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A New Class of Gamma Distribution 1 

ABSTRACT. This paper presents a new class of probability distributions generated 2 

from the gamma distribution. For the new class proposed, we present several statistical 3 

properties, such as the risk function, the density expansions, moment generating 4 

function, characteristic function, the moments of order 𝑚, central moments of order 𝑚, 5 

the log likelihood and its partial derivatives and also entropy, kurtosis, skewness and 6 

variance. These same properties are indicated for a particular distribution within this 7 

new class that is used to illustrate the capability of the proposed new class through an 8 

application to a real data set. The data set presented in Choulakian and Stephens (2001) 9 

was used. Six models are compared and for the selection of these models were used the 10 

Akaike Information Criterion (AIC), the Akaike Information Criterion corrected 11 

(AICc), Bayesian Information Criterion (BIC), Hannan Quinn Information Criterion 12 

(HQIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit. 13 

Finally, we present the conclusions from the analysis and comparison of the results 14 

obtained and the directions for future work. 15 

Keywords: gamma distribution, probability distributions class, model fit. 16 

Uma Nova Classe de Distribuições Gama 17 

RESUMO. Este artigo apresenta uma nova classe de distribuição de probabilidades 18 

gerada a partir da distribuição gama. Para a classe proposta apresentamos algumas 19 

propriedades estatísticas tais como função de risco, expansões para densidade e 20 

acumulada, função geratriz de momentos, função característica, momentos ordinários, 21 

momentos centrais, medidas de curtose e assimetria, entropia de Rényi, função de log-22 

verossimilhança e suas respectivas derivadas parciais.  Algumas dessas propriedades 23 

são determinadas para uma distribuição base particular dentro desta nova classe para 24 

ilustrar a potencialidade da classe proposta através de uma aplicação a um conjunto de 25 

dados reais. O conjunto de dados apresentado em Choulakian and Stephens (2001) foi 26 

usado. Seis modelos são comparados e para a seleção destes foram usados os critérios 27 

de informação de Akaike, Akaike corrigido, Baysiano e Hannan Quinn. Os testes de 28 

Cramer-Von Mises e Anderson-Darling foram usados para avaliar o ajuste aos modelos. 29 

Finalmente, apresentamos as conclusões a partir da análise e comparação dos resultados 30 

obtidos e sugerimos trabalhos futuros.  31 

Palavras-chave: distribuição gama, classe de distribuição de probabilidade, ajuste de 32 

modelos. 33 
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 34 

INTRODUCTION 35 

 36 

The gamma distribution is used in a variety of applications including queue, financial and 37 

weather models. It can naturally be considered as the distribution of the waiting time between 38 

events distributed according to a Poisson process. It is a biparamétrica distribution, whose 39 

density is given by: 40 

𝑓(𝑡) =
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡, 𝑡 > 0, 41 

where 𝛼 > 0 is a shape parameter and 𝛽 > 0 is the reciprocal of a scale parameter. 42 

Due to the importance of this distribution recently some new distributions as well as 43 

families of probability distributions based on generalizations of the gamma distribution have 44 

been proposed. The first is based on the family of exponentiated distribution defined by 45 

Mudholkar, Srivastava and Freimer (1995). Given a distribution with continuous distribution 46 

function 𝐹𝑑  its generalization or exponentiated form 𝐺(𝑥) is obtained by 𝐹(𝑥) = 𝐺𝑎(𝑥), with 47 

𝑎 > 0  (power parameter). Gupta, Gupta and Gupta (1998) proposed and studied some 48 

properties exponentiated gamma distribution. 49 

Cordeiro, Ortega and Silva (2011) extended the exponentiated gamma distribution 50 

defining a new distribution called Exponentiated Generalized gamma Distribution with four 51 

parameters, which is capable of modeling bathtub shaped failure rate phenomena. 52 

Zografos and Balakrishnan (2009) defined a family of probability distributions based 53 

on the integration of a gamma distribution as follows: 54 

𝐹(𝑥) =
1

𝛤(𝛼)
∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡

−𝑙𝑛(1−𝐺(𝑥))

0
, 55 

where 𝐺(𝑥) is an arbitrary distribution function. When 𝛼 = 𝑛 + 1 this distribution coincides 56 

with the distribution of the nth highest value record (Alzaatreh, Famoye & Lee, 2014). 57 

Alternatively, Ristic and Balakrishnan (2012) have proposed a new family of 58 

probability distributions, which is also based on the integration of the gamma distribution. They 59 

defined this new family as follows: 60 

𝐹(𝑥) = 1 −
1

𝛤(𝛼)
∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡

−𝑙𝑛(𝐺(𝑥))

0
, 61 

where 𝐺(𝑥) is an arbitrary distribution function. Similarly, when 𝛼 = 𝑛 + 1 this distribution 62 

coincides with the distribution of the nth smallest value record (Alzaatreh et al. 2014). 63 

Following the line of work of Zografos and Balakrishnan (2009) and Ristic and 64 

Balakrishnan (2012), our goal in this work is to propose a new family of distributions based on 65 
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gamma distribution. The family of distributions proposed here is the following: 66 

𝐻𝐺(𝑥) = ∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

+∞
1−𝐺(𝑥)

𝐺(𝑥)

, 67 

where 𝐺(𝑥) is an arbitrary distribution function and 𝐻𝐺(𝑥) and has the same support as the  68 

distribution 𝐺(𝑥). We shall call this new family Gamma-[(1 − 𝐺) 𝐺]⁄  class. The statistical 69 

properties of this new class, such as mean, variance, standard deviation, mean deviation, 70 

kurtosis, skewness, moment generating function, characteristic function and graphical analysis, 71 

are derived. 72 

Then, to illustrate the applicability of the proposed new family, we consider the 73 

particular case of the distribution obtained when considering that 𝐺(𝑥)  is the distribution 74 

function of an exponential random variable.  By presenting mathematical structures for 75 

Gamma-[(1 − 𝐺) 𝐺]⁄  class we also derived statistical properties of this new distribution and to 76 

illustrate its potentiality, an application to a set of real data is performed. For this, we used the 77 

data set presented in the work Choulakian and Stephens (2001) to see if the models are well 78 

adjusted to this data. As comparative criteria of fitness of the models, it was considered: the 79 

Akaike (AIC) (Akaike, 1972), the Akaike Fixed (AIC) (Burnham & Anderson, 2002), the 80 

Bayesian information criterion (BIC) (Schwartz, 1978), the Hannan-Quinn information 81 

criterion (HQIC) (Hannan & Quinn, 1979), and the Cramer-von Mises (Darling, 1957) and 82 

Anderson-Darling (Anderson & Darling, 1952) tests. Both hypothesis tests, Anderson-Darling 83 

and Cramér-von Mises, are discussed in detail by Chen and Balakrishnan (1995) and belong to 84 

the class of quadratic statistics based on the empirical distribution function, because they work 85 

with the squared differences between the empirical distribution and the hypothetical. 86 

 87 

MATERIAL AND METHODS 88 

 89 

Obtaining a class of probability distributions 90 

The Gamma-[(1 − 𝐺) 𝐺]⁄  class is defined by the cumulative distribution function (cdf) 91 

(for 𝑥 > 0): 92 

𝐻𝐺(𝑥) = ∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

+∞
1−𝐺(𝑥)

𝐺(𝑥)

, 93 

which is equivalent to 94 

𝐻𝐺(𝑥) = 1 − ∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

1−𝐺(𝑥)

𝐺(𝑥)

0
.                                      (1) 95 

If the distribution 𝐺(𝑥)  has density 𝑔(𝑥)  the class will have a probability density 96 
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function (pdf) given by 97 

ℎ𝐺(𝑥) =
𝑔(𝑥)

𝐺2(𝑥)

𝛽𝛼

𝛤(𝛼)
(

1−𝐺(𝑥)

𝐺(𝑥)
)

𝛼−1

𝑒𝑥𝑝 (−𝛽 (
1−𝐺(𝑥)

𝐺(𝑥)
)).                         (2) 98 

The Equations (1) and (2) can be rewritten as a sum of exponentiated distributions. 99 

These distributions have been studied by some authors in recent years, see for example, 100 

Mudholkar and Srivastava (1993) for exponentiated Weibull, Gupta and Kundu (1999) for 101 

exponentiated exponential, among others.  102 

Using the power series exponential, we rewrite (2) as 103 

ℎ𝐺(𝑥) = 𝑔(𝑥)
𝛽𝛼

𝛤(𝛼)
∑

(−1)𝑘𝛽𝑘

𝑘!

∞

𝑘=0

𝐺−𝛼−𝑘−1(𝑥)(1 − 𝐺(𝑥))
𝛼+𝑘−1

. 104 

Furthermore, as 105 

 
(1 − 𝐺(𝑥))

𝑘+𝛼−1
= ∑ (

𝑘 + 𝛼 − 1
𝑗

) (−1)𝑗

∞

𝑗=0

𝐺𝑗,        

it follows that 106 

 
ℎ𝐺(𝑥) = ∑ ∑

(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝑔(𝑥)𝐺𝑗−𝛼−𝑘−1(𝑥).        (3) 

Since 𝐻𝐺(𝑥) = ∫ ℎ𝐺(𝑡)𝑑𝑡
𝑥

−∞
 we can rewrite the distribution function as 107 

𝐻𝐺(𝑥) = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

∫ 𝑔(𝑥)𝐺𝑗−𝛼−𝑘−1(𝑥)𝑑𝑡
𝑥

−∞

. 108 

Therefore, 109 

 
𝐻𝐺(𝑥) = ∑ ∑

(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! (𝑗 − 𝛼 − 𝑘)𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝐺𝑗−𝛼−𝑘(𝑥).        (4) 

The following we presented an expansion to Gamma-[(1 − 𝐺) 𝐺]⁄  class when 𝐺  is 110 

discrete. If the distribution 𝐺(𝑥)  is discrete, 𝐻𝐺(𝑥)  is also discrete and we have that 111 

𝑃(𝑋 = 𝑥𝑙) = 𝐹(𝑥𝑙) − 𝐹(𝑥𝑙−1). Therefore, 112 

𝑃(𝑋 = 𝑥𝑙) = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! (𝑗 − 𝛼 − 𝑘)𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

(𝐺𝑗−𝛼−𝑘(𝑥𝑙) − 𝐺𝑗−𝛼−𝑘(𝑥𝑙−1)). 113 

                                                                                                                                                    ■ 114 

In addition, we can obtain the risk function of the new Gamma-[(1 − 𝐺) 𝐺]⁄  class as 115 

follows: 116 

𝑅𝐺(𝑥) =

𝑔(𝑥)

𝐺2(𝑥)

𝛽𝛼

𝛤(𝛼)
(

1−𝐺(𝑥)

𝐺(𝑥)
)

𝛼−1
𝑒𝑥𝑝(−𝛽(

1−𝐺(𝑥)

𝐺(𝑥)
))

∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

1−𝐺(𝑥)
𝐺(𝑥)

0

.                                     ■ 117 
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Using the density and distribution function expansions, we can get the statistical 118 

properties of the new class, as discussed below. Equations (3) and (4) are the main results of 119 

this subsection.  120 

 121 

Moments and moment generating function  122 

Several of the interesting characteristics and features of a probability model can be 123 

obtained using moments such as tendency, dispersion, skewness and kurtosis. The following is 124 

the development of the expansion calculations for the moments of order 𝑚 for the Gamma-125 

[(1 − 𝐺) 𝐺]⁄  class. The 𝑛th moment of a random variable having cdf (1) can be easily obtained 126 

from Equation (3). Hence, we have  127 

𝜇𝑚 = ∫ 𝑥𝑚 ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝑔(𝑥)𝐺𝑗−𝛼−𝑘−1(𝑥)𝑑𝑥
+∞

−∞

. 128 

Therefore, 129 

𝜇𝑚 = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝜏𝑚,0,𝑗−𝛼−𝑘−1, 130 

where  131 

𝜏𝑚,𝜂,𝑟 = 𝐸(𝑋𝑚𝑔𝜂(𝑋)𝐺𝑟(𝑋) ) = ∫ 𝑥𝑚𝑔𝜂(𝑥)𝐺𝑟(𝑥)𝑑𝐺(𝑥)
+∞

−∞
.                   (5) 132 

The expression (5) is important because it generalize the well-established probability weighted 133 

moments.                                                                                                                                     ■ 134 

In particular, we have the following expansion of the mean for the Gamma-[(1 − 𝐺) 𝐺]⁄  135 

class 136 

𝜇 = 𝜇1 = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝜏1,0,𝑗−𝛼−𝑘−1. 137 

■ 138 

The following is the development of the expansion calculations for the moment 139 

generating function for the Gamma-[(1 − 𝐺) 𝐺]⁄  class. We have from Equation (3), 140 

𝑀𝑋(𝑡) = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

∫ 𝑒𝑡𝑥𝑔(𝑥) 𝐺𝑗−𝛼−𝑘−1(𝑥)𝑑𝑥
+∞

−∞

. 141 

Using the fact that 142 

𝑒𝑡𝑥 = ∑
𝑡𝑚𝑥𝑚

𝑚!
,

∞

𝑚=0

 143 

we can rewrite 144 
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𝑀𝑋(𝑡) = ∑ ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘𝑡𝑚

𝑘! 𝑚! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑚=0

∞

𝑗=0

∞

𝑘=0

∫ 𝑥𝑚𝑔(𝑥)𝐺𝑗−𝛼−𝑘−1(𝑥)𝑑𝑥
+∞

−∞

. 145 

Therefore, using (5) we can express the last equation as  146 

𝑀𝑋(𝑡) = ∑ ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘𝑡𝑚

𝑘! 𝑚! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑚=0

∞

𝑗=0

∞

𝑘=0

𝜏𝑚,0,𝑗−𝛼−𝑘−1. 147 

■ 148 

 Similarly, one can establish the following expansion for the characteristic function for 149 

the Gamma-[(1 − 𝐺) 𝐺]⁄  class. 150 

𝜑𝑋(𝑡) = ∑ ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘𝑖𝑚𝑡𝑚

𝑘! 𝑚! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑚=0

∞

𝑗=0

∞

𝑘=0

𝜏𝑚,0,𝑗−𝛼−𝑘−1. 151 

 152 

Central moments and general coefficient  153 

We'll look at the development of the expansion calculations for central moments of 154 

order 𝑚 to the Gamma-[(1 − 𝐺) 𝐺]⁄  class. This measure can be calculated as  155 

𝜇𝑚
′ = 𝐸[(𝑋 − 𝜇)𝑚] = ∫ (𝑥 − 𝜇)𝑚𝑑𝐹(𝑥),

+∞

−∞

 156 

or equivalently 157 

𝜇𝑚
′ = ∑ (

𝑚
𝑟

)

𝑚

𝑟=0

(−1)𝑟𝜇𝑟𝜇𝑚−𝑟. 158 

Since 159 

𝜇𝑚−𝑟 = ∑ ∑
(−1)𝑘+𝑗𝛽𝛼+𝑘

𝑘! 𝛤(𝛼)
(

𝑘 + 𝛼 − 1
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝜏𝑚−𝑟,0,𝑗−𝛼−𝑘−1, 160 

it follows that 161 

 
𝜇𝑚

′ = ∑ ∑ ∑
(−1)𝑘+𝑗+𝑟𝛽𝛼+𝑘𝜇𝑟

𝑘! 𝛤(𝛼)
(

𝑚
𝑟

) (
𝑘 + 𝛼 − 1

𝑗
)

∞

𝑗=0

∞

𝑘=0

𝑚

𝑟=0

𝜏𝑚−𝑟,0,𝑗−𝛼−𝑘−1.        (6) 

■ 162 

In particular, by expanding the range of variance for the Gamma-[(1 − 𝐺) 𝐺]⁄  class we 163 

have:  164 

 
𝜎2 = 𝜇2

′ = ∑ ∑ ∑
(−1)𝑘+𝑗+𝑟𝛽𝛼+𝑘𝜇𝑟

𝑘! 𝛤(𝛼)
(

2
𝑟

) (
𝑘 + 𝛼 − 1

𝑗
)

∞

𝑗=0

∞

𝑘=0

2

𝑟=0

𝜏2−𝑟,0,𝑗−𝛼−𝑘−1        (7) 

■ 165 

A new generalization called general coefficient, which extends the skewness and 166 

kurtosis, is given by  167 
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𝐶𝑔(𝑚) =
𝐸[(𝑋−𝜇)𝑚]

√{𝐸[(𝑋−𝜇)2]}𝑚
=

𝐸[(𝑋−𝜇)𝑚]

𝜎𝑚 =
𝜇𝑚

′

𝜎𝑚.                                     (8) 168 

Substituting (6) and (7) in Equation (8), we obtain 169 

𝐶𝑔(𝑚) =
∑ ∑ ∑

(−1)𝑘+𝑗+𝑟𝛽𝛼+𝑘𝜇𝑟

𝑘! 𝛤(𝛼)
(

𝑚
𝑟

) (
𝑘 + 𝛼 − 1

𝑗
)∞

𝑗=0
∞
𝑘=0

𝑚
𝑟=0 𝜏𝑚−𝑟,0,𝑗−𝛼−𝑘−1

(∑ ∑ ∑
(−1)𝑘+𝑗+𝑟𝛽𝛼+𝑘𝜇𝑟

𝑘! 𝛤(𝛼)
(

2
𝑟

) (
𝑘 + 𝛼 − 1

𝑗
)∞

𝑗=0
∞
𝑘=0

2
𝑟=0 𝜏2−𝑟,0,𝑗−𝛼−𝑘−1)

𝑚
2

. 170 

Note that, in particular, as 𝑚 = 3  and 𝑚 = 4  in 𝐶𝑔(𝑚)  we obtain expansions to 171 

skewness and kurtosis measures, respectively.  172 

 173 

Maximum likelihood estimation and Rényi entropy 174 

Once met some regularity conditions, the maximum likelihood estimates (MLEs) can 175 

be obtained by equating the derivative of the log-likelihood function with respect to each 176 

parameter to zero. We determine the MLEs of the parameters of the Gamma-[(1 − 𝐺) 𝐺]⁄  class 177 

from complete samples only. Let 𝑥1, … , 𝑥𝑛 be a random sample of size 𝑛 from the new class, 178 

where 𝜃  is a vector of unknown parameters in the parent distribution 𝐺(𝑥; 𝜃) . The log-179 

likelihood function for the vector of parameters  𝜽 = (α, β, θT)T can be obtained as   180 

𝑙(𝜽) = 𝑛 𝑙𝑜𝑔 (
𝜆𝛽𝛼

𝛤(𝛼)
) + ∑ 𝑙𝑜𝑔 (

𝑔(𝑥𝑖; 𝜃)

𝐺2(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

+                                       181 

 
+ (𝛼 − 1) ∑ 𝑙𝑜𝑔 (

1 − 𝐺(𝑥𝑖; 𝜃)

𝐺(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

− 𝛽 ∑ (
1 − 𝐺(𝑥𝑖; 𝜃)

𝐺(𝑥𝑖; 𝜃)
) .

𝑛

𝑖=1

        (9) 

The log-likelihood can be maximized, for example, either directly by using the SAS 182 

(ProcNLMixed) or by using the nonlinear likelihood expressions obtained by differentiating 183 

(9). The components of the score vector 𝑈(𝜽) are given by   184 

𝑈𝛼(𝜽) = 𝑛 𝑙𝑜𝑔𝛽 − 𝑛 𝜓(𝛼) + ∑ 𝑙𝑜𝑔 (
1 − 𝐺(𝑥𝑖; 𝜃)

𝐺(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

, 185 

𝑈𝛽(𝜽) =
𝑛𝛼

𝛽
− ∑ (

1 − 𝐺(𝑥𝑖; 𝜃)

𝐺(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

, 186 

and           187 

𝑈𝜃𝑗
(𝜽) = ∑

𝜕𝑙𝑜𝑔

𝜕𝜃𝑗

𝑛

𝑖=1

(
𝑔(𝑥𝑖; 𝜃)

𝐺2(𝑥𝑖; 𝜃)
) + (𝛼 − 1) ∑

𝜕𝑙𝑜𝑔

𝜕𝜃𝑗

(
1 − 𝐺(𝑥𝑖 ; 𝜃)

𝐺(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

− 𝛽 ∑
𝜕

𝜕𝜃𝑗

(
1 − 𝐺(𝑥𝑖; 𝜃)

𝐺(𝑥𝑖; 𝜃)
)

𝑛

𝑖=1

, 188 

where 𝜓(𝛼) =
𝑑𝛤(𝛼)

𝑑𝛼
 is the digamma function.                                                                           ■                                  189 

Entropy is a measure of uncertainty in the sense that the higher the entropy value the 190 
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lowest the information and the greater the uncertainty, or the greater the randomness or disorder. 191 

The following is the expansion entropy calculations for the Gamma-[(1 − 𝐺) 𝐺]⁄  class, using 192 

the Rényi entropy, which is given by 193 

𝐿𝑅(𝜂) =
1

1−𝜂
𝑙𝑜𝑔 (∫ 𝑓𝜂+∞

−∞
(𝑥)𝑑𝐹(𝑥)). 194 

Substituting the expressions of density and cumulative distribution function given by 195 

Equations (2) and (1), respectively, we have 196 

𝐿𝑅(𝜂) =
1

1−𝜂
𝑙𝑜𝑔 (∫ (

𝑔(𝑥)

𝐺2(𝑥)

𝛽𝛼

𝛤(𝛼)
(

1−𝐺(𝑥)

𝐺(𝑥)
)

𝛼−1
𝑒𝑥𝑝 (−𝛽 (

1−𝐺(𝑥)

𝐺(𝑥)
)))

𝜂

+∞

−∞
𝑑𝑥). 197 

 By expanding the exponential function in Taylor series as  198 

𝑒𝑥𝑝 (−𝜂 𝛽
1 − 𝐺(𝑥)

𝐺(𝑥)
) = ∑

(−1)𝑘𝜂𝑘𝛽𝑘

𝑘!

∞

𝑘=0

𝐺−𝑘(1 − 𝐺(𝑥))
𝑘

, 199 

we have  200 

ℎ𝐺
𝜂(𝑥) = 𝑔𝜂(𝑥)

𝛽𝜂𝛼

𝛤𝜂(𝛼)
∑

(−1)𝑘𝜂𝑘𝛽𝑘

𝑘!

∞

𝑘=0

𝐺−𝜂(𝛼+1)−𝑘(𝑥)(1 − 𝐺(𝑥))
𝜂(𝛼−1)+𝑘

 201 

Now, using the following binomial expansion 202 

(1 − 𝐺(𝑥))
𝜂(𝛼−1)+𝑘

= ∑ (
𝜂(𝛼 − 1) + 𝑘

𝑗
) (−1)𝑗

∞

𝑗=0

𝐺𝑗(𝑥), 203 

it follows that  204 

ℎ𝐺
𝜂(𝑥) = ∑ ∑

(−1)𝑘+𝑗𝜂𝑘𝛽𝜂𝛼+𝑘

𝑘! 𝛤𝜂(𝛼)
(

𝜂(𝛼 − 1) + 𝑘
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝑔𝜂(𝑥) 𝐺−𝜂(𝛼+1)−𝑘+𝑗(𝑥). 205 

Thus, an explicit expression for Rényi entropy can be write as  206 

𝐿𝑅(𝜂) =
1

1 − 𝜂
𝑙𝑜𝑔 (∑ ∑

(−1)𝑘+𝑗𝜂𝑘𝛽𝜂𝛼+𝑘

𝑘! 𝛤𝜂(𝛼)
(

𝜂(𝛼 − 1) + 𝑘
𝑗

)

∞

𝑗=0

∞

𝑘=0

∫ 𝑔𝜂(𝑥) 𝐺−𝜂(𝛼+1)−𝑘+𝑗(𝑥)
+∞

−∞

𝑑𝑥), 207 

which, in turn, implies that (using Equation (5)) 208 

𝐿𝑅(𝜂) =
1

1 − 𝜂
𝑙𝑜𝑔 (∑ ∑

(−1)𝑘+𝑗𝜂𝑘𝛽𝜂𝛼+𝑘

𝑘! 𝛤𝜂(𝛼)
(

𝜂(𝛼 − 1) + 𝑘
𝑗

)

∞

𝑗=0

∞

𝑘=0

𝜏0,𝜂−1,−𝜂(𝛼+1)−𝑘+𝑗). 209 

 210 

RESULTS AND DISCUSSION 211 

 212 

Special model 213 

In this section, we will examine a particular distribution of the Gamma-[(1 − 𝐺) 𝐺]⁄  class 214 

proposed here. We will consider the particular case in which 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥, 𝑥 > 0, that is 215 
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called the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution. 216 

 217 

Gamma-[(𝟏 − 𝐄𝐱𝐩) 𝐄𝐱𝐩]⁄  distribution 218 

Considering 𝐺(𝑥) the cdf of the exponential distribution with parameter 𝜆 in Equation (1), we 219 

have the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution: 220 

𝐻(𝑥) = 1 − ∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥

0
, 𝑥 > 0. 221 

Differentiating 𝐻(𝑥) , we get the density function of the Gamma- [(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  222 

distribution: 223 

ℎ(𝑥) =
𝜆𝛽𝛼

𝛤(𝛼)

𝑒−𝜆𝑥

(1−𝑒−𝜆𝑥)
2 (

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥
)

𝛼−1

𝑒
−𝛽(

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥)
.                                  ■ 224 

Figure 1  show the graph of the Gamma- [(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution probability 225 

density functions and cumulative distribution, for some values of the parameters. 226 

 227 

Figure 𝟏. In right pdf and left cdf of the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution for some values of λ. 228 

 229 

We can also obtain the risk function using the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution 230 

as follows:                       231 

𝑅(𝑥) =

𝜆𝛽𝛼

𝛤(𝛼)

𝑒−𝜆𝑥

(1−𝑒−𝜆𝑥)
2(

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥)

𝛼−1

𝑒
−𝛽(

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥
)

∫
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡𝑑𝑡

𝑒−𝜆𝑥

1−𝑒−𝜆𝑥

0

. 232 

Figure 2 show the graph of the risk function using the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution 233 

generated from some values assigned to parameters. 234 
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 235 

Figure 𝟐. Plots of the risk function for some parameter values. 236 

 237 

Using procedure similar to what was done in pdf and cdf expantions, we can rewrite the 238 

pdf and cdf of the Gamma- [(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution as a sum of exponentiated 239 

exponentials, as follows: 240 

 
ℎ(𝑥) = ∑ ∑ (

−𝑘 − 𝛼 − 1
𝑗

)

∞

𝑗=0

(−1)𝑘+𝑗𝜆𝛽𝑘+𝛼

𝑘! 𝛤(𝛼)
𝑒−𝜆(𝑘+𝛼+𝑗)𝑥

∞

𝑘=0

      (10) 

and 241 

 
𝐻(𝑥) = ∑ ∑ (

−𝑘 − 𝛼 − 1
𝑗

)

∞

𝑗=0

(−1)𝑘+𝑗+1𝛽𝑘+𝛼

𝑘! (𝑘 + 𝛼 + 𝑗)𝛤(𝛼)

∞

𝑘=0

(𝑒−𝜆(𝑘+𝛼+𝑗)𝑥 − 1).      (11) 

Various properties of the exponentiated exponential can be obtained from Gupta and 242 

Kundu (1999). Using expansions (10) and (11), we can obtain mathematical quantities of the 243 

special model such as ordinary and central moments, moment generating and characteristic 244 

functions, general coefficient, Rényi entropy and some others from quantities exponentiated 245 

exponential distribution. For example, we consider only moments for reasons of space. The mth 246 

ordinary moment of the special model can be expressed as  247 

𝜇𝑚 = ∑ ∑ (
−𝑘 − 𝛼 − 1

𝑗
)

∞

𝑗=0

(−1)𝑘+𝑗𝜆𝛽𝑘+𝛼

𝑘! 𝛤(𝛼)

∞

𝑘=0

𝛤(𝑚 + 1)

(𝜆(𝑘 + 𝛼 + 𝑗))
𝑚+1. 248 

In particular, we have that the mean of the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝⁄ ] distribution is given by 249 

𝜇1 = 𝜇 = ∑ ∑ (
−𝑘 − 𝛼 − 1

𝑗
)

∞

𝑗=0

(−1)𝑘+𝑗𝜆𝛽𝑘+𝛼

𝑘! 𝛤(𝛼)

∞

𝑘=0

1

(𝜆(𝑘 + 𝛼 + 𝑗))
2. 250 

Let 𝑥1, … , 𝑥𝑛 be a sample of the size 𝑛 from 𝑋 ~ Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝⁄ ] (α, β, λ). 251 

The log-likelihood function for the vector of parameters 𝜽 = (𝛼, 𝛽, 𝜆𝑇)𝑇 can be obtained as  252 

𝑙(𝜽) = 𝑛 𝑙𝑜𝑔 (
𝜆𝛽𝛼

𝛤(𝛼)
) − 𝑛𝛼𝜆 − (𝛼 + 1) ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑥𝑖)

𝑛

𝑖=1

− 𝛽 ∑ (
𝑒−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
)

𝑛

𝑖=1

. 253 
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The components of the score vector 𝑈(𝜽) are given by  254 

𝑈𝛼(𝜽) = 𝑛𝑙𝑜𝑔𝛽 − 𝑛𝜓(𝛼) − 𝑛𝜆 − ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑥𝑖)

𝑛

𝑖=1

, 255 

𝑈𝛽(𝜽) =
𝑛𝛼

𝛽
− ∑ (

𝑒−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
)

𝑛

𝑖=1

 256 

and 257 

𝑈𝜆(𝜽) =
𝑛

𝜆
− 𝑛𝛼 − (𝛼 + 1) ∑ (

𝑥𝑖𝑒−𝜆𝑥𝑖

1 − 𝑒−𝜆𝑥𝑖
)

𝑛

𝑖=1

+ 𝛽 ∑ (
𝑥𝑖𝑒−𝜆𝑥𝑖

(1 − 𝑒−𝜆𝑥𝑖)2
)

𝑛

𝑖=1

, 258 

where 𝜓(𝛼) =
𝑑𝛤(𝛼)

𝑑𝛼
.  259 

 260 

Application 261 

In this section, we will show an application to real data for the proposed gamma 262 

distribution. The data used in this research are from the excesses of flood peaks (in m 3 / s) 263 

Wheaton River near Carcross in the Yukon Territory, Canada. 72 exceedances of the years 1958 264 

to 1984 were recorded, rounded to one decimal place. These data were analyzed by Choulakian 265 

and Stephens (2001), and are presented in Table 1. 266 

 267 

Table 1. Full excess peaks in m 3 / s Rio Wheaton. 268 

Excess flood peaks of Rio Wheaton (m 3 / s) 

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 

1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 

0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6 

9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 

5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0 

 269 

It is worth mentioning that this data set has also been analyzed by means of the 270 

distributions of Pareto, Weibull three parameters, the generalized Pareto and beta - Pareto 271 

(Akinsete, Famoye & Lee, 2008). 272 

In Table 2, we can see the maximum likelihood estimates obtained by the Newton-273 

Raphson implemented in SAS 9.1 statistical software, parameters, standard errors, Akaike 274 

information criterion, corrected Akaike, Bayesian, Hannan-Quinn and Anderson-Darling 275 
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statistics (A*) and Cramér von Mises (W*) to the Gamma-[−𝑙𝑛(1 − 𝐸𝑥𝑝)] distributions (M1), 276 

Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝⁄ ] distribution (proposed model, M2), exponentiated Weibull (M3), 277 

modified Weibull (M4), beta Pareto (M5) and Weibull (M6). 278 

 279 

Table 2. Estimated maximum likelihood parameter, errors (standard errors in parentheses) and 280 

calculations of AIC statistics, AIC, BIC, HQIC, tests A* and W* for the M1 to M6 distributions. 281 

Models 
Estimates Statistics 

    AIC AIC BIC HQIC A* W* 

M1 
0.838 

(0.121) 

0.035 

(0.007) 

1.96 

(<E-3) 

---- 

---- 
508.689 509.042 515.519 511.408 0.7519 0.1306 

M2 
0.131 

(0.053) 

0.179 

(0.07) 

0.539 

(0.251) 

---- 

---- 
505.030 505.383 511.860 507.749 0.4516 0.0757 

M3 
1,387 

(0.59) 

0.519 

(0.312) 

0.05 

(0.021) 

---- 

---- 
508.050 508.403 514.880 510.769 1.4137 0.2534 

M4 
0.776 

(0.124) 

0.124 

(0.035) 

0.01 

(0.008) 

---- 

---- 
507.343 507.696 514.173 510.062 0.5938 0.0978 

M5 
84.682 

(<E-3) 

65.574 

(<E-3) 

0.063 

(0.005) 

0.01 

(<E-3) 
524.398 524.995 533.504 528.023 2.0412 0.3516 

M6 
0.901 

(0.086) 

0.086 

(0.012) 

---- 

---- 

---- 

---- 
506.997 507.171 511.551 508.810 0.7855 0.1380 

 282 

For the six distributions shown in Table 2, the data applied to Wheaton River 283 

flooding, it was observed that beta-Pareto model (M5), which was described by Akinsete, 284 

Famoye and Lee (2008) as the best fitted model, in our studies had a lower performance with 285 

AIC = 524.398, AICc = 524.995, BIC=533.504, HQIC = 528.023, A = 2.0412 and W = 0.3516, 286 

when compared to the proposed Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  model (M2) that obtained AIC = 287 

505.030, AICc = 505.383, BIC=511.860, HQIC = 507.749, A = 0.4516 and W = 0.0757.  Also 288 

according to Table 2, the proposed distribution model M2 is the best tested once the lowest 289 

values of AIC, AICc, BIC HQIC, A* and W* are from such distribution, and only according to 290 

the BIC criterion was exceeded solely by the model M6. 291 

In the Figures 3 and 4 below, there are the graphs of density functions and 292 

distributions of M1 to M6 models fitted to the data and their corresponding histograms. The 293 

graph shows that the Gamma-[(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  model has similar behavior to that of other 294 



 

 

 13 

 

distributions, except that of the beta Pareto which distances itself from the others. 295 

 296 

Figure 3. Fitted distributions to the mass data of flood peaks in river Wheat297 

 298 

Figure 4. Fitted cdf´s to the mass data of flood peaks in river Wheaton 299 

 300 

CONCLUSION 301 

 302 

As concluding remarks, we note that the class of Gamma-[(1 − 𝐺) 𝐺]⁄  probability 303 

distributions developed in this work is a novel way of generalizing the gamma distribution and 304 
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can be applied in different areas depending on the choice of the distribution 𝐺. As future work, 305 

we intend to carry out more detailed comparisons between the novel distribution family 306 

proposed in this paper and the family of distributions investigated in Zografos and Balakrishnan 307 

(2009), which is also based on the integration of the gamma distribution. 308 

In this work, we study in detail only a distribution of the Gamma-[(1 − 𝐺) 𝐺]⁄  class, 309 

namely the Gamma- [(1 − 𝐸𝑥𝑝) 𝐸𝑥𝑝]⁄  distribution. We derive some properties of this 310 

distribution and applied to a set of real data obtaining better fit than that obtained in a previous 311 

study by Akinsete et al. (2008). We intend to conduct the study of new distributions within this 312 

class as future work. 313 

We note that after adding several parameters to a model it can better be adjusted to a 314 

particular phenomenon due to its greater flexibility. On the other hand, one should not forget 315 

that there may be a problem for the estimation of the parameters since it can occur both 316 

computational and identifiability problems in parameter estimation. Thus, the ideal is to choose 317 

a model that reflects well the phenomenon / experiment with the minimum number of 318 

parameters. In the case of the proposed class, only two additional parameters are added to the 319 

set of parameters of the 𝐺 distribution.  320 

 321 
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