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ABSTRACT. This work aims to estimate the suspension stiffness and damping coefficient of a tracked 
vehicle by using an inverse problem technique based on Particle Swarm Optimization (PSO) and on 
Random Restricted Window (R2W). The tracked vehicle has ten road wheels. Each road wheel is linked to 
a passive and independent suspension. A half car model with seven degrees of freedom describes the 
bounce and pitch dynamics of the chassis and the vertical dynamics of the wheels. Bounce and pitch 
accelerations are evaluated when the vehicle traverses a bump terrain. The inverse problem approach 
minimizes the total quadratic error between estimated and pseudo-experimental data for bounce and pitch 
accelerations. The viability of a field experiment to estimate the suspension parameters is analyzed, as well 
as the performance of the employed optimization methods and the effects of the noise on pseudo-
experimental data. 
Keywords: vehicle suspension, inverse problem, R2W, PSO. 

Estimativa de parâmetros da suspensão de um veículo sobre lagartas 

RESUMO. Este trabalho objetiva estimar a rigidez e o coeficiente de amortecimento da suspensão de um 
veículo sobre lagartas. Técnicas de problema inverso são empregadas, sendo utilizados os métodos de 
otimização Particle Swarm Optimization (PSO) e Random Restricted Window (R2W). O veículo sobre lagartas 
tem dez rodas. Cada roda está ligada a uma suspensão passiva e independente. Um modelo de meio carro 
com sete graus de liberdade descreve a dinâmica vertical de cada roda e a dinâmica vertical e de arfagem do 
chassi. As acelerações vertical e de arfagem do chassi são avaliadas quando o veículo passa sobre um terreno 
com uma lombada. A abordagem de problema inverso minimiza o erro quadrático total entre os dados 
estimados e os dados pseudo-experimentais referentes às acelerações vertical e de arfagem do chassi. A 
viabilidade de um experimento de campo para estimar os parâmetros da suspensão é analisada, sendo 
também analisados o desempenho dos métodos de otimização utilizados e o efeito do ruído sobre os dados 
pseudo-experimentais. 
Palavras-chave: suspensão veicular, problema inverso, R2W, PSO. 

Introduction 

The logistics and maintenance costs of military 
tracked vehicles motivate the study of field 
experiments to evaluate vehicle subsystems 
performance. These vehicles should be on service as 
long as possible without field maintenance and 
without return to the maintenance facility. 
Moreover, mainly in a combat situation, the 
consequences associated to premature failure of 
components of such a vehicle can be dire 
(Woldman, Tinga, Van Der Heide, & Masen, 2015). 
Then, monitoring the vehicle performance, prior a 
mechanical failure, a criterion to shutdown 
maintenance could be established. In this sense, this 
work proposes and analyzes the viability of a field 
experiment to evaluate vehicle suspension 
parameters. In this experiment, the vehicle traverses 
a bump terrain, while bounce and pitch 

accelerations are measured. Knowing such data and 
employing an inverse problem approach, the 
estimation of the suspension stiffness and damping 
coefficient could be feasible. The same idea can be 
used in non-military tracked utility vehicles such as 
tractors, crane vehicles and snow vehicles. 

The vehicle suspension is devoted to minimize 
the vibrations imposed by the terrain, influencing 
the comfort and maneuverability of the vehicle (Ata 
& Oyadiji, 2014; Dhir & Sankar, 1994; Gillespie, 
1992; Goga & Klucik, 2012; Mehdizadeh, 2015; 
Ryu, Park, & Suh, 2011). The suspension takes the 
entire vehicle weight and offers a flexible support to 
the vehicle on the ground (Sridhar & Sekar, 2006). 
In this mechanical system, the suspension stiffness 
and damping coefficient are relevant parameters to 
analyze the suspension wear. However, these 
parameters cannot be directly measured when the 
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vehicle is in field. To overcome this problem, an 
inverse problem approach could be adopted. 

The inverse problem techniques are powerful tools 
to estimate properties of a system by using indirect 
measurements (Ozisik & Orlande, 2000). So, chassis 
bounce and pitch accelerations can be measured to 
estimate the suspension stiffness and damping 
coefficient. To solve the inverse problem, an 
optimization method minimizes the sum of square 
errors between estimated data and experimental data. 

The optimization of vehicle suspension parameters 
had been conducted by using a stochastic optimization 
method (Goga & Klucik, 2012). Thus, considering the 
inverse problem a special kind of an optimization 
problem, the adoption of a stochastic optimization 
method could be a promising choice to estimate the 
suspension parameters of a tracked vehicle. 

The stochastic optimization methods Random 
Restricted Window (R2W) and Particle Swarm 
Optimization (PSO) are employed in the present 
work. Both methods create populations of possible 
solutions, which are updated to minimize the 
objective function. R2W creates a new population in 
a limited region of the search space in the vicinity of 
the better solution of the last population (Bihain, 
Camara, & Silva Neto, 2012) and PSO mimics a 
flock of birds looking for food (Colaço, Orlande, & 
Dulikravich, 2006; Moraes & Nagano, 2012). These 
optimization methods are useful to deal with high 
nonlinear objective functions and do not require the 
evaluation of the gradient of these functions. 
Furthermore, these methods are easy to be 
implemented. Otherwise, in these methods, 
empirical parameters must be set and they usually 
have high computational cost (Colaço et al., 2006). 

Material and methods 

The direct problem is represented by a half car 
model with five road wheels (Ata & Oyadiji, 2014). 
This model has seven degrees of freedom, taking 
into account the follow assumptions: the chassis is a 
rigid body; the terrain is rigid; the roll and yaw 
movements are not considered; the wheels stiffness 
and the suspensions stiffness are constants; the 
suspension damping coefficient is constant; and the 
damping effects of the wheels are not considered. 

The model describes half vehicles with N 
wheels. Equations (1) and (2) model bounce and 
pitch dynamics of the chassis and Equation (3) 
models the bounce dynamics of each wheel i. 

 mୠZሷ ୠ +	෍Cୠ୒
୧ୀଵ ൫Zሶ ୠ +	 l୧θሶ − Zሶ ୵୧൯ +෍KୠሺZୠ + l୧θ − Z୵୧ሻ୒

୧ୀଵ = 0 (1)

I୷θሷ + ෍Cୠ୒
୧ୀଵ ൫Zሶ ୠ + l୧θሶ − Zሶ ୵୧൯l୧ +෍KୠሺZୠ + l୧θ − Z୵୧ሻ୒

୧ୀଵ l୧ = 0 (2)

 m୵Zሷ୵୧ − Cୠ൫Zሶ ୠ + l୧θሶ − Zሶ ୵୧൯ − KୠሺZୠ + l୧θ − Z୵୧ሻ 	+ K୵ሺZ୵୧ − Z୰୧ሻ = 0 
(3)

 
where  

mb is the mass of the chassis, Zb is the bounce 
displacement of the center of gravity (C.G.) of the 
chassis, θ is the pitch angle of the chassis, Zwi is 
displacement of the wheel i, Iy is the chassis inertia, 
mw is the mass of the wheel, li is horizontal distance 
between the chassis C.G. and the suspension i, Cb is 
the damper coefficient and Kb is the suspension 
stiffness. 

The terrain excitation (z୰୧) on each wheel follows 
Equations (4), (5) and (6) (Ata & Oyadiji, 2014). 

 z୰୧ሺtሻ = z୰ଵሺt + τ୧ሻ (4)
 z୰ଵሺtሻ= ൝h ቄ1 − cos ቂቀ2 vwቁ ሺt − 0.5ሻቃቅ , 0.5 ≤ t ≤ 0.5 + w/v0, otherwise  (5)

 τ୧ = ሺlଵ − l୧ሻ vൗ  (6)

 
where 

the excitation delay (τ୧) is a function of the 
vehicle velocity (v) and of the distance between the 
first suspension (l1) and the suspension i (li). 
Furthermore, the bump with height h and width w 
is modeled in Equation (5). 

The initial condition of the ordinary 
differential system of equations is the mechanical 
equilibrium. Moreover, the system of ordinary 
differential equations is solved by a fourth order 
Runge-Kutta algorithm implemented in SciLab 
software. 

Table 1 furnishes the values of the constants for 
the half car model adopted in the present work, 
which are based on the M113 armored vehicle (Ata 
& Oyadiji, 2014). 

Table 1. Constants of the half car model. 

Parameter Symbol Value 
Chassis mass (kg) mb 5109 
Chassis inertia (kgm2) Iy 12856 
Wheel mass (kg) mw 113.5 
Wheel stiffness (N m-1) Kw 613000 
First suspension position* (m) l1 1.35 
Second suspension position* (m) l2 0.69 
Third suspension position* (m) l3 0.02 
Fourth suspension position* (m) l4 −0.66 
Fifth suspension position* (m) l5 −1.32 
Bump height (m) h 0.1 
Bump width (m) w 0.5 
Vehicle velocity (km h-1) v 10 
*The horizontal distance between the chassis C.G. and the suspension i. 
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numerical solution represents correctly the chassis 
dynamics. 

 

 
Figure 3. Bounce acceleration. 

In R2W, the restriction factor (δ) and the 
number of elements of the population (Pop) are 
empirical constants. The influences of these 
empirical constants on the optimization process can 
be analyzed from Table 3, where estimated damping 
coefficient and suspension stiffness are present. 
Noiseless pseudo-experimental data are considered 
to perform these estimations. Populations with 10, 
20 and 40 elements are analyzed, as well as the 
restriction factor equal to 0.005, 0.006 and 0.008. All 
of the estimated parameters have shown relative 
error lower than 0.15%. Moreover, the discrepancy 
principle was satisfied, stopping the optimization 
procedure. So, in this work, the restriction factor 
equal to 0.008 and the population size equal to 20 
particles are chosen, because these empirical 
constants have spent less computational time. 

 

 
Figure 4. Pitch acceleration. 

In PSO, the population size (Pop), the inertial 
parameter (α) and learning parameter (β) are 
empirical constants that must be chosen to perform 
the inverse problem. The conditions1 ≤β≤ 2 and 0 ≤α≤ 1 are recommended (Colaço et al., 2006). 

The influences of PSO empirical constants on 
the estimation of the suspension parameters were 
investigated for noiseless pseudo-experimental data. 
Simulations with β equal to 1.2, 1.5, 1.8 and 2.0 and 
with α equal to 1.0 were performed, but they have 
not converged. Furthermore, the influence of the 
population size on the inverse problem is 
summarized in Table 4, considering β=1 and α=0.5. 

The Table 4 show that the best results were 
computed with 20 particles in the population, 
minimizing better the objective function. 
Consequently, in this work, the selected values of the 
PSO empirical constants were β = 1, α = 0.5 and 
Pop=20. 

The results shown in Tables 3 and 4 reveal that 
the relative error between the exact values of the 
suspension parameters and the estimated ones are 
minor than 0.16%. Thus, the proposed inverse 
problem approach, employing PSO and R2W, with 
noiseless pseudo-experimental data, has estimated 
correctly the suspension parameters. 

The effects of noise on pseudo-experimental data 
are summarized in Tables 5 and 6. The discrepancy 
principle was not satisfied in these results. However, 
the relative errors of the estimated parameters were 
less than the noise level, indicating that the proposed 
inverse problem approach was very efficient by 
using R2W or PSO. Nevertheless, increasing the 
noise level, the relative errors in the estimated 
parameters are also increased. Furthermore, 
increasing the noise level, the number of iterations 
to reach the convergence is reduced, but the 
converged value of the objective function is 
increased. It is explained by the convergence 
criterion established by Equation (15). It is expected, 
since increasing measurement errors, the pseudo-
experimental data become worst, limiting the 
minimization process of the objective function. 

Comparing the results shown in Tables 5 and 6, 
it is verified that R2W spent more computational 
time than PSO for the cases with noise level equal to 
0, 1 and 5%. In these cases, R2W revealed higher 
values for objective function and for relative errors 
of estimated parameters. Otherwise, for 10% of 
noise level, R2W has shown better results for 
estimated parameters. Nevertheless, considering 
only the computed values for objective function, 
both methods have furnished similar results. 

The evolutions of the objective function by using 
PSO and R2W were presented in Figures 5 and 6 for 
the cases reported in Tables 5 and 6. These figures 
show that increasing the noise level, the convergence is 
faster, but the minimum value of the objective 
function increases. In addition, PSO and R2W 
performances were similar in these studied cases. 
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Table 3. Influences of the restriction factor and population size on R2W. 

Pop δ 
Cb (Ns m-1) Kb (N m-1) 

S Time (s) k 
Estimated Relative error Estimated Relative error 

10 
0.005 22511 -0.04% 103915 -0.08% 1E-6 3751 56 
0.006 22526 0.03% 103852 -0.14% 9E-7 2334 34 
0.008 22519 0.00% 103996 0.00% 8E-8 2582 38 

20 
0.005 22530 0.04% 104064 0.06% 1E-6 5470 40 
0.006 22521 0.01% 104026 0.03% 2E-7 7555 55 
0.008 22521 0.00% 103960 -0.04% 2E-7 1502 11 

40 
0.005 22521 0.01% 103997 0.00% 1E-7 6303 23 
0.006 22523 0.02% 103875 -0.12% 6E-7 3038 11 
0.008 22518 -0.01% 104021 0.02% 2E-7 4797 17 

Table 4. Influences of the population size on PSO. 

Pop 
Cb (Ns m-1) Kb (N m-1) 

S Time (s) k 
Estimated Relative Error Estimated Relative Error 

10 22525 0.02% 103850 -0.14% 7E-7 3106 43 
20 22521 0.00% 104039 0.04% 2E-7 1626 11 
40 22519 -0.01% 104158 0.15% 6E-7 1372 4 

Table 5. Noise effects on R2W (δ=0.008 and Pop=20). 

Noise 
Cb (Ns m-1) Kb (N m-1) 

S Time (s) k 
Estimated Relative Error Estimated Relative Error 

0% 22521 0.004% 103960 -0.039% 2E-7 1502 11 
1% 22533 0.056% 104657 0.631% 6E-5 7230 101 
5% 22557 0.163% 103894 -0.102% 2E-4 5067 71 
10% 22571 0.229% 107571 3.433% 6E-4 4168 61 

Table 6. Noise effects on PSO (β=1, α=0.5 and Pop=20). 

Noise 
Cb (Ns m-1) Kb (N m-1) 

S Time (s) k 
Estimated Relative Error Estimated Relative Error 

0% 22521 0.003% 104039 0.038% 2E-7 1626 11 
1% 22526 0.028% 103997 -0.003% 6E-5 4933 68 
5% 22531 0.049% 103927 -0.070% 2E-4 4755 67 
10% 22640 0.531% 98421 -5.365% 6E-4 4596 64 
 

 
Figure 5. Objective function evolution using PSO. 

 
Figure 6. Objective function evolution using R2W. 

Conclusion 

In the present work, a field experiment to 
estimate the damping coefficient and the suspension 
stiffness of a tracked vehicle with ten road wheels 
was proposed based on an inverse problem approach 
by using stochastic optimization methods: PSO and 
R2W. 

A half car model represents the direct problem, 
whose solution was compared with a reference 
solution. Vehicle bounce and pitch accelerations 
were correctly simulated. 

The empirical constants of the optimization 
methods were analyzed, permitting the selection of 
the best ones for each studied method.  

The performance of PSO and R2W were also 
analyzed, considering pseudo-experimental data 
with different noise levels. PSO and R2W had 
shown similar results. However, in most of the 
cases, R2W had spent more computational time, but 
for 10% of noise level, R2W have shown low relative 
error, spending less computational time. 

It is important to note that, in the noise cases, the 
relative errors of the estimated parameters have 
always been lower than the noise level. Thus, 
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theoretically, the measurement errors were not 
amplified in the proposed inverse problem solution. 

The noiseless cases have converged, satisfying 
the discrepancy principle. Otherwise, for 1, 5 and 
10% of simulated random noise, the convergence 
was reached when negligible variations of the 
objective function during 60 consecutives iterations 
were verified. Such strategy has conducted to higher 
objective function values for the cases with noise, 
but has permitted the convergence. 

The results have shown the viability of the 
proposed field experiment with the inverse problem 
approach to estimate the suspension parameters. 
This information could be used to predict the 
vehicle shutdown maintenance. 
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