A New Class of Gamma Distribution

ABSTRACT. This paper presents a new class of probability distributions generated
from the gamma distribution. For the new class proposed, we present several statistical
properties, such as the risk function, the density expansions, moment generating
function, characteristic function, the moments of order m, central moments of order m,
the log likelihood and its partial derivatives and also entropy, kurtosis, skewness and
variance. These same properties are indicated for a particular distribution within this
new class that is used to illustrate the capability of the proposed new class through an
application to a real data set. The data set presented in Choulakian and Stephens (2001)
was used. Six models are compared and for the selection of these models were used the
Akaike Information Criterion (AIC), the Akaike Information Criterion corrected
(AICc), Bayesian Information Criterion (BIC), Hannan Quinn Information Criterion
(HQIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit.
Finally, we present the conclusions from the analysis and comparison of the results
obtained and the directions for future work.

Keywords: gamma distribution, probability distributions class, model fit.

Uma Nova Classe de Distribuicdes Gama

RESUMO. Este artigo apresenta uma nova classe de distribuicdo de probabilidades
gerada a partir da distribuicdo gama. Para a classe proposta apresentamos algumas
propriedades estatisticas tais como funcdo de risco, expansfes para densidade e
acumulada, funcdo geratriz de momentos, fungdo caracteristica, momentos ordinarios,
momentos centrais, medidas de curtose e assimetria, entropia de Rényi, funcéo de log-
verossimilhanca e suas respectivas derivadas parciais. Algumas dessas propriedades
sdo determinadas para uma distribuicdo base particular dentro desta nova classe para
ilustrar a potencialidade da classe proposta através de uma aplica¢do a um conjunto de
dados reais. O conjunto de dados apresentado em Choulakian and Stephens (2001) foi
usado. Seis modelos sdo comparados e para a selecao destes foram usados os critérios
de informacéo de Akaike, Akaike corrigido, Baysiano e Hannan Quinn. Os testes de
Cramer-Von Mises e Anderson-Darling foram usados para avaliar o ajuste aos modelos.
Finalmente, apresentamos as conclusdes a partir da analise e comparacéo dos resultados
obtidos e sugerimos trabalhos futuros.

Palavras-chave: distribuicdo gama, classe de distribuicdo de probabilidade, ajuste de

modelos.
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INTRODUCTION

The gamma distribution is used in a variety of applications including queue, financial and
weather models. It can naturally be considered as the distribution of the waiting time between
events distributed according to a Poisson process. It is a biparamétrica distribution, whose

density is given by:

f(t) = %t“‘le_ﬁt,t >0,

where « > 0 is a shape parameter and 8 > 0 is the reciprocal of a scale parameter.

Due to the importance of this distribution recently some new distributions as well as
families of probability distributions based on generalizations of the gamma distribution have
been proposed. The first is based on the family of exponentiated distribution defined by
Mudholkar, Srivastava and Freimer (1995). Given a distribution with continuous distribution
function Fd its generalization or exponentiated form G (x) is obtained by F(x) = G%(x), with
a > 0 (power parameter). Gupta, Gupta and Gupta (1998) proposed and studied some
properties exponentiated gamma distribution.

Cordeiro, Ortega and Silva (2011) extended the exponentiated gamma distribution
defining a new distribution called Exponentiated Generalized gamma Distribution with four
parameters, which is capable of modeling bathtub shaped failure rate phenomena.

Zografos and Balakrishnan (2009) defined a family of probability distributions based

on the integration of a gamma distribution as follows:

1 ~In(1-6(x)) ,4—1 —
F(x) :mfo ta 16 tdt,

where G (x) is an arbitrary distribution function. When @ = n + 1 this distribution coincides

with the distribution of the nth highest value record (Alzaatreh, Famoye & Lee, 2014).
Alternatively, Ristic and Balakrishnan (2012) have proposed a new family of

probability distributions, which is also based on the integration of the gamma distribution. They

defined this new family as follows:

41 =n(6) g -t
F(x)=1 F(a)fo t* e tdt,

where G (x) is an arbitrary distribution function. Similarly, when & = n + 1 this distribution
coincides with the distribution of the nth smallest value record (Alzaatreh et al. 2014).
Following the line of work of Zografos and Balakrishnan (2009) and Ristic and

Balakrishnan (2012), our goal in this work is to propose a new family of distributions based on
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gamma distribution. The family of distributions proposed here is the following:

_ (t® B* a-1,-pt
H;(x) = [i-¢e0 t* e Pldt,
G flG(x) r(a)

where G (x) is an arbitrary distribution function and H;(x) and has the same support as the
distribution G (x). We shall call this new family Gamma-[(1 — G)/G] class. The statistical
properties of this new class, such as mean, variance, standard deviation, mean deviation,
kurtosis, skewness, moment generating function, characteristic function and graphical analysis,
are derived.

Then, to illustrate the applicability of the proposed new family, we consider the
particular case of the distribution obtained when considering that G (x) is the distribution
function of an exponential random variable. By presenting mathematical structures for
Gamma-[(1 — G)/G] class we also derived statistical properties of this new distribution and to
illustrate its potentiality, an application to a set of real data is performed. For this, we used the
data set presented in the work Choulakian and Stephens (2001) to see if the models are well
adjusted to this data. As comparative criteria of fitness of the models, it was considered: the
Akaike (AIC) (Akaike, 1972), the Akaike Fixed (AIC) (Burnham & Anderson, 2002), the
Bayesian information criterion (BIC) (Schwartz, 1978), the Hannan-Quinn information
criterion (HQIC) (Hannan & Quinn, 1979), and the Cramer-von Mises (Darling, 1957) and
Anderson-Darling (Anderson & Darling, 1952) tests. Both hypothesis tests, Anderson-Darling
and Cramér-von Mises, are discussed in detail by Chen and Balakrishnan (1995) and belong to
the class of quadratic statistics based on the empirical distribution function, because they work

with the squared differences between the empirical distribution and the hypothetical.

MATERIAL AND METHODS

Obtaining a class of probability distributions

The Gamma-[(1 — G)/G] class is defined by the cumulative distribution function (cdf)
(for x > 0):

_ (t® B* a-1,-pt
H;(x) = [i—¢0 t* e Pldt,

which is equivalent to

1-G(x)

He(x) =1— [ °® %t“-le-ﬁfdt. (1)

If the distribution G(x) has density g(x) the class will have a probability density
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function (pdf) given by
_ g B (1-6)\* ! 1-G(x)
he(x) = G2(x) F(a)( G(x) ) exp <_ﬁ( G (x) )) (2)

The Equations (1) and (2) can be rewritten as a sum of exponentiated distributions.

These distributions have been studied by some authors in recent years, see for example,
Mudholkar and Srivastava (1993) for exponentiated Weibull, Gupta and Kundu (1999) for
exponentiated exponential, among others.

Using the power series exponential, we rewrite (2) as

BY o (DB
I'(a) i k!

at+k—-1

he(x) = g(x)

G 1) (1 - 6(x))

Furthermore, as

(1—G(x))k+a 1 i(k+0.l )(—1)jGj,

j=0
it follows that

( 1)k+} a+k k o
hG(x)—ZZ e L 1 &) ®3)

Since H; (x) = f_oo h (t)dt we can rewrite the distribution function as

He(x) = i Y M(" ta- 1) fx 9(OGI k1 (x)dt.
k=0j=0 -®

- k'T'(a) J)
Therefore,
B o 00 (—1)k+jﬁa+k k+a—1 e
flo) _kZo;)k!(j—a—k)F(a)( A [ O} ()

The following we presented an expansion to Gamma-[(1 — G)/G] class when G is
discrete. If the distribution G(x) is discrete, H;(x) is also discrete and we have that
P(X = x;) = F(x;) — F(x;_1). Therefore,

R

=0j=0
|
In addition, we can obtain the risk function of the new Gamma-[(1 — G)/G] class as

follows:

g0 B% (1-GLN* ! 1-G(®)
Gz(x)l"(a)( G ) exp<_ﬁ( G )>
Re(x) = FEele)) : u

G
J, 6™ rlia)ta le-Btqt
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Using the density and distribution function expansions, we can get the statistical
properties of the new class, as discussed below. Equations (3) and (4) are the main results of

this subsection.

Moments and moment generating function

Several of the interesting characteristics and features of a probability model can be
obtained using moments such as tendency, dispersion, skewness and kurtosis. The following is
the development of the expansion calculations for the moments of order m for the Gamma-
[(1 — G)/G] class. The nth moment of a random variable having cdf (1) can be easily obtained

from Equation (3). Hence, we have

= f XM Z Z (- 2";(15)%1( (k + (]J_c 1) J0OGIk=1 ().

Therefore,
_ AN (_1)k+jﬁa+k k+a-1
Hm = 2 4 W( ] )Tm,O,j—a—k—lr
k=0 j=0
where
T = EXTgT0GT(X)) = [17 2™ g" ()6 (0)dG (). (5)

The expression (5) is important because it generalize the well-established probability weighted
moments. ]
In particular, we have the following expansion of the mean for the Gamma-[(1 — G)/G]

class

N (CDFIBE -1
=t = Z Z—k! I'(a) ( j )Tl,o,j—a—k—l-

The following is the development of the expansion calculations for the moment

generating function for the Gamma-[(1 — G)/G] class. We have from Equation (3),

_ S (“DFHBEE e g — 1\ [ . gk
My (£) _RZOFOW( ’ )f_oo et* g(x) GI~a*1(x)dx.

Using the fact that

we can rewrite
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My (£) = i i i (_i)ll;:/;z’;tm (" + j‘ - 1) f_ ;mxmg(x)Gj‘“‘k_l(X)dx.

T e G N

|
Similarly, one can establish the following expansion for the characteristic function for
the Gamma-[(1 — G)/G] class.

vx(0) = i i i (_11(!;[!3;23.)%"1 (k i j’l ) 1) Tm,0,j-a—k-1-

Central moments and general coefficient
We'll look at the development of the expansion calculations for central moments of

order m to the Gamma-[(1 — G)/G] class. This measure can be calculated as

i = E[(X — j)™] = f (x — W)™ dF (),

or equivalently

m
fm = Z (T) D" oy
r=0

Since

o e (—DRHIRETk g g
P ) (o

)Tm—r,o,j—a—k—l'

|
= e k'l'(a) J
it follows that
m [oe] [ee] .
, (=) RArkYT o\ (k+a — 1
Hm = Z Z 2 k!'T'(a) (r) ( j )Tm—r,o,j—a—k—1- (6)
r=0 k=0 j=0 ’

|
In particular, by expanding the range of variance for the Gamma-[(1 — G)/G] class we

have:

02 =yl = z i i (—1)’;1:;5)(1+kyr (i) (k + j'l — 1) T30 jmtkt %)

r=0k=0 j=0
|
A new generalization called general coefficient, which extends the skewness and

kurtosis, is given by
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_ _BlX-w™  _ E[X-wW™ _ pm
Co(m) = Ex-pm o™ o™ ®)

g
Substituting (6) and (7) in Equation (8), we obtain

o k+j+r a+k k _
Cg(m) = OZk 02 ( 1)kk' F(g) k (T')( +? 1) Tm—r,O,j—a—k—1m.
+j+rga+ _ "

(Zr 0 2k=02j=0 (=1 k']r(g) (r) (k + ;_r 1) Tz—r,o,j—a_k_1>

Note that, in particular, as m =3 and m = 4 in C;(m) we obtain expansions to

skewness and kurtosis measures, respectively.

Maximum likelihood estimation and Rényi entropy

Once met some regularity conditions, the maximum likelihood estimates (MLES) can
be obtained by equating the derivative of the log-likelihood function with respect to each
parameter to zero. We determine the MLEs of the parameters of the Gamma-[(1 — G)/G] class
from complete samples only. Let x4, ..., x,, be a random sample of size n from the new class,

where @ is a vector of unknown parameters in the parent distribution G(x;8). The log-

likelihood function for the vector of parameters @ = (o, 3,6T)T can be obtained as

BY\  © ;0
[(8) =nlog <F€x)> + 2 log <C‘;gz((xx_0))> +
=1 Y

+(a—1) Z log < - (G f’x;,)9)> B an (%) 9

The log-likelihood can be maximized, for example, either directly by using the SAS

(ProcNLMixed) or by using the nonlinear likelihood expressions obtained by differentiating

(9). The components of the score vector U(8) are given by

1-G(x;9)
G(x;;9) )

_na = 1—G(xl-;Q)
”ﬁ“’)‘?‘Z( 6(xi:) )

1=

Uy(0) =nlogf —ny(a) + Z log(
i=1

and

- 3 (Fe) e v L (i) (s

i=1 i=1

ar (a)

where Y (a) = is the digamma function. [

Entropy is a measure of uncertainty in the sense that the higher the entropy value the
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lowest the information and the greater the uncertainty, or the greater the randomness or disorder.
The following is the expansion entropy calculations for the Gamma-[(1 — G)/G] class, using
the Rényi entropy, which is given by
Le(n) = = log (/7. 7 ()AF ().
Substituting the expressions of density and cumulative distribution function given by

Equations (2) and (1), respectively, we have

n
1 too [ g0 B (1=6)\* (16
Lr(n) =1 log <f_oo (Gz(x)r(a)( e ) exp( /3( ) ))) dx).
By expanding the exponential function in Taylor series as

1-G o (—1)knk Bk

we have

NG
I(a) & k!

(a—1)+k
hl(x) = g"(x) e

Gk () (1 - G (x))

Now, using the following binomial expansion

(1-6@)"“ ™= (’7(“ - jl) * k) (—1)/ i),

j=0

it follows that
o X (— 1)Kk gnatk ~D+k _ i
hg(x) =ZZ k' (a) (n(a j) )g"(x)G DT ).
k=0 j=0

Thus, an explicit expression for Rényi entropy can be write as

log (i i( li*;ggf)nwk (77(06 —]1) + k) f_oo g" (x) G+ DI+ (5 dx),

k=0 j=0

Lr(m) =

which, in turn, implies that (using Equation (5))

Z z S (n(a -1+ k) . |
k=0 j=0 k! (a) Ji 0n-1,~n(a+1)—k+j |

Lg(m) =

RESULTS AND DISCUSSION

Special model
In this section, we will examine a particular distribution of the Gamma-[(1 — G)/G] class

proposed here. We will consider the particular case in which G(x) = 1 — e, x > 0, that is
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called the Gamma-[(1 — Exp)/Exp] distribution.

Gamma-[(1 — Exp)/Exp] distribution
Considering G (x) the cdf of the exponential distribution with parameter A in Equation (1), we

have the Gamma-[(1 — Exp)/Exp] distribution:
e—Ax

— 1 _ —e"lxﬁ_a -1,-ft
Hx)=1 f01 r(a)t“ e Ptdt,x > 0.
Differentiating H(x) , we get the density function of the Gamma- [(1 — Exp)/Exp]

distribution:

e—Ax

O e i ) .

(@) (1-e=2x)* \1-e=4x '

Figure 1 show the graph of the Gamma-[(1 — Exp)/Exp] distribution probability

density functions and cumulative distribution, for some values of the parameters.

Figure 1. In right pdf and left cdf of the Gamma-[(1 — Exp)/Exp] distribution for some values of A.

We can also obtain the risk function using the Gamma-[(1 — Exp)/Exp] distribution

as follows:

—-Ax
a—-1 e
ABYE oM [ omAx e_B<1_e—Ax)
F(a)(l_e_lx)z\l—e_}‘x

e—Ax

1-e—Ax B%

P ra—-1,—-ft
5 ratt e Btdt

R(x) =

Figure 2 show the graph of the risk function using the Gamma-[(1 — Exp)/Exp] distribution

generated from some values assigned to parameters.
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Figure 2. Plots of the risk function for some parameter values.

Using procedure similar to what was done in pdf and cdf expantions, we can rewrite the
pdf and cdf of the Gamma- [(1 — Exp)/Exp] distribution as a sum of exponentiated

exponentials, as follows:

/b Y _1)k+iygk+a _
h(x) = Z Z ( k j0( 1) ( Iz! r(aﬁ) o~ Ak+a+))x (10)
k=0j=0
and
© oo k—a—1 (_1)k+j+1ﬁk+a ACktat D
H(x) :ZZ( i )k!(k+a+j)F(a) (e7tireri = 1) 1D

Various properties of the exponentiated exponential can be obtained from Gupta and
Kundu (1999). Using expansions (10) and (11), we can obtain mathematical quantities of the
special model such as ordinary and central moments, moment generating and characteristic
functions, general coefficient, Rényi entropy and some others from quantities exponentiated
exponential distribution. For example, we consider only moments for reasons of space. The mth

ordinary moment of the special model can be expressed as

O O (—k — a — 1\ (=DFHABKYE  (m + 1)
.um = r m+1"

In particular, we have that the mean of the Gamma-[(1 — Exp)/Exp] distribution is given by

O (—k — a — 1) (=Dt gkt 1
W=p= ' |
1 ;;( j ) KIr@  (Ak+a+))°

Let x4, ..., x, be a sample of the size n from X ~ Gamma-[(1 — Exp)/Exp] (a, 3,2).

The log-likelihood function for the vector of parameters 8 = (a, §,AT)T can be obtained as

a

2 n n —Ax;
1(8) =nlog <I"fa)> —nal—(a+ 1)2 log(1—e i) — ﬁz <ﬁ>.
i=1 i=1
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The components of the score vector U(0) are given by

U (0) =nlogp —nip(a) —nd — Z lOg(l — e‘lxi)’

i=1

n —/UCi
) =5~ ()

i=1

and

U,0)==—na—(a+ 1)2 ( _ —Axl> ﬁz ((1 - e"lxil)z>'
where Y (a) = dr—(a)-
Application

In this section, we will show an application to real data for the proposed gamma
distribution. The data used in this research are from the excesses of flood peaks (in m 3/ s)
Wheaton River near Carcross in the Yukon Territory, Canada. 72 exceedances of the years 1958
to 1984 were recorded, rounded to one decimal place. These data were analyzed by Choulakian

and Stephens (2001), and are presented in Table 1.

Table 1. Full excess peaks in m 2/ s Rio Wheaton.

Excess flood peaks of Rio Wheaton (m 3/s)

1.7 22 (144111 | 04 | 206 | 53 | 0.7 | 19 [13.0] 120 | 9.3

14 | 187 | 85 | 255 (116|141 | 221 | 11 | 25 | 144 | 17 | 37.6

0.6 22 |1390)] 03 (150110 73 [ 229 1.7 | 01 | 11 | 06

9.0 17 | 70 [201] 04 | 28 (141 ] 99 | 104 | 10.7 | 30.0 | 3.6

56 308|133 42 |255] 34 (119|215 |276|36.4 | 2.7 | 64.0

1.5 25 (274] 10 | 2711 202|168 | 53 | 9.7 [ 275 ] 25 | 270

It is worth mentioning that this data set has also been analyzed by means of the
distributions of Pareto, Weibull three parameters, the generalized Pareto and beta - Pareto
(Akinsete, Famoye & Lee, 2008).

In Table 2, we can see the maximum likelihood estimates obtained by the Newton-
Raphson implemented in SAS 9.1 statistical software, parameters, standard errors, Akaike

information criterion, corrected Akaike, Bayesian, Hannan-Quinn and Anderson-Darling
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statistics (A*) and Cramér von Mises (W*) to the Gamma-[—In(1 — Exp)] distributions (M1),
Gamma-[(1 — Exp)/Exp] distribution (proposed model, M2), exponentiated Weibull (M3),
modified Weibull (M4), beta Pareto (M5) and Weibull (M6).

Table 2. Estimated maximum likelihood parameter, errors (standard errors in parentheses) and
calculations of AIC statistics, AIC, BIC, HQIC, tests A* and W* for the M1 to M6 distributions.

Estimates Statistics

AIC | AIC | BIC |HQIC | A* W*

Models

0.838 [ 0.035 | 1.96 | -
M1 508.689509.042515.519/511.408) 0.7519 | 0.1306
(0.121)|(0.007)| (<E-3) | ----

0.131 | 0.179 | 0539 | -~
M2 505.030/505.383/511.860507.749] 0.4516 |0.0757
(0.053)| (0.07) {(0.251)| ----

1,387 | 0519 | 0.05 | -
M3 508.050/508.403514.880510.769| 1.4137 | 0.2534
(0.59) |(0.312)((0.021)| ----

0.776 | 0.124 [ 0.01 |
M4 507.343/507.696/514.1735510.062| 0.5938 | 0.0978
(0.124)|(0.035)|(0.008)| -

84.68265.574| 0.063 | 0.01
M5 524.398524.995/533.504528.023) 2.0412 | 0.3516
(<E-3) | (<E-3) |(0.005)| (<E-3)

0.901 [0.086 | - | -
M6 506.997507.171/511.551/508.810] 0.7855 | 0.1380
(0.086)[(0.012)| - | -

For the six distributions shown in Table 2, the data applied to Wheaton River
flooding, it was observed that beta-Pareto model (M5), which was described by Akinsete,
Famoye and Lee (2008) as the best fitted model, in our studies had a lower performance with
AIC =524.398, AlICc =524.995, BIC=533.504, HQIC =528.023, A = 2.0412 and W = 0.3516,
when compared to the proposed Gamma-[(1 — Exp)/Exp] model (M2) that obtained AIC =
505.030, AlCc = 505.383, BIC=511.860, HQIC = 507.749, A = 0.4516 and W = 0.0757. Also
according to Table 2, the proposed distribution model M2 is the best tested once the lowest
values of AIC, AICc, BIC HQIC, A* and W* are from such distribution, and only according to
the BIC criterion was exceeded solely by the model M6.

In the Figures 3 and 4 below, there are the graphs of density functions and
distributions of M1 to M6 models fitted to the data and their corresponding histograms. The
graph shows that the Gamma-[(1 — Exp)/Exp] model has similar behavior to that of other
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Figure 3. Fitted distributions to the mass data of flood peaks in river Wheat

13

— Distribuicdo Empirica
— Gammaul- In(1-Exp))
= =  Gammal((1-Exp)/Exp)

= =  Moaodified Weibull
—— Beta Pareto
= = Weibull

— Exponentialized Weibull
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Figure 4. Fitted cdf’s to the mass data of flood peaks in river Wheaton

CONCLUSION

Cumulative Flood peak {msfs} at Wheaton River - Canada (1958 - 1984)

As concluding remarks, we note that the class of Gamma-[(1 — G)/G] probability

distributions developed in this work is a novel way of generalizing the gamma distribution and
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can be applied in different areas depending on the choice of the distribution G. As future work,
we intend to carry out more detailed comparisons between the novel distribution family
proposed in this paper and the family of distributions investigated in Zografos and Balakrishnan
(2009), which is also based on the integration of the gamma distribution.

In this work, we study in detail only a distribution of the Gamma-[(1 — G)/G] class,
namely the Gamma- [(1 — Exp)/Exp] distribution. We derive some properties of this
distribution and applied to a set of real data obtaining better fit than that obtained in a previous
study by Akinsete et al. (2008). We intend to conduct the study of new distributions within this
class as future work.

We note that after adding several parameters to a model it can better be adjusted to a
particular phenomenon due to its greater flexibility. On the other hand, one should not forget
that there may be a problem for the estimation of the parameters since it can occur both
computational and identifiability problems in parameter estimation. Thus, the ideal is to choose
a model that reflects well the phenomenon / experiment with the minimum number of
parameters. In the case of the proposed class, only two additional parameters are added to the

set of parameters of the G distribution.
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