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ABSTRACT. One of the most important concerns of hydraulics engineers is predicting erosion at the 
outer banks of rivers by studying the flow pattern along the bend. Not only are the streamlines in meanders 
non parallel curved lines, but they are also twisted. To study the streamlines flowing a sharp bend, a 180º 
sharp bend was constructed at Persian Gulf University in Iran. Three dimensional flow components at 
different locations of the bend were measured using Vectrino velocim. In this paper, streamlines were 
drawn and investigated in different longitudinal profiles, cross sections, and plans. The results indicated 
that the secondary flow strength and size of the vortex formed at the distance of the beginning to the bend 
apex would increase. The core of central vortex moved away from the inner bank towards central line of 
the channel by 22%, and to the water surface by 20%. On the contrary, the size of the secondary vortex 
increased by 15%. In addition, the average of the horizontal angle of the streamlines, vector and the locus of 
maximum velocity were determined at different levels in the present investigation.  
Keywords: secondary flow, longitudinal pressure gradient, Vectrino, laboratory bend flume, flow velocity, cross 

pressure gradient. 

Investigação experimental sobre linhas de fluxo numa curva acentuada de 180° 

RESUMO. Uma das preocupações mais importantes de engenheiros de sistema hidráulico é prever a 
erosão das margens de rios estudando o padrão de fluxo ao longo da curva. Além das linhas de fluxo no 
meandro não serem paralelas, elas são torcidas. Para estudar as linhas de fluxo através de uma curva 
acentuada, uma curva de 180º foi construída na Universidade do Golfo Pérsico no Irã. Componentes do 
fluxo tridimensional em diferentes locais da curva foram medidos usando velocímetros de Vectrino. Neste 
artigo, as linhas de fluxo foram desenhadas e investigadas em diferentes perfis longitudinais, transversais, e 
planos. Os resultados indicaram que a força e o tamanho do fluxo secundário do vórtice, formado do início 
para o pico da curva tendem a aumentar. O núcleo central do vortex moveu-se, da margem para a linha 
central do canal em 22%, e a superfície da água em 20%. Ao contrário, o tamanho do vórtice secundário 
aumentou 15%. Além disso, a média do ângulo horizontal das linhas de fluxo, o seu vetor e o local da 
velocidade máxima foram também determinados em diferentes níveis no presente estudo. 
Palavras-chave: fluxo secundário, gradiente de pressão longitudinal, Vectrino, canal curvo de laboratório, velocidade de 

fluxo, transversal gradiente de pressão. 

Introduction 

The secondary flow is formed as a result of 
centrifugal force and its interaction with lateral 
pressure gradients due to lateral slope of water 
surface. In this flow, water moves away at the upper 
part of the river, and at the lower part, it moves 
towards the inner bank. In open-channel bends, the 
curvature of the flow gives rise to secondary flow, 
resulting in the helical motion. This helical motion 
is of high importance in meandering rivers, where it 
plays a key role in erosion and sedimentation 
patterns in the river’s bed (Van Balen, Uijttewaal, & 
Blanckaert, 2009). Therefore, it is vital to know 
about and study flow pattern in river bends in order 
to predict and prevent outer wall erosion in the 

rivers. Moreover, the proper understanding of flow 
characteristics in curved open-channels is vital in 
predicting the spreading of pollutants and thus for 
water quality of natural river systems (Van Balen  
et al., 2009). 

Since scour and flow patterns are of high 
importance in river and hydraulics engineering, a 
great number of researchers have always conducted 
studies on flow structure and sediment transport 
through bend and straight reaches. Kra and Merkley 
(2004) developed a computational method based on 
mathematical modeling for both two-dimensional 
and three-dimensional velocity distributions for 
steady-state uniform flow in open channels of 
rectangular cross-section. It is evident that the two-
dimensional version of the model is not appropriate 
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for calculating surface velocity coefficients. Sui, 
Fang, and Karney (2006) carried out an experimental 
study on local scour in a flume with a 90º bend and 
analyzed the effect of some param including the 
Froude number, slope and width of the protective 
wall, and size of bed particle on the scour at bed 
level. Huang, Jia, Hsun-Chuan, and Sam (2009) 
applied NCCHE3D 3-D free surface to study 
secondary flows in an experimental channel. The 
agreements of vertically-averaged velocities between 
the simulated results were obtained by using 
different turbulence models with different pressure 
solution techniques, and the resulting measured data 
were satisfactory. Wang, Zhou, and Shao (2010) 
used a computational fluid dynamics model for 
simulation of two-dimensional water flow, sediment 
transport, bank failure processes, and the subsequent 
channel pattern changes. They considered the 
effects of secondary currents in bend channel and 
validated the water flow model using experimental 
data. Experimental and numerical studies of flow 
pattern in a 90º bend by Abhari, Ghodsian, Vaghefi, 
and Panahpur (2010) indicated that streamlines at 
the level close to the bed orient to the inner wall and 
at levels near water surface decline to the outer wall. 
Chan, Zhang, Leu, and Chen (2010) studied the 
turbulent flow in a channel with periodic porous 
ribs on one wall. They used the Reynolds averaged 
Navier-Stokes (Rans) equations with a k-ɛ turbulent 
model for turbulence closure. Barbhuiya and 
Talukdar (2010) carried out an experimental study 
of three dimensional flow and scour pattern in a 90º 
bend, and measured the time averaged velocity 
components, turbulent intensity components and 
Reynolds stresses in different vertical sections by 
using ADV. The Results showed that the maximum 
measured velocity is 1.61 times the mean velocity. 
Stoesser, Ruether, and Olsen (2010) solved the 
Navier–Stokes equations on a fine three-
dimensional grid by using a Large Eddy Simulation 
approach and a method that is based on the Rans 
equations for which there are two different isotropic 
turbulence closures. The results provided clear 
evidence that the Rans code was able to predict the 
time-averaged primary velocities with good 
agreement regardless of the turbulence model used. 
Bonakdari, Baghalian, Nazari, and Fazli (2011) 
predicted flow field in a mild 90º bend using 
Artificial Neural Networks (ANN) and Genetic 
Algorithm (GA). They studied the variations of 
velocities in both experimental and numerical 
(CFD) models. Moreover, they compared the 
results of ANN and CFX methods in sections where 
experimental data were not available. 
Constantinescu, Koken, and Zeng (2011) considered 

the flow in an open channel bend of strong 
curvature (the ratio between the radius of curvature 
of the curved reach and the channel width is close to 
1.3) over realistic topography corresponding to 
equilibrium scour conditions. Results demonstrated 
that compared to Rans, DES (detached eddy 
simulation) is able to better capture the 
redistribution of the mean flow stream wise velocity. 
Baghalian, Bonakdari, Nazari, and Fazli (2012) 
investigated the velocity field in a 90 degree open 
channel bend using artificial intelligence, analytical, 
experimental, and numerical methods. They 
indicated that numerical, ANN and experimental 
results could show that the maximum velocity 
occurs under the free-surface but the analytical 
solution could not. Blanckaert et al. (2013) studied 
three distinct processes of flow separation near the 
banks in sharply-curved open-channel bends. The 
experiments were performed with both a flat 
immobile gravel bed and a mobile sand bed with 
dominant bed load sediment transport. Gholami, 
Akhtari, Minatour, Bonakdari, and Javadi (2014) 
carried out the experimental and numerical 
modelling of flow pattern at a strongly-curved 90 
degree bend and reported that in both models, along 
the bend, the maximum velocity always occurs near 
the inner wall while the minimum occurs near the 
outer wall. Celik, Diplas, and Dancey (2014) 
measured the pressure fluctuations on the surface of 
a coarse, fully exposed, spherical grain resting upon 
a bed of identical grains in an open channel 
turbulent flow. They concluded that the stream wise 
velocity near the bed is most directly related to those 
force events crucial to particle entrainment. Huang, 
Li, Huang, and Liou (2014) acquired temperature 
profiles in a PDMS micro channel with a 90º sharp 
bend using a molecule-based temperature sensor. 
These temperature evolutions agree with secondary 
flow patterns identified from the velocity 
measurement. Vaghefi, Akbari, and Fiouz (2014) 
used the Depth-Averaged method to study and 
analyze shear stress distribution near the bed in a 
180º sharp bend flume. The results suggested that 
the maximum dimensionless shear stress occurs 
near the inner wall and at the 40º cross section. 
Vaghefi, Akbari, and Fiouz (2015) measured three 
dimensional flow velocity components in a 180 
degree sharp bend. The comparison between the 
longitudinal velocity values at distances of 5 and 
95% from the bed showed a 60% increase in flow 
velocity from near the bed to water surface. Horvat, 
Isic, and Spasojevic (2015) applied a two-
dimensional numerical model for simulating water 
flow, sediment transport and bed evolution in a 
straight channel. The simulation results showed 
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