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ABSTRACT. Electrical energy, solar energy, and/or direct combustion of a fuel are the most common 
thermal sources for home water heating. In recent years, the use of solar energy has become popular 
because it is a renewable and economic energy source. Among the solar collectors, those assisted by 
thermosyphons are more efficient; therefore, they can enhance the heat transfer to water. A thermosyphon 
is basically a sealed tube filled with a working fluid and, normally, it has three regions: the evaporator, the 
adiabatic section and the condenser. The great advantage of this device is that the thermal resistance to heat 
transfer between its regions is very small, and as a result, there is a small temperature difference. This 
article aims to model a thermosyphon by using correlations based on its operation limits. This modeling 
will be used as a design tool for compact solar collectors assisted by thermosyphons. Based on the results 
obtained with the mathematical modeling, one copper thermosyphon, with deionized water as the working 
fluid, was developed and experimentally tested. The tests were carried out for a heat load varying from 30 
to 60W in a vertical position. The theoretical and experimental results were compared to verify the 
mathematical model. 
Keywords: solar collector, thermosyphons, operation limit, experiment. 

Modelagem e testes experimentais de um termossifão de cobre 

RESUMO. Energia elétrica, energia solar e/ou combustão direta de um combustível são as principais fontes 
térmicas para aquecimento doméstico de água. Nos últimos anos, a utilização de energia solar tornou-se 
popular porque ela é uma energia renovável e econômica. Dentre os coletores solares, os coletores 
assistidos por termossifões são os mais eficientes, portanto, eles podem melhorar a transferência de calor 
para a água. Um termossifão é basicamente um tubo selado preenchido com um fluido de trabalho e, 
normalmente, possui três regiões: o evaporador, a seção adiabática e o condensador. A grande vantagem 
deste dispositivo é que a resistência térmica para a transferência de calor entre suas regiões é muito pequena 
e, como resultado, existe uma pequena diferença de temperatura. Este artigo tem como objetivo modelar 
um termossifão utilizando correlações baseadas em seus limites de operação. Esta modelagem será utilizada 
como uma ferramenta de projeto para coletores solares compactos assistidos por termossifões. Baseado nos 
resultados obtidos com o modelo matemático, um termossifão de cobre, com água deionizada como fluido 
de trabalho, foi desenvolvido e testado experimentalmente. Os testes foram realizados para uma potência 
variando de 30 a 60W em uma posição vertical. Os resultados teóricos e experimentais foram comparados 
para verificar o modelo matemático. 
Palavras-chave: coletor solar, termossifões, limite de operação, experimental. 

Introduction 

Water heating systems for domestic use in Brazil 
can have an energy source of electrical energy, solar 
energy, and/or direct burning of a particular fuel 
(LPG or natural gas) in a gas burner. Due to the 
water crisis that the country is facing, the high cost 
of heating water by electricity is increasingly being 
replaced by heating through fuel combustion in a 
gas burner or by the use of a solar collector; and in 
some cases, both technologies are used together. 

The most common solar collector used in  
Brazil is the flat plate. This type of solar collector is a 

Brazilian technology; however, they occupy large 
areas on building roof tops. A more thermally 
efficient solar collector is the evacuated tube solar 
collector (thermosyphon solar collector). This type 
of solar collector is more efficient because it uses 
thermosyphons in order to enhance the transfer of 
heat for water heating. However, there are few 
applications of thermosyphon solar collectors in 
Brazil and Brazilian companies do not have the 
manufacturing technology.  

Several researchers have studied the application 
of heat pipes and thermosyphons in solar collectors 
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for heating water in the interest of domestic use 
with different configurations (Hussein, Mohamad, 
& El-Asfouri, 1999a, 1999b; Ismail & Abogderah, 
1998; Oliveti & Arcuri, 1996).  

The solar collectors tested by Oliveti and Arcuri 
(1996) and Hussein et al. (1999a, 1999b) were 
assisted by thermosyphons with water as the 
working fluid. On the other hand, Ismail and 
Abogderah (1998) used heat pipes with methanol as 
the working fluid in the solar collectors. Abreu and 
Colle (2004) presented a different configuration of 
the settings above. While the other researchers used 
straight tube thermosyphons, Abreu and Colle 
(2004) developed a condenser with curved geometry 
to allow a better coupling between the condenser 
region and the heat sink. 

Azad (2008) accomplished a theoretical and 
experimental study on the thermal performance of 
thermosyphon solar collectors. He worked on a 
copper collector with six thermosyphons with an 
external diameter of 12.7 mm and a length of 1,850 
mm. The tests were performed outdoor in Tehran 
(Iran) and the thermal efficiency was based on 
ASHRAE 93-1986 method. 

Chien et al. (2011) also made a theoretical and 
experimental study regarding a solar collector 
assisted by thermosyphons. They used the method 
of equivalent thermal resistances for the theoretical 
study, and for the experiment, they tested the solar 
collectors under different inclination angles and heat 
loads. 

Azad (2012) manufactured three heat pipe solar 
collectors with tubes of different shapes and with a 
total length ranging from 1.55 to 1.90 m. All heat 
pipes used a stainless steel wire mesh of 100 and 
ethanol as the working fluid. The solar collectors 
were tested outdoor in Tehran (Iran). 

Du, Hu, and Kolhe (2013) manufactured a solar 
collector assisted by twenty heat pipes and tested it 
outdoors in Nanjing (China). Each heat pipe had an 
evaporator outer diameter of 8 mm and length of 
1,660 mm, and a condenser outer diameter of 14 
mm and length of 83 mm. The heat pipes were 
inserted into a borosilicate glass tube with a diameter 
of 70 mm and a length of 1,730 mm. In the annular 
space between the glass tube and an evacuation 
process, up to 0.05 Pa was accomplished (absolute 
pressure). 

Deng et al. (2013) constructed and tested a solar 
collector assisted by an array of micro heat pipes 
made of aluminum. The heat pipes used acetone as 
the working fluid and the capillary structure was 
composed by grooves with hydraulic diameter 
varying between 0.4 and 1.0 mm. 

According to this review, the development 
process of thermosyphons and heat pipes for solar 
collectors is not presented. In other words, for this 
specific application, the manufacturing process as 
well as the necessary experimental tests for 
qualifying these kinds of devices are not shown. 
Thus, this paper aims to present the steps to develop 
thermosyphons for application in solar collectors. 

Material and methods 

Operation limit model for thermosyphons 

The mathematical model presented here consists of 
determining the operational limits for thermosyphons. 
These limits are entrainment, sonic, viscous, drying, 
and boiling. For each one of them, specific correlations 
will be used for their evaluations. 

One thermosyphon is schematically represented 
in Figure 1, which is composed of three regions: the 
evaporator section (where the heat load is supplied), 
the adiabatic section, and the condenser section 
(where the heat is removed). The thermosyphon 
works in the following way: first, heat is supplied in 
the evaporator section causing the vaporization of 
the inner working fluid; second, due to the pressure 
difference, the generated vapour flows to the 
thermosyphon cooled region (condenser section) 
where heat is rejected by the cold source (water or 
air flow passing outside the tubes) and the vapour 
condenses inside; third, the condensate fluid returns 
to the evaporator by gravity, completing the cycle.  

 

 
Figure 1. Schematic representation of a typical thermosyphon. 

Since the thermosyphon is assisted by gravity, 
the condenser region must be located above the 
evaporator region at a minimal tilt angle. The 
adiabatic region is located between the evaporator 
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and the condenser (it has variable size or may not 
exist in some cases). 

Operation limit model  

The limit model was implemented and 
simulated using the software EESTM (Engineering 
Equation SolverTM). 

Entrainment limit 

As the heat load applied to the evaporator is 
increased, the vapor velocity increases and may 
reach a higher velocity than the liquid velocity. That 
is, the shear forces on the liquid-vapor interface can 
be significant. Thus, if the shear forces are greater 
than the forces caused by the liquid surface tension, 
droplets can be dragged from the liquid. As a 
consequence, the entrainment limit can be reached.  

The entrainment limit estimates the maximum 
value of heat transfer rate that leads this effect to 
take place within the thermosyphon. The main 
cause for this limit to be reached is the excess of 
working fluid in the condenser or the lack of 
working fluid in the evaporator. 

According to Groll and Rosler (1992) and 
Mantelli (2013), some expressions have been 
developed for the entrainment limit estimation. The 
correlation shown in Equation (1) has been 
proposed to determine the maximum heat transfer 
for the entrainment limit. 

 

( ) 1 41 2
1 2 3

//
max,entrainment lv v v l vQ f f f h A gρ ρ ρ σ = − 
 (1)

 
where, 

f1, f2, and f3 are parameters listed as follow; hlv is 
the vaporization latent heat; ρv is the vapor density; 
ρl is the liquid density; g is the gravitational 
acceleration;  is the surface tension; and Av is the 
vapor core area. 

The parameter f1 is the Bond number (Bo), 
Equation (2), defined as the ratio between gravity 
and surface tension forces,  
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where,  

di is the tube inner diameter. 
The parameter f2 is a function of the 

dimensionless parameter Kp, given by Equation (3): 
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where, 
pv is the vapor pressure.  
For Kp ≤ 4.104, f2 = Kp

 – 0.17 and for Kp > 4.104, f2 
= 0.165. 

The parameter f3 is a factor which corrects the 
Eq. (1) for the thermosyphon inclination and it is 
also a function of the Bond number. According to 
Mantelli (2013) for vertical position, f

3
 = 1. 

Sonic limit 

The sonic limit represents the heat applied to the 
thermosyphon when vapor reaches sonic velocity. It 
can be more commonly achieved by thermosyphons 
using liquid metal as the working fluid and it is 
influenced by the size of the vapor core. Sonic limits 
can be reached during the start-up and at steady state 
conditions. If this limit is reached, the vapor usually 
located in the core of the thermosyphon is blocked by a 
shock wave. This phenomenon causes a temperature 
increase in this region and can be expressed by 
Equation (4) which was proposed by Busse (1973):  
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(4)

Viscous limit 

In situations in which the thermosyphon works 
at low temperature levels, the pressure gradient 
between the evaporator and the condenser is very 
small. When the forces caused by such low pressure 
gradient are lower than the viscous forces, vapor 
flow does not take place in the thermosyphon. This 
characterizes the viscous limit. Busse (1973) 
proposed a correlation, Equation (5), for this limit: 
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where, 

dv is the vapor core diameter, μv is the vapor 
dynamic viscosity, and leff is the effective  length 
given by 

 
( )0 5eff a e cl l . l l= + +  (6)

where,  
la is the adiabatic section length, le is the 

evaporator region length, and lc is the condenser 
region length. 

Boiling limit 

The boiling limit occurs when there is a large 
amount of working fluid in the thermosyphon and 
the evaporator region is heated with high heat 
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2,486 to 5,404 W. Thus, as a result, the boiling limit 
was the most restrictive.  

 
(a) 

 
 
(b) 

 
Figure 8. Analsys of operation limits: (a) entrainment, viscous, 
and sonic limits and (b) boiling limit. 

Temperature along the thermosyphon as a function of 
heat load 

The experimental results as a function of the 
heat load applied in the evaporator region are 
presented in Figure 9. 

First, a heat load of 30W was applied to the 
evaporator of the thermosyphon and it is noticed 
that all temperatures along the external surface of 
the thermosyphon (Tevap1, Tevap2, Tevap3, Tevap4, Tcond1, 
Tcond2, Tcond3, and Tcond4) increase rapidly. After 
approximately 100 s, the thermal behaviour of these 
temperatures tends to the steady state regime. Thus, 
it can be stated that it had a successful start-up. The 
steady state was reached at approximately 200 s.  

 
Figure 9. Temperature along the thermosyphon as a function of 
power and time applied. 

After 15 min. (900 s), the heat load was increased 
to 40 W and a similar thermal behaviour of the 
thermosyphon temperatures was observed. The heat 
load varied from 40 to 50W and, finally, from 50 to 
60W. Note that for all heat loads applied, the 
thermosyphon reached the steady state condition. 
The maximum temperature measured was 97oC in 
the evaporator region for the heat load of 60W. The 
maximum temperature measured in the condenser 
was 61°C and in the insulation was 39oC, both for 
60W. 

Heat transfer analysis  

Table 1 shows the main experimental data and 
properties used for the heat transfer analysis 
presented in the present work. 

Table 2 lists the results of the heat transfer 
analysis as a function of the heat transfer rates: 
applied to the evaporator region, lost through the 
insulation and the thermosyphon wall, transferred 
into the thermosyphon, and internal mass flow rate. 

It is observed that when a heat load of 30 W was 
applied, 3.9 % of the heat was transferred through 
the tube wall, 1.4% was transferred through the 
insulation, and 94.7% was transferred into the 
evaporator of the thermosyphon. The estimated 
percentages for the other heat loads (40, 50, and 
60W) are very similar to these. Regarding the 
internal mass flow rate, the variation is very small 
(order of 10–5 kg s–1). 

Analysis of the internal heat transfer coefficient in the 
condenser region 

Table 3 presents the values of the internal heat 
transfer coefficients into the condenser region as a 
function of the heat load. 
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Table 1. Experimental data and properties. 


evapQ [W] 

eoT [oC] 
coT [oC] 

isol,oT [oC] 
envT [oC] 

30 59.3 39.1 27.3 18.5 
40 70.3 45.5 28.4 18.3 
50 82.1  52.4 31.3 18.3 
60 93.8 58.7 33.3 18.3 

Properties of air, water, copper, and insulation 
52.1 10airα −= × [m2 s-1] 51.5 10airν −= ×  [m2 s-1] 1.0p,airc =  [kJ kg-1. K] 0 73airPr .=   0 025airk .=  [W m-1.K] 

0 0034air .β =  [K-1] 5airV = [m s-1] 395Cuk =  [W m-1.K] 0 038isolk .=  [W m-1.K] 4.3p,lc =  [kJ kg-1.K] 

0 62lk .=  [W m-1. K] 46.4 10lμ −= ×  [Pa. s] 51.0 10vμ −= ×  [Pa.s] 4 28lPr .=  991 6l .ρ =  [kg m-3]

0 069l .σ =  [N m-1] 62 6 10lvh .= ×  [J kg-1] 16.83vp =  [kPa] 101 3envp .=  [kPa] Bo = 4.18 

Table 2. Transferred heat rates. 


evapQ [W] 

wallQ [W] 
isolQ [W] 

evapQ' [W] 510×
im

[kg s-1] 

30 1.176 0.4246 28.40 1.20 
40 1.440 0.5109 38.05 1.63 
50 1.729 0.6892 47.58 2.06 
60 2.034 0.8260 57.14 2.50 

Table 3. Internal heat transfer coefficients on the condenser area. 

[ ]
evapQ W  Cond 2

i,1h [W/m K]  Cond 2
i,2h [W/m K] 

30 1.52×104 3.09×104 
40 1.46×104 3.29×104 
50 1.43×104 3.44×104 
60 1.41×104 3.56×104 
 

From the two correlations presented before and 
the experimental data obtained through the heat 
transfer analysis, it is possible to estimate the 

coefficients in this section. 1
cond
i ,h  is calculated using 

Groll and Rosler correlation, Equation (24), and 

2
cond
i ,h  using Kaminaga correlation, Equation (26). 

Note that 1
cond
i ,h  is 10 times greater than 2

cond
i ,h . Thus, 

the value of 2
cond
i ,h  is more conservative. However, 

the development of a more sophisticated experiment 
is necessary in order to measure the inner heat 
transfer coefficient of the condenser region.  

Comparison between theoretical and experimental 
results 

Figure 8 shows the theoretical results of the 
operation limits as a function of operation 
temperature variation (30 up to 110oC). Here, the 
real operation temperature was estimated, using 

Eq. (22), regarding the heat load applied to the 
evaporator.  

Table 4 presents the maximum heat transfer 
rates for each operating limit taking into account 
the real operating temperature.  

From Table 4, it is possible to observe that the 
heat transfer rate obtained for the viscous limit is 
much higher than the other limits for the all heat 
loads. It is also observed that for all heat loads 
applied to the evaporator, the maximum heat 
transfer rates obtained for the entrainment limit 
are the lowest one, varying from 1,005 to 1,427W. 
Therefore, it can be stated that the proposed 
thermosyphon could operate under higher heat 
loads than the ones applied. However, for security 
reasons, the accomplishment of these tests was 
possible due to the temperature limitation 
imposed (maximum temperature of 120oC).  

Table 4. Operation limits. 

[ ]
evapQ W  

opT [°C]  
entrainmentmax,Q [W]  

max,viscousQ [W]  
max,sonicQ [W]  

max,boilingQ [W]  

30 58.50 1,005   0.584x1010   4,803 2,983 
40 69.40 1,137 1.452x1010 7,654 3,684 
50 81.20 1,283 3.591x1010 12,165 4,533 
60 92.70 1,427 8.171x1010 18,536 5,460 
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Conclusion 

This paper presented a theoretical and 
experimental analysis of a copper thermosyphon 
with deionized water as the working fluid. The 
device was cooled by air forced convection. 
Regarding the theoretical analysis, the entrainment, 
viscous, sonic, and boiling limits were evaluated for 
a temperature ranging from 30 to 110oC. It was 
observed in the analysis that the maximum heat 
transfer rates obtained were very high when 
compared to the heat load applied to the evaporator 
in the experiment. It was also noticed that the heat 
transfer rates obtained for the boiling limit were the 
less restrictive ones. 

Regarding the experimental analysis, the 
thermosyphon was tested at vertical position under 
heat loads of 30, 40, 50, and 60W. The device 
worked satisfactorily obtaining successful start-up, 
and reaching steady state condition for all heat loads. 
The thermosyphon took about 200 s to reach the 
steady state for heat load of 30W, and the maximum 
temperature of 97oC was measured at the evaporator 
region for 60W. 

A heat transfer analysis was performed using the 
experimental data obtained from the tests, in which 
it was estimated the operating temperature inside 
the evaporator region (92.7oC for 60W, for instance). 
The operating temperatures obtained in the 
experiments were used to determine the operating 
limits. For all the heat loads, the heat transfer rates 
were estimated for operating limits. The 
entrainment limit was the lowest one, ranging from 
1,005 to 1,427W. Therefore, it is possible to attest 
that the thermosyphon developed here could 
operate under much higher heat loads without 
reaching any operating limit. However, for safety 
reasons, it was not possible to perform such tests 
due to the experimental temperature limitation 
(120oC). The internal mass flow rate was estimated 
as an order of 10-5 kg s-1.  

Using specific correlations for thermosyphon 
condensers, together with the mass flow rate 
calculated from the experimental results, it was 
possible to determine the internal heat transfer 
coefficient into the condenser region. The values 
estimated were in the order of 104 W m-2K ( 1

cond
i ,h ) 

and, when using the second method, the values were 
in the order of 103 W m-2K (

2
cond
i ,h ). 

Therefore, it can be concluded that the 
methodology used in the development, test, and 
analysis of the copper thermosyphon presented in 
this paper proved to be feasible. 
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