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ABSTRACT. This work aims to estimate the suspension stiffness and damping coefficient of a tracked
vehicle by using an inverse problem technique based on Particle Swarm Optimization (PSO) and on
Random Restricted Window (R2W). The tracked vehicle has ten road wheels. Each road wheel is linked to
a passive and independent suspension. A half car model with seven degrees of freedom describes the
bounce and pitch dynamics of the chassis and the vertical dynamics of the wheels. Bounce and pitch
accelerations are evaluated when the vehicle traverses a bump terrain. The inverse problem approach
minimizes the total quadratic error between estimated and pseudo-experimental data for bounce and pitch
accelerations. The viability of a field experiment to estimate the suspension parameters is analyzed, as well
as the performance of the employed optimization methods and the effects of the noise on pseudo-
experimental data.
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Estimativa de parametros da suspensao de um veiculo sobre lagartas

RESUMO. Este trabalho objetiva estimar a rigidez e o coeficiente de amortecimento da suspensio de um
veiculo sobre lagartas. Técnicas de problema inverso sio empregadas, sendo utilizados os métodos de
otimizagio Particle Swarm Optimization (PSO) e Random Restricted Window (R2W). O veiculo sobre lagartas
tem dez rodas. Cada roda esti ligada a uma suspensio passiva e independente. Um modelo de meio carro
com sete graus de liberdade descreve a dinidmica vertical de cada roda e a dinimica vertical e de arfagem do
chassi. As aceleraces vertical e de arfagem do chassi s3o avaliadas quando o veiculo passa sobre um terreno
com uma lombada. A abordagem de problema inverso minimiza o erro quadritico total entre os dados
estimados e os dados pseudo-experimentais referentes as aceleragdes vertical e de arfagem do chassi. A
viabilidade de um experimento de campo para estimar os parimetros da suspensio ¢ analisada, sendo
também analisados o desempenho dos métodos de otimizagio utilizados e o efeito do ruido sobre os dados
pseudo-experimentais.

Palavras-chave: suspensio veicular, problema inverso, R2W, PSO.

Introduction

The logistics and maintenance costs of military
tracked vehicles motivate the study of field
experiments to evaluate vehicle subsystems
performance. These vehicles should be on service as
long as possible without field maintenance and
without return to the maintenance facility.
Moreover, mainly in a combat situation, the
consequences associated to premature failure of
components of such a wvehicle can be dire
(Woldman, Tinga, Van Der Heide, & Masen, 2015).
Then, monitoring the vehicle performance, prior a
mechanical failure, a criterion to shutdown
maintenance could be established. In this sense, this
work proposes and analyzes the viability of a field
experiment to evaluate vehicle suspension
parameters. In this experiment, the vehicle traverses

a bump terrain, while bounce and pitch

accelerations are measured. Knowing such data and
employing an inverse problem approach, the
estimation of the suspension stiffness and damping
coefficient could be feasible. The same idea can be
used in non-military tracked utility vehicles such as
tractors, crane vehicles and snow vehicles.

The vehicle suspension is devoted to minimize
the vibrations imposed by the terrain, influencing
the comfort and maneuverability of the vehicle (Ata
& Opyadiji, 2014; Dhir & Sankar, 1994; Gillespie,
1992; Goga & Klucik, 2012; Mehdizadeh, 2015;
Ryu, Park, & Suh, 2011). The suspension takes the
entire vehicle weight and offers a flexible support to
the vehicle on the ground (Sridhar & Sekar, 2006).
In this mechanical system, the suspension stiftness
and damping coefficient are relevant parameters to
these
parameters cannot be directly measured when the

analyze the suspension wear. However,
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vehicle is in field. To overcome this problem, an
inverse problem approach could be adopted.

The inverse problem techniques are powerful tools
to estimate properties of a system by using indirect
measurements (Ozisik & Orlande, 2000). So, chassis
bounce and pitch accelerations can be measured to
estimate the suspension stiffness and damping
cocfficient. To solve the inverse problem, an
optimization method minimizes the sum of square
errors between estimated data and experimental data.

The optimization of vehicle suspension parameters
had been conducted by using a stochastic optimization
method (Goga & Klucik, 2012). Thus, considering the
inverse problem a special kind of an optimization
problem, the adoption of a stochastic optimization
method could be a promising choice to estimate the
suspension parameters of a tracked vehicle.

The stochastic optimization methods Random
Restricted Window (R2W) and Particle Swarm
Optimization (PSO) are employed in the present
work. Both methods create populations of possible
solutions, which are updated to minimize the
objective function. R2W creates a new population in
a limited region of the search space in the vicinity of
the better solution of the last population (Bihain,
Camara, & Silva Neto, 2012) and PSO mimics a
flock of birds looking for food (Colago, Orlande, &
Dulikravich, 2006; Moraes & Nagano, 2012). These
optimization methods are useful to deal with high
nonlinear objective functions and do not require the
evaluation of the gradient of these functions.
Furthermore, these methods are easy to be
implemented. Otherwise, in these methods,
empirical parameters must be set and they usually
have high computational cost (Colago et al., 2006).

Material and methods

The direct problem is represented by a half car
model with five road wheels (Ata & Oyadiji, 2014).
This model has seven degrees of freedom, taking
into account the follow assumptions: the chassis is a
rigid body; the terrain is rigid; the roll and yaw
movements are not considered; the wheels stiffness
and the suspensions stiffness are constants; the
suspension damping coefficient is constant; and the
damping effects of the wheels are not considered.

The model describes half vehicles with N
wheels. Equations (1) and (2) model bounce and
pitch dynamics of the chassis and Equation (3)
models the bounce dynamics of each wheel 1.

N N
Myl + D Cy (B + 18 = i) + ) Ky(Zy 418 = Zy) = 0 )

i=1 i=1
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N N

1,6+ Z Co (Zp + 16 — Zy)li + Z Ky (Zy + 1,8 = Za) |, = 0 )
i=1 i=1

My Zyi — Co(Zp + 10 — Zyi) — Kp(Zp + 10 — Zy)) 3)
+ Kw(Zwi—Zi) =0

where

m, is the mass of the chassis, Z, is the bounce
displacement of the center of gravity (C.G.) of the
chassis, 0 is the pitch angle of the chassis, Z,; is
displacement of the wheel i, I, is the chassis inertia,
m,, is the mass of the wheel, 1, is horizontal distance
between the chassis C.G. and the suspension i, C, is
the damper coefficient and K, is the suspension
stiffness.

The terrain excitation (z) on each wheel follows
Equations (4), (5) and (6) (Ata & Oyadiji, 2014).

Zri(t) = Zrl(t + Ti) (4)
Zrl(t)

_[n{1-cos [(211%) t-05)]},

0, otherwise

05<t<05+w/v (5)

==y (6)

where

the excitation delay (t;) is a function of the
vehicle velocity (v) and of the distance between the
first suspension (1;) and the suspension i (l).
Furthermore, the bump with height h and width w
is modeled in Equation (5).

The initial
differential system of equations is the mechanical

condition of the ordinary
equilibrium. Moreover, the system of ordinary
differential equations is solved by a fourth order
Runge-Kutta algorithm implemented in Scilab
software.

Table 1 furnishes the values of the constants for
the half car model adopted in the present work,
which are based on the M113 armored vehicle (Ata
& Oyadiji, 2014).

Table 1. Constants of the half car model.

Parameter Symbol Value
Chassis mass (kg) m, 5109
Chassis inertia (kgm®) I, 12856
Wheel mass (kg) m,, 113.5
Wheel stiffness (N m™) K, 613000
First suspension position” (m) 1, 1.35
Second suspension position” (m) L 0.69
Third suspension position” (m) 1 0.02
Fourth suspension position” (m) 1, —0.66
Fifth suspension position” (m) 1 -1.32
Bump height (m) h 0.1
Bump width (m) w 0.5
Vehicle velocity (km h™) v 10

“The horizontal distance between the chassis C.G. and the suspension i.
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The exact values and the limits of the search
spaces of the estimated suspension parameters are
present in Table 2.

The proposed inverse problem is an
optimization problem, which is solved by using
PSO or R2W. The optimum solution determines
the estimated damping coefficient and suspension
stiffness.

Table 2. Exact values and limits of the search spaces of the
suspension parameters.

Parameter Symbol Exact Lower limit Upper limit
Damping cocfficient C, 22520 1000 30000
(Nsm™)

Suspension stiffness

(N m™) K, 104000 10000 150000

PSO describes the movement of a particle swarm
searching the minimum of an objective function,
taking into account the individual and global
learning process. In other words, the better
experiences of each particle and of the population
are considered. In this method, each particle j is
identified by a position, x, and by a velocity, A
(Colago et al., 2006). The position and the velocity
of the particles are updated following

A =oc AR + Bry(PF — xF) + Brp (P — xF) )

X = x4+ A ®)

In Equations (7) and (8), the inertial parameter o
and the learning parameter B controls the update
process of the particles, while the stochastic
characteristic of the method is introduced by ry; and
ry 5, which are random numbers within the range [0,
1] with uniform distribution. The superscript k
identifies the optimization process iteration. P]-k is
the best candidate solution found in the history of
the particle j and Py is the best candidate solution in
the population (Colago et al., 2006). The evolution
process of the population is repeated until the
stopping criterion is satisfied.

R2W is based on a random population of
possible solutions, which is generated in a restricted
region of the search space. The best candidate
solution of the population is found and the
population is discarded. Then, a new random
population is created in a limited region of the
search space around the last best candidate solution.
This procedure is repeated until the stopping
criterion is satisfied (Bihain et al., 2012).

The R2W population evolves by using Equations
(9) to (11).
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b= F— [ Py 9)
Py= P+ 8P, (10)
x;= P, + Rj(Py— P (11)
where

§ is the restriction factor, which is an empirical
constant used to define the size of the search
domain for each parameter, P, is an array with the
lowest values of the parameters in the search
domain, Py is an array with the highest values of
the parameters in the search domain and R; is an
array of random numbers within the range [0, 1]
with uniform distribution (Bihain et al., 2012).

Figures 1 and 2 show simplified flowcharts for
PSO and R2W.

Define o, B and Pop
k=0, Af'=0
Generate population
Determine Pg

Generate ry;and ry;
Determine Pik

!
k1 _ . 3k k_ k
M =ec i+ Brg(P N )+
+Przj (Pg —Xik_J

Yes )
—<._inside the searc>
space?
No

Put the particle inside
the search space

Determine B,
k=k+1

}

P, is the solutien

Figure 1. PSO flowchart.
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k=0
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Determine Py
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1

Generate Rj
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the particle
inside the search
space?

Yes
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the search space

v

NO ~epop+1?
Yes

Determine Py
k=k+1

Convergence?

P, is the solution

Figure 2. R2W flowchart.

The objective function, Equation (12), evaluates
the total quadratic error between the estimated and
the pseudo-experimental data (Ozisik & Orlande,
2000) for bounce and pitch accelerations,
considering a dimensionless form

S(K, C8)

n

_12
" 2n
1

i=

<Z(Kk, ck) - zp> . <é(1<k, ck) - ep>] (12)

max|Z | max|f e

where

max|éref|, éexp and é(Kk, C]g) are, respectively,
the maximum absolute value of the pitch
acceleration furnished by the reference data (Ata &
Opyadiji, 2014), the pseudo-experimental pitch
acceleration and the estimated pitch acceleration.
Similarly, maxlzref|, Zexp and Z(KE, c‘g) are,
respectively, the maximum absolute value of the
bounce acceleration furnished by the reference data
(Ata & Opyadiji, 2014), the pseudo-experimental
bounce acceleration and the estimated bounce
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acceleration. Furthermore, n is the number of
measurements along of the time for bounce and
pitch accelerations.

The  pseudo-experimental  data  mimics
experimental data and they are simulated
measurements obtained from the solution of the
direct problem by using a priori prescribed values
for the unknown parameters (Chisaria, Macorinib,
Amadioa, & Izzuddinb, 2015; Machado & Orlande,
1998; Ouzisik & Orlande, 2000). The pseudo-
experimental data are evaluated by using

éexp = eexa\ct + o E maxléexactl (13)

zexp = Zexact + ©E maxlzexactl (14)

In Equation (13) and (14) the subscript exact
refers to the proposed numerical solution obtained
with the exact values of the suspension parameters
Ky, and C,. Moreover, ® is a random variable with
normal distribution, zero mean and unitary standard
deviation, E is an arbitrary noise level (Machado &
Orlande, 1998; Ozisik & Orlande, 2000).

The inverse crime is present in inverse problems
when the same mathematical solution is used for
computing both pseudo-experimental data and
estimated data (Chavez, Alonzo-Atienza, & Alvarez,
2013). However, in the present work, the inverse
crime is avoided by introducing random noise in
Equation (13) and (14).

Despite of the inverse crime, the noiseless data
(E = 0) can be used to verify the correct
implementation of the inverse problem solver and to
select the better empirical constants of the
optimization method.

The stopping criterion of the optimization
procedure considers that Equation (15) must be
satisfied during 60 consecutive iterations

IS(Kl, ) - S(KE CI/S(KELCE) < 001 (15)

or the discrepancy principle,
Equation (16), must be satisfied

represented by

S(Kk, ck) < 107¢ (16)

Results and discussion

The results of the direct problem established in
Equations (1) to (6) for bounce and pitch
accelerations are compared with reference data (Ata
& Opyadiji, 2014) in Figures 3 and 4. In these figures,
percentage  errors  between  Reference  and
Simulation results are also shown. The agreement
between these results indicates that the proposed
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numerical solution represents correctly the chassis
dynamics.

{ e Reference
Simulation -
Error [%]

Bounce Acceleration [m/s?],Error [%]

’ 0 02040608 1 12141618 2 2224 2628 3
Time [s]

Figure 3. Bounce acceleration.

In R2W, the restriction factor (8) and the
number of elements of the population (Pop) are
empirical constants. The influences of these
empirical constants on the optimization process can
be analyzed from Table 3, where estimated damping
coefficient and suspension stiffness are present.
Noiseless pseudo-experimental data are considered
to perform these estimations. Populations with 10,
20 and 40 elements are analyzed, as well as the
restriction factor equal to 0.005, 0.006 and 0.008. All
of the estimated parameters have shown relative
error lower than 0.15%. Moreover, the discrepancy
principle was satisfied, stopping the optimization
procedure. So, in this work, the restriction factor
equal to 0.008 and the population size equal to 20
chosen, because

particles are these empirical

constants have spent less computational time.

I

: - Reference
Simulation 1
«—=— Error [%)]

Pitch Accelerataion [rad s'z], Error [%]

4 —
0 02040608 1 12141618 2 22242628 3
Time [s]

Figure 4. Pitch acceleration.

In PSO, the population size (Pop), the inertial
parameter (o) and learning parameter (B) are
empirical constants that must be chosen to perform
the inverse problem. The conditions1 <B< 2 and 0
<o< 1 are recommended (Colago et al., 2006).
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The influences of PSO empirical constants on
the estimation of the suspension parameters were
investigated for noiseless pseudo-experimental data.
Simulations with B equal to 1.2, 1.5, 1.8 and 2.0 and
with o equal to 1.0 were performed, but they have
not converged. Furthermore, the influence of the
population size on the inverse problem is
summarized in Table 4, considering =1 and a=0.5.

The Table 4 show that the best results were
computed with 20 particles in the population,
minimizing  better  the  objective  function.
Consequently, in this work, the selected values of the
PSO empirical constants were B = 1, a = 0.5 and
Pop=20.

The results shown in Tables 3 and 4 reveal that
the relative error between the exact values of the
suspension parameters and the estimated ones are
minor than 0.16%. Thus, the proposed inverse
problem approach, employing PSO and R2W, with
noiseless pseudo-experimental data, has estimated
correctly the suspension parameters.

The effects of noise on pseudo-experimental data
are summarized in Tables 5 and 6. The discrepancy
principle was not satisfied in these results. However,
the relative errors of the estimated parameters were
less than the noise level, indicating that the proposed
inverse problem approach was very efficient by
using R2W or PSO. Nevertheless, increasing the
noise level, the relative errors in the estimated
parameters are also increased. Furthermore,
increasing the noise level, the number of iterations
to reach the convergence is reduced, but the
converged value of the objective function is
increased. It is explained by the convergence
criterion established by Equation (15). It is expected,
since increasing measurement errors, the pseudo-
experimental data become worst, limiting the
minimization process of the objective function.

Comparing the results shown in Tables 5 and 6,
it is verified that R2W spent more computational
time than PSO for the cases with noise level equal to
0, 1 and 5%. In these cases, R2ZW revealed higher
values for objective function and for relative errors
of estimated parameters. Otherwise, for 10% of
noise level, R2W has shown better results for
estimated parameters. Nevertheless, considering
only the computed values for objective function,
both methods have furnished similar results.

The evolutions of the objective function by using
PSO and R2W were presented in Figures 5 and 6 for
the cases reported in Tables 5 and 6. These figures
show that increasing the noise level, the convergence is
faster, but the minimum value of the objective
function increases. In addition, PSO and R2W
performances were similar in these studied cases.
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Table 3. Influences of the restriction factor and population size on R2W.

Caldeira et al.

C, (Nsm™) K, (N m™)

Pop 5 Estimated Relative error Estimated Relative error S Time (5) K
0.005 22511 -0.04% 103915 -0.08% 1E-6 3751 56
10 0.006 22526 0.03% 103852 -0.14% 9E-7 2334 34
0.008 22519 0.00% 103996 0.00% 8E-8 2582 38
0.005 22530 0.04% 104064 0.06% 1E-6 5470 40
20 0.006 22521 0.01% 104026 0.03% 2E-7 7555 55
0.008 22521 0.00% 103960 -0.04% 2E-7 1502 11
0.005 22521 0.01% 103997 0.00% 1E-7 6303 23
40 0.006 22523 0.02% 103875 -0.12% 6E-7 3038 11
0.008 22518 -0.01% 104021 0.02% 2E-7 4797 17
Table 4. Influences of the population size on PSO.
C, (Ns m™) K, (N m™) }
Pop Estimated Relative Error Estimated Relative Error S Time (s) K
10 22525 0.02% 103850 -0.14% 7E-7 3106 43
20 22521 0.00% 104039 0.04% 2E-7 1626 11
40 22519 -0.01% 104158 0.15% 6E-7 1372 4
Table 5. Noise effects on R2W (8=0.008 and Pop=20).
. C, (Ns m™) K, (Nm™) . .
Noise Estimated Relative Error Estimated Relative Error S Time (s) k
0% 22521 0.004% 103960 -0.039% 2E-7 1502 11
1% 22533 0.056% 104657 0.631% 6E-5 7230 101
5% 22557 0.163% 103894 -0.102% 2E-4 5067 71
10% 22571 0.229% 107571 3.433% 6E-4 4168 61
Table 6. Noise effects on PSO (B=1, a=0.5 and Pop=20).
. C, (Nsm™) K, (N m™") . .
Noise Estimated Relative Error Estimated Relative Error S Time (s) K
0% 22521 0.003% 104039 0.038% 2E-7 1626 11
1% 22526 0.028% 103997 -0.003% 6E-5 4933 68
5% 22531 0.049% 103927 -0.070% 2E-4 4755 67
10% 22640 0.531% 98421 -5.365% 6E-4 4596 64
7e-04 :
sooos Conclusion
6e-04 .
S . YOV PR SN SUPOYD OO IOPPUOLPUUON PPI SUOR FOPOYY. FEVUTE PO S In the present work, a field experiment to
5e-04 I —— Noise 1% estimate the damping coefficient and the suspension
4.5e-04 4------1----- — - Noise 5% --- . . .
009 N T T O OO O N -~ Noise 10% stiffness of a tracked vehicle with ten road wheels
o350 was proposed based on an inverse problem approach
e- . . .
256041 il el e e e M U by using stochastic optimization methods: PSO and
2e-04 4 ke R2W
1.5e-04 - . .
1e-04 1 A half car model represents the direct problem,
el whose solution was compared with a reference
0 5 10

1 20 25 30 35 40 45 50 55 60 65 70
k

Figure 5. Objective function evolution using PSO.

66-04 1o
5.5€-04 |-
5004+~

4.5e-04
4e-04

3.5e-04

o 3e-04
2.5e-04
2e-04
1.5e-04
1e-04
5e-05
0e00

Noise 1%
Noise 5% __
Noise 10%

Figure 6. Objective function evolution using R2W.

solution. Vehicle bounce and pitch accelerations
were correctly simulated.

The empirical constants of the optimization
methods were analyzed, permitting the selection of
the best ones for each studied method.

The performance of PSO and R2W were also
analyzed, considering pseudo-experimental data
with different noise levels. PSO and R2W had
shown similar results. However, in most of the
cases, R2W had spent more computational time, but
for 10% of noise level, R2W have shown low relative
error, spending less computational time.

It is important to note that, in the noise cases, the
relative errors of the estimated parameters have
always been lower than the noise level. Thus,
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theoretically, the measurement errors were not
amplified in the proposed inverse problem solution.

The noiseless cases have converged, satistying
the discrepancy principle. Otherwise, for 1, 5 and
10% of simulated random noise, the convergence
was reached when negligible variations of the
objective function during 60 consecutives iterations
were verified. Such strategy has conducted to higher
objective function values for the cases with noise,
but has permitted the convergence.

The results have shown the viability of the
proposed field experiment with the inverse problem
approach to estimate the suspension parameters.
This information could be used to predict the
vehicle shutdown maintenance.
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