH4)2SO4 
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(X1), MnSO4 (X2), ZnSO4 (X3) and NaCl (X4) was 
studied by experimental mixture design, with four 
repetitions on the central point (Table 3). The 
concentration of nystose was analyzed by HPLC 
(Shimadzu RID-10A) coupled to a refractive index 
detector, with Aminex Carbohydrate HPX-87C 
(300 x 7,8 mm, Biorad) column. The mobile phase 
was Milli-Q™, water at a flow rate of 0.6 mL min-1. 
The column temperature was kept constant at 80°C. 
The nystose concentration of the supernatant was 
estimated by a nystose analytical standard (GP3- 
666.58 Da- Sigma-Aldrich). 

Table 1. Effect of sucrose concentration, temperature and 
incubation period on nystose production by Bacillus subtilis natto 
CCT 7712. 

Assays 
Variables  Response 

X1 Sucrose X2 Temperature X3 Incubation period Y1 Nystose
(g L-1) (°C) (hour) (g L-1) 

1 400 (+) 55 (+) 24 (0) 121.60 
2 400 (+) 35 (-) 24 (0) 142.97 
3 200 (-) 55 (+) 24 (0) 37.63 
4 200 (-) 35 (-) 24 (0) 42.57 
5 400 (+) 45 (0) 36 (+) 107.29 
6 400 (+) 45 (0) 12 (-) 109.54 
7 200 (-) 45 (0) 36 (+) 27.33 
8 200 (-) 45 (0) 12 (-) 23.56 
9 300 (0) 55 (+) 36 (+) 72.61 
10 300 (0) 55 (+) 12 (-) 69.20 
11 300(0) 35 (-) 36 (+) 98.46 
12 300 (0) 35 (-) 12 (-) 112.33 
13 300 (0) 45 (0) 24 (0) 65.70 
14 300 (0) 45 (0) 24 (0) 66.39 
15 300 (0) 45 (0) 24 (0) 69.32 
 

Determination of fermentation yield 

Fermentation yield was determined by global 
mass balance based on the determination of nystose 
produced and depending on the weight of sucrose. 
Yield was calculated by considering the production 
of nystose as a function of the maximum theoretical 
yield, calculated by sucrose consumption. 

Statistical analysis 

Analysis of variance (ANOVA) and multiple 
regression were carried out at 5% probability  
(p < 0.05) by Statistica 9.0.  

Results 

The influence of sucrose concentration, 
temperature and incubation period for the 
production of nystose by Bacillus subtilis natto CT 
7712 was evaluated by Box-Behnken design (Hill & 
Lewicki, 2006). The production of nystose ranged 
from 23.56 (run 8) to 142.97 g L-1 (run 2), indicating 
that the evaluated parameters affected the 
production of nystose (Table 1). The highest 
production (142.97 g L-1) was obtained under the 
conditions of 400 g L-1 sucrose, 35°C and 24 hours 
of fermentation. Analysis of variance showed that 
sucrose (X1) (p = 0.0002), temperature (X2) 
(p=0.0032) and the interaction of temperature and 
incubation period (X2X3) (p = 0.0460) had a 
significant effect on nystose production (Table 2). 
Statistical analysis showed that sucrose 
concentration affected profoundly nystose 
production (Table 2). When runs 2 and 4 were 
compared (Table 1), the production of nystose was 
three times lower at 35°C during a 24 hours 
incubation period, and sucrose concentration was 
reduced from 400 (run 2) to 200 g L-1 (run 4). 

Coefficient of determination (R2) at 0.983 
implied that 98% of sample variation could be 
explained by the model. The lack of fit was 
significant (p = 0.0372). However, the analysis of 
variance showed that the model is significant at 5% 
level, whilst the high rate of R2 suggested that the 
model might be used for predictive purposes and 
was valid to describe the variations in production 
nystose. Results were used to fit a second-order 
polynomial equation (Equation 1). Only significant 
factors were considered to estimate the nystose 
production.  

 ଵܻ = 67.1367 + ଵݔ	43.7888 − ଶ +20.1379ݔ	11.9113 ଶଶݔ + 4.32  ଷݔ	ଶݔ
(1)

 
where: 
Y1: nystose production,  
x1: sucrose concentration,  
x2: temperature and  
x3: incubation period.  

Table 2. Analysis of variance of the effect of sucrose concentration, temperature and incubation period on nystose production by Bacillus 
subtilis natto CCT 7712.   

Source of variation Sum of squares Degrees of freedom Mean squares F-test p value 
(X1) Sucrose (L) 15339.64 1 15339.64 4152.31 0.0002 
Sucrose (Q) 4.32 1 4.32 1.17 0.3924 
(X2) Temperature (L) 1135.02 1 1135.02 307.24 0.0032 
Temperature (Q) 1497.36 1 1497.36 405.32 0.0024 
(X3) Incubation period (L) 9.99 1 9.99 2.70 0.2418 
Incubation period (Q) 2.83 1 2.83 0.76 0.4737 
X1X2 67.49 1 67.49 18.26 0.0506 
X1X3 9.06 1 9.06 2.45 0.2578 
X2X3 74.65 1 74.65 20.20 0.0460 
Lack of fit 287.99 3 96.00 25.98 0.0372 
Pure error 7.39 2 3.69   
Total 18455.18 14    
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Table 3. Experimental mixture design to evaluate the production of nystose by Bacillus subtilis natto CCT 7712. 

Assays Mixtures 
Components  Responses 

X1 (NH4)2 SO4 X2 MnSO4 X3 ZnSO4 X4 NaCl Y1 Nystose Y2 Nystose 
(g L-1) (g L-1) (g L-1) (g L-1) (g L-1) (g L-1 hour-1) 

1 (1; 0; 0; 0) 12 0 0 0 18.77 0.78 
2 (0; 1; 0; 0) 0 0.8 0 0 179.77 7.49 
3 (0; 0; 1; 0) 0 0 0.025 0 125.10 5.21 
4 (0; 0; 0; 1) 0 0 0 35 31.72 1.32 
5 (0.5; 0.5; 0; 0) 6 0.4 0 0 125.93 5.25 
6 (0.5; 0; 0.5; 0) 6 0 0.012 0 119.99 5.00 
7 (0.5; 0; 0; 0.5) 6 0 0 17.5 30.17 1.26 
8 (0; 0.5; 0.5; 0) 0 0.4 0.012 0 125.23 5.22 
9 (0; 0.5; 0; 0.5) 0 0.4 0 17.5 126.86 5.29 
10 (0; 0; 0.5; 0.5) 0 0 0.012 17.5 51.98 2.17 
11 (0.25; 0.25; 0.25; 0.25) 3 0.2 0.006 8.75 126.23 5.26 
12 (0.25; 0.25; 0.25; 0.25) 3 0.2 0.006 8.75 131.32 5.47 
13 (0.25; 0.25; 0.25; 0.25) 3 0.2 0.006 8.75 135.77 5.66 
14 (0.25; 0.25; 0.25; 0.25) 3 0.2 0.006 8.75 133.28 5.55 

 

The predicted rate for nystose production was 
146 g L-1(400 g L-1 sucrose, 35°C and 24 hours of 
fermentation). Three repetitions of the predicted 
conditions were performed to confirm the validity 
of the statistical model; average production was 
140.06 g L-1 (Figure 1). This result did not show any 
significant difference from the predicted optimum 
rate (p<0.05). In summary, results indicated that the 
best condition for nystose production was 400 g L-1 
of sucrose, 35°C and 24 hours of fermentation.  

 

 
Figure 1. Optimum conditions for nystose production by Bacillus 
subtilis natto CCT 7712. 

For the next step, the effect of (NH4)2SO4, 
MnSO4, ZnSO4 and NaCl on nystose production 
was evaluated by using optimized conditions  of  the  
first experimental design, i.e., 400 g L-1 of sucrose, 
35°C and 24 hours of fermentation. Table 3 shows 
production of nystose at 179.77 g L-1 (run 2) 
obtained when MnSO4 was added to the 
fermentation medium, with a 71.73% yield. A 
satisfactory production was also observed with the 
addition of ZnSO4, with 125.10 g. L-1 of nystose. On 
the other hand, the addition of (NH4)2SO4 and 
NaCl significantly decreased the nystose production 
(Table 3). A 25% mixture of each salt produced an 
average 133.45 g L-1, with a 53.17% yield (run 11-
14). However, the yield obtained with MnSO4 
(run 2) alone was approximately 8 times higher 

when compared to (NH4)2SO4 (run 1), and 5 times 
higher when compared to NaCl (run 4). 

Regression analysis revealed that, on a single 
basis, all tested salts had a positive effect on nystose 
production, with MnSO4 featuring the strongest 
positive effect (Table 4). When the interaction of 
salts was analyzed, the mixture (NH4)2SO4/MnSO4 
and (NH4)2SO4/ ZnSO4 had a strong positive effect, 
although mixtures MnSO4/ ZnSO4 and ZnSO4/ 
NaCl had a negative effect on nystose production. 

Table 4. Regression analysis for the effects of salts on nystose 
production by Bacillus subtilis natto CCT 7712. 

Components Coefficient Error t-test p value 
(NH4)2 SO4(X1) 18.77 4.04 4.63 0.01887 
MnSO4 (X2) 179.77 4.04 44.42 0.00002 
ZnSO4 (X3) 125.10 4.04 30.91 0.00007 
NaCl (X4) 31.72 4.04 7.83 0.00432 
X1X2 106.64 19.82 5.37 0.01257 
X1X3 192.22 19.82 9.69 0.00232 
X1X4 19.70 19.82 0.99 0.39356 
X2X3 -108.82 19.82 -5.48 0.01189 
X2X4 84.46 19.82 4.26 0.02371 
X3X4 -105.72 19.82 -5.33 0.01288 
X1X2X3 1985.92 214.71 9.24 0.00267 

 

Based on experimental results, a canonical 
equation was developed to estimate nystose 
production (Equation 2): 

1ݕ  = 1ݔ18.77 + 2ݔ179.77 + 3ݔ125.1 + 4ݔ31.72 2ݔ	1ݔ106.64+ + + 3ݔ1ݔ192.22 −  ଷݔଶݔଵݔସ + +1985.92ݔଷݔସ −105.72ݔଶݔ84.46++ 3ݔ2ݔ108.82

(2)

 
where: 
Y1 is the response (nystose production) and x1, x2, x3 

and x4 are (NH4)2SO4, MnSO4, ZnSO4 and NaCl, 
respectively. Since the coefficient of determination 
(R2) was 0.998, the proposed model may be used for 
prediction.  

Figure 2 shows the contour plots for the 
interaction of salt effect on nystose production by 
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The addition of mineral salts to the fermentation 
media may influence the biosynthesis of 
oligosaccharides and polysaccharides (Bekers  
et al., 2000; Ammar et al., 2002; Arundhati  
et al., 2011). The results obtained in this study 
showed the strongest positive effect of MnSO4 on 
nystose production. Similar results were obtained by 
Silva et al. (2011), who also reported that MnSO4 
increased the production of FOS by Aureobasium 
pullulans.The increase of FOS production after salt 
addition could be due to the osmoprotection 
mechanism developed by the microorganism for 
regulating the medium´s osmolarity (Bekers  
et al., 2000). On the other hand, the addition of 
(NH4)2SO4 and NaCl resulted in a significant 
reduction in nystose production. According to 
Bekers et al. (2000), the salts inhibited FOS 
production by Zymomonas mobilis in a medium with 
high sucrose concentration. 

Concerns to reduce environmental pollution 
have encouraged the use of industrial waste and by 
products through bioprocessing. Besides decreasing 
the environmental impact, the utilization of the 
substrates also reduces the cost of production of 
biomolecules (Bicas, Silva, Dionísio, & Pastore, 
2010). Current assay reports that the nystose 
production in a medium composed of sugarcane 
juice was 56% higher than the production in 
molasses, which may be due to the high 
concentration of carbohydrates, reaction products, 
minerals and metals in molasses that may have 
negatively influenced production. However, it 
should be underscored that, while the sugarcane 
juice needed to be supplemented with sucrose to 
achieve maximum concentration of total sugars, the 
molasses required dilution to reach such 
concentration. Thus, sugarcane molasses seems to 
be an interesting substrate to nystose production by 
Bacillus subtilis natto CCT7712even at a lower 
production of nystose.  

Molasses is a good source of nutrients for the 
production of enzymes and microorganisms for 
fermentation and direct production of compounds 
such as FOS. In fact, 166 g L-1of FOS were 
produced from 360 g L-1 of sugar molasses as 
sucrose equivalent at 55°C and pH 5.5, after  
24 hour sof fermentation by A. pullulans cells (Shin 
et al., 2004). Interestingly, sugar syrup and molasses 
from beet were tested as low-cost substrates for the 
enzymatic synthesis of FOS. After 30 hours, the 
FOS concentration reached a maximum of  
388 mg mL-1 when syrup was employed. When the 
molasses was used, 235 mg mL-1 of FOS were 
obtained in 65 hours of fermentation. The above 
rates corresponded to approximately 56 (syrup) and 

49% (molasses) of the total amount of carbohydrates 
in the mixture (Ghazi et al., 2006). In summary, the 
obtained results demonstrated the capacity of Bacillus 
subtilis natto CCT 7712 to produce high amounts of 
nystose with low-cost substrates such as commercial 
sucrose, sugarcane molasses and sugarcane juice. 
The development of new biotechnological processes 
proposing alternatives for FOS production as the 
utilization of industrial byproducts are essential to 
increase the productivity and to reduce the 
production cost of FOS.  
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