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ABSTRACT. This paper presents a new class of probability distributions generated from the gamma 

distribution. For the new class proposed, we present several statistical properties, such as the risk function, 

expansions to density and cumulative function, moment generating function, characteristic function, the 

moments of order  , central moments of order  , the log likelihood and its partial derivatives and also 

Rényi entropy, kurtosis, skewness and variance. Some of these properties are indicated for a particular 

distribution within this new class that is used to illustrate the capability of the proposed new class through 

an application to a real data set. The data set presented in Choulakian and Stephens (2001) was used. Six 

models are compared and for the selection of these models was used the Akaike Information Criterion 

(AIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit. Lastly, the 

conclusions from the analysis and comparison of the results obtained are presented, as well as the 

directions for future researches. 

Keywords: generalized distribution, statistical properties, quantile function, maximum likelihood estimation, model fit. 

Uma nova classe de distribuições gama 

RESUMO. Este artigo apresenta uma nova classe de distribuição de probabilidades gerada a partir da 

distribuição gama. Para a classe proposta apresentamos algumas propriedades estatísticas tais como função 

de risco, expansões para densidade e acumulada, função geratriz de momentos, função característica, 

momentos de ordem  , momentos centrais de ordem  , função de log-verossimilhança e suas respectivas 

derivadas parciais, entropia de Rényi e medidas de curtose, assimetria e variância.  Algumas dessas 

propriedades são indicadas para uma distribuição-base particular dentro dessa nova classe a fim de ilustrar a 

potencialidade da classe proposta por meio de uma aplicação a um conjunto de dados reais. O conjunto de 

dados apresentado em Choulakian and Stephens (2001) foi usado. Seis modelos são comparados, e para a 

seleção destes foi utilizado o critério de informação de Akaike, e testes de Cramer-Von Mises e Anderson-

Darling foram usados para avaliar o ajuste aos modelos. Finalmente, apresentamos as conclusões com dados 

da análise e comparação dos resultados obtidos e sugerimos trabalhos futuros.  

Palavras-chave: distribuição generalizada, propriedades estatísticas, função quantílica, estimação por máxima 

verossimilhança, ajuste de modelos. 

Introduction 

The gamma distribution is used in a variety of 

applications including queue, financial and 

weather models. It can naturally be considered as 

the distribution of the waiting time between 

events distributed according to a Poisson process. 

It is a two-parameter distribution, whose density 

is given by:  
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where:  

0   is a shape parameter and 0   is the 

reciprocal of a scale parameter. 

Due to the importance of this distribution, 

recently some new distributions as well as families 

of probability distributions based on generalizations 

of the gamma distribution have been proposed. 

Given a distribution with continuous distribution 

function  G x  its generalization or exponentiated form 

 G x  is obtained by     ,aF x G x  with 0a   (power 

parameter). Gupta, Gupta, and Gupta (1998) 

proposed and studied some properties exponentiated 

gamma distribution. 

Cordeiro, Ortega, and Silva (2011) extended the 

exponentiated gamma distribution defining a new 
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distribution called Exponentiated Generalized 

gamma Distribution with four parameters, which is 

capable of modeling bathtub shaped failure rate 

phenomena. 

Zografos and Balakrishnan (2009) defined a 

family of probability distributions based on the 

integration of a gamma distribution as follows: 
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where:  

 G x  is an arbitrary distribution function. When 

1n    this distribution coincides with the 

distribution of the nth highest value record 

(Alzaatreh, Famoye, & Lee, 2014). 

Alternatively, Ristic and Balakrishnan (2012) 

have proposed a new family of probability 

distributions, which is also based on the integration 

of the gamma distribution. They defined this new 

family as follows: 
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where:  

 G x  is an arbitrary distribution function. 

Similarly, when 1n    this distribution coincides 

with the distribution of the nth smallest value record 

(Alzaatreh et al. 2014). 

Following the line of work of Zografos and 

Balakrishnan (2009) and Ristic and Balakrishnan 

(2012), our goal in this work is to propose a new 

family of distributions based on gamma distribution. 

The family of distributions proposed here is the 

following: 
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where:  

 G x  is an arbitrary distribution function and 

 GH x  has the same support as the  distribution 

 G x . This new family shall be called gamma-

[(1 G) G]  class. The statistical properties of this 

new class, such as mean, variance, standard 

deviation, mean deviation, kurtosis, skewness, 

moment generating function, characteristic function 

and graphical analysis, are derived. 

Then, to illustrate the applicability of the 

proposed new family, it is considered the particular 

case of the distribution obtained when taking into 

account that  G x  is the distribution function of an 

exponential random variable. By presenting 

mathematical structures for gamma-[(1 G) G]  class, 

it was also derived statistical properties from this 

new distribution, and, to illustrate its potentiality, an 

application to a set of real data is performed. For 

this, the data set presented in the work of 

Choulakian and Stephens (2001) was used to verify  

if the models are well adjusted to this data. As 

comparative criteria of fitness of the models, it was 

considered the Akaike (AIC), and the Cramer-von 

Mises and Anderson-Darling tests. Both hypothesis 

tests, Anderson-Darling and Cramér-von Mises, are 

discussed in detail by Chen and Balakrishnan (1995) 

and belong to the class of quadratic statistics based 

on the empirical distribution function, since they 

work with the squared differences between the 

empirical distribution and the hypothetical. 

Material and methods 

Obtaining a class of probability distributions 

The gamma-[(1 G) G]  class is defined by the 

cumulative distribution function (cdf) (1) (for 0x  ) 

which is equivalent to 

 

 
 

 

   

 

1

1

0

1
1 e dt , ,

G x

G x t

G

G x
H x t Q

G x


 

 




 
 

       


 

(2) 

 

where: 

     , ,Q a z a z a   is the regularized 

incomplete gamma function and 

  1, e dt, z 0,a t

z
a z t


     is the incomplete gamma 

function, and  a is Euler gamma function. If the 

distribution  G x  has density  g x  the class will 

have a probability density function (pdf) given by 
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(3) 

 

The Equations (2) and (3) can be rewritten as a 

sum of exponentiated distributions. These 

distributions have been studied by some authors in 

recent years, as for example, Mudholkar and 

Srivastava (1993) for exponentiated Weibull, Gupta 
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and Kundu (1999) for exponentiated exponential, 

among others.  

Using the power series exponential, we rewrite 

(3) as 
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Furthermore, as 
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it follows that 
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(4) 

 

Since    dt
x

G GH x h t


  we can rewrite the 

distribution function as 
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Therefore, 
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Next, we presented an expansion to gamma-

[(1 G) G]  class when G  is discrete. If the distribution 

 G x
 is discrete, 

 GH x
 is also discrete and we have 

that 
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 Therefore, 
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In addition, we can obtain the risk function of 

the new gamma-[(1 G) G]  class as follows: 
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By inverting  GH x u  (with, 0 1u  ) it is 

obtained an explicit expression for thu  quantile 

function as     1 1 1    ,  ,/GH u G Q u       
 

where

 1 , Q u
 is the inverse function of regularized 

incomplete gamma function.   

Using the density and distribution function 

expansions, it is possible to get the statistical 

properties of the new class, as discussed below. 

Equations (4) and (5) are the main results of this 

subsection.  

Moments and moment generating function 
 

Several of the interesting characteristics and 

features of a probability model can be obtained 

using moments such as tendency, dispersion, 

skewness and kurtosis. The following equations 

are the development of the expansion calculations 

for the moments of order m  for the gamma-

[(1 G) G]  class
.
 The  th moment of a random 

variable having cdf (2) can be easily obtained from 

Equation (4). Hence, we have  
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Therefore,  
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where: 
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The expression (6) is important since it 

generalizes the well-established probability 

weighted moments.  

In particular, we have the following expansion 

of the mean for the gamma-[(1 G) G]  class 
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The following is the development of the 

expansion calculations for the moment generating 
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function for the gamma-[(1 G) G]  class. We have 

from Equation (4), 
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Using the fact that 
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Therefore, using (6), the last equation can be 

expressed as  
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Similarly, one can establish the following 

expansion for the characteristic function for the 

gamma-[(1 G) G]  class 
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Central moments and general coefficient  

We will look at the development of the 

expansion calculations for central moments of order 

m  to the gamma-[(1 G) G]  class. This measure 

can be calculated as  

 

     ' dF x ,
m m

m E X x  




    
    

 

or equivalently  
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Since  
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it follows that 
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In particular, by expanding the range of variance 

for the gamma-[(1 G) G]  class we have:  
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A new generalization called general coefficient, 

which extends the skewness and kurtosis, is given by 
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Substituting (7) and (8) in Equation (9), we 

obtain 
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Note that, in particular, as 3m  and 4m  in 

 g
C m  we obtain expansions to skewness and 

kurtosis measures, respectively.  

Maximum likelihood estimation and Rényi entropy 

After knowing a few regularity conditions, the 

maximum likelihood estimates (MLEs) can be 

obtained by equating the derivative of the log-

likelihood function with respect to each parameter 

to zero. We determine the MLEs of the parameters 

of the gamma-[(1 G) G]  class from complete 

samples only. Let 1, , nx x  be a random sample of 

size n  from the new class, where   is a vector of 

unknown parameters in the parent distribution 

( ; ).G x   Earlier in section we wrote    ;g x g x   

and ( ) ( ; )G x G x   to emphasize the parametric 

vector. The log-likelihood function for the vector of 

parameters  
T T

(α,  β, θ )θ  can be obtained as  
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The log-likelihood can be maximized, for 

example, either directly by using the SAS 

(ProcNLMixed) or by using the nonlinear 

likelihood expressions obtained by differentiating 

    . The components of the score vector ( )U θ  

are given by  
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where:  

 
d ( )

d


 




  is the digamma function.  

Entropy is a measure of uncertainty in the 

sense that the higher the entropy value, the lowest 

the information and the greater the uncertainty, 

or the greater the randomness or disorder. The 

following is the expansion entropy calculations 

for the gamma-[(1 G) G]  class, using the Rényi 

entropy, which is given by  
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Substituting the expressions of density and 

cumulative distribution function given by Equations 

(3) and(2), respectively, we have 
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By expanding the exponential function in Taylor 

series as  
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Now, using the following binomial expansion 
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it follows that  
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Thus, an explicit expression for Rényi entropy 

can be written  
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which, in turn, implies that (using Equation (6)) 
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Results and discussion 

Special model 

This section, will examine a particular 

distribution of the gamma-[(1 G) G]  class proposed 

here. It will be considered the particular case in 

which   1 e 0,,xG x x    that is called the 

gamma-[(1 Exp) Exp]  distribution. 

The gamma-              distribution 

Considering  G x  the cdf of the exponential 

distribution with parameter   in Equation (2), we 

have the gamma-[(1 Exp) Exp]  distribution: 
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Differentiating  H x , we get the density 

function of the gamma-[(1 Exp) Exp]  

distribution: 

 

 
   

e1

1 e

2

e e
e

1 ee
.

1

x

x
x x

x
x

h x






   











 
      




 
  
  

 

Figure 1 show the graph of the gamma-

 (1 Exp) Exp  distribution probability density 

functions and cumulative distribution, for some 

values of the parameters. 
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Figure 1. In right pdf and left cdf of the gamma- (1 Exp) Exp  

distribution for some values of  . 

We can also obtain the risk function using the 

gamma-[(1 Exp) Exp]  distribution as follows:  
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Figure   shows the graph of the risk function using 

the gamma-[(1 Exp) Exp]  distribution generated 

from some values assigned to parameters. 
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Figure 2. Plots of the risk function for some parameter values. 

Using procedure similar to what was done in 

pdf and cdf expansions, the pdf and cdf of the 

gamma-[(1 Exp) Exp]  distribution we can 

rewritten as a sum of exponentiated exponentials, 

as follows: 
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(11) 
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and 
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(12) 

Various properties of the exponentiated 

exponential can be obtained from Gupta and 

Kundu (1999). Using expansions (11) and (12), it 

is possible to obtain mathematical quantities of 

the special model such as ordinary and central 

moments, moment generating and characteristic 

functions, general coefficient, Rényi entropy and 

some others from quantities exponentiated of 

exponential distribution. For example, we 

consider only moments for reasons of space. The

thm  ordinary moment of the special model can be 

expressed as  
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In particular, we have that the mean of the 

gamma-[(1 Exp) Exp]  distribution is given by 
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Let 
1, , nx x  be a sample of the size n  from  ~ X

gamma- (1 Exp) Exp   (α,  β,  λ).  The log-likelihood 

function for the vector of parameters ( ,  , )
T T

  θ  can 

be obtained as  
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The components of the score vector ( )U θ  are 

given by  
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Application 

In this section, an application to real data for the 

proposed gamma distribution will be displayed. The data 

used in this research are from the excesses of flood peaks 

(in m
3

 s
-1

) Wheaton river near Carcross in the Yukon 

Territory, Canada. Seventy-two exceedances of the years 

1958 to 1984 were recorded, rounded to one decimal 

place. These data were analyzed by Choulakian and 

Stephens (2001), and are presented in Table 1. 

Table 1. Full excess peaks in m
3
 s

-1
 Rio Wheaton. 

Excess flood peaks of Rio Wheaton (m
3

 s
-1

) 

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 

1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 

0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6 

9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 

5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0 

 

It is worth mentioning that this data set has also 

been analyzed by means of the distributions of Pareto, 

Weibull three parameters, the generalized Pareto and 

beta - Pareto (Akinsete, Famoye & Lee, 2008). 

In Table 2, we can see the maximum 

likelihood estimates obtained by the Newton-

Raphson implemented in SAS 9.1 statistical 

software, parameters, standard errors, Akaike 

information criterion and Anderson-Darling 

statistics (A*) and Cramér von Mises (W*) to the 

gamma-  log(1 Exp)   distribution (M1), gamma-

[(1 Exp) Exp]  distribution (proposed model, M2), 

exponentiated Weibull (M3), modified Weibull 

(M4), beta Pareto (M5) and Weibull (M6). Its 

densities are given by  
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and 
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where:  

 ,B   denotes the beta function and the 

parameters above are all positive real numbers.  

For the six distributions shown in Table 2, the data 

applied to Wheaton river flooding, it was observed that 

beta-Pareto model (M5), which was described by 

Akinsete et al. (2008) as the best fitted model, in our 

studies had a lower performance with AIC = 524.398, 

A* = 2.0412 and W* = 0.3516, when compared to the 

proposed gamma-[(1 Exp) Exp]  model (M2) that 

obtained AIC = 505.030, A* = 0.4516 and W* = 

0.0757.  Also according to Table 2, the proposed 

distribution model M2 is the best tested once the 

lowest values of AIC, A* and W* are from such 

distribution. 

The plots of the fitted gamma-[(1 Exp) Exp] pdf 

and two better fitted pdfs are displayed in Figure 3. The 

graph shows that the gamma-[(1 Exp) Exp]  model has 

similar behavior to that of other distributions, being very 

competitive in the analysis of such data.  

Table 2. Estimated maximum likelihood parameter, errors 

(standard errors in parentheses) and calculations of AIC statistics, 

AIC, BIC, HQIC, tests A* and W* for the M1 to M6 

distributions. 

Models ̂  ̂  ̂  ̂  AIC A* W* 

M1 
0.838 

(0.121) 

0.035 

(0.007) 

1.960 

(<E-3) 

---- 

---- 
508.689 0.752 0.131 

M2 
0.131 

(0.053) 

0.179 

(0.070) 

0.539 

(0.251) 

---- 

---- 
505.030 0.452 0.076 

M3 
1,387 

(0.590) 

0.519 

(0.312) 

0.050 

(0.021) 

---- 

---- 
508.050 1.414 0.253 

M4 
0.776 

(0.124) 

0.124 

(0.035) 

0.010 

(0.008) 

---- 

---- 
507.343 0.594 0.098 

M5 
84.682 

(<E-3) 

65.574 

(<E-3) 

0.063 

(0.005) 

0.010 

(<E-3) 
524.398 2.041 0.352 

M6 
0.901 

(0.086) 

0.086 

(0.012) 

---- 

---- 

---- 

---- 
506.997 0.785 0.138 
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Figure 3. Fitted distributions to the mass data of flood peaks in 

Wheaton river. 

Conclusion 

As concluding remarks, we note that the class of 

gamma-[(1 G) G]  probability distributions 

developed in this work is a novel way of generalizing 

the gamma distribution and can be applied in 

different areas depending on the choice of the 

distribution G . In a future research, we intend to 

carry out more detailed comparisons between the 

novel distribution family proposed in this paper and 

the family of distributions investigated in Zografos 

and Balakrishnan (2009), which are also based on 

the integration of the gamma distribution. 

In this paper, we study in detail only a 

distribution of the gamma-[(1 G) G]  class, namely 

the gamma-[(1 Exp) Exp]  distribution. Some 

properties of this distribution were derived and 

applied to a set of real data, obtaining better fit than 

that obtained in a previous study by Akinsete et al. 

(2008). We intend to conduct the study of new 

distributions within this class as future work. 

We note that, after adding several parameters to a 

model, this model can become better adjusted to a 

particular phenomenon due to its greater flexibility. 

On the other hand, one should not forget that there 

may be a problem for the estimation of the 

parameters, since it can occur both computational 

and identifiability problems in parameter estimation. 

Thus, the ideal is to choose a model that reflects 

well the phenomenon / experiment with the 

minimum number of parameters. In the case of the 

proposed class in this research, only two additional 

parameters are added to the set of parameters of the 

G  distribution.  
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