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ABSTRACT. Human beings have naturally different variations in performance which may lead towards 
significant differences between the results forecasted by simulation models and those actually obtained. 
Current research studies the effects of human factors such as circadian rhythms and variations in workday 
shifts on operators´ performance. It also proposes a method for collecting time data in assembly lines, 
which takes into consideration different time periods for each work shift to apprehend the variability of 
human performance at different points throughout the day. The new method was applied in an industrial 
process with a high rate of manual labor and its production results on the shifts were compared. Results 
reveal that human factors have a significant impact on the simulation model, providing results closer to 
reality, which, in turn, lead to more accurate production forecasts. 
Keywords: simulation, human factor, circadian rhythm, shift work. 

Fator humano em um modelo de simulação a eventos discretos do setor automotivo 

RESUMO. O ser humano pode apresentar variações naturais em seu desempenho, o que pode levar a 
diferenças significativas entre os resultados previstos por modelos de simulação e os obtidos no sistema real. 
Este trabalho tem como objetivo estudar os efeitos dos fatores humanos, tais como o ritmo circadiano e o 
trabalho em turnos no desempenho do operador. Este trabalho também propõe um método para a coleta de 
dados de tempo em uma linha de montagem. Este método leva em consideração os diferentes períodos de 
tempo para cada turno de trabalho para capturar a variabilidade do desempenho humano em diferentes 
pontos ao longo do dia. Com este novo método, um processo industrial que possuía um elevado percentual 
de trabalho manual foi modelado e os resultados de produção durante os turnos foram comparados. Pode-
se concluir que a consideração dos fatores humanos mencionados tiveram impacto significativo no modelo 
de simulação, proporcionando resultados mais próximos da realidade, o que, por sua vez, conduziram a 
previsões de produção mais precisas. 
Palavras-chave: simulação, fator humano, ritmo circadiano, trabalho em turnos. 

Introduction 

According to Rutberg, Wenczel, Devaney, 
Goldlust, and Day (2015), discrete event 
simulation is a tool for computational modeling 
that represents complex systems, allowing for 
possible interventions to be studied without 
compromising the real world with changes, where 
it is impossible to know the likely effects. In fact, 
discrete event simulation has often and 
increasingly been employed to aid decision-
making (Pereira, Montevechi, Miranda, & Friend, 
2015).  

Through modeling, analysis and system design, 
the impact of input parameter variations on the 
performance of output parameters may be 
characterized (Banks, Carson II, Nelson, & Nicol, 
2010, Garza-Reyes, Eldridge, Barber, & Soriano-
Meier, 2010, Sargent, 2013).  

However, when a system is forwarded with 
many manual activities, largely dependent on the 
work of operators, simulation cannot faithfully 
apprehend all the system´s details and, thus, 
simulation results may not reflect true results 
(Baines, Mason, Siebers, & Ladbrook, 2004). The 
above may be attributed to the human element 
represented in most of the simulation models 
(Siebers, 2006). Deterministic performance rates are 
often considered for their activities, which result 
from studies of time and methods. According to 
Baines et al. (2004), people must be represented 
realistically with their actual behavior and 
subsequent performance so that simulation accuracy 
may be improved. 

According to Siebers (2006), specialized 
literature clearly indicates that workers’ performance 
varies throughout the execution of tasks. This may 
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occur between different workers performing the 
same task or when the same worker repeats a task. 
Similarly, the literature has also shown that workers’ 
performance also varies as a result of their reliance 
on past events and on the current state of the 
system. 

It is important to consider the human factor early 
since in the design process this is easier and cheaper 
than making changes to products and systems (Miles 
& Swift, 1998, Perez & Neumann, 2015). Studying 
the human factor focuses on how behavioral and 
non-behavioral variables affect task accomplishment 
(Meister, 1989) and human-centered design requires 
integration between the human, machine(s) and 
work environment (Mallam, Lundh, & MacKinnon, 
2015).  

According to Maguire (2001), thoughtful 
human-centered design should increase 
productivity, decrease errors, reduce training and 
support, improve user´s trust and enhance system 
reputation. In addition, taking into consideration the 
human factor may facilitate overall system design 
outcomes, improve project management resources 
and enhance lifecycle cost-savings (Hendrick, 2008).  

The incorporation of human factors into 
computer simulation models has been considered a 
‘missing link’ (Baines et al., 2004), with scanty 
progress in this matter. Most simulation software 
represents total machine behavior but treats workers 
as mere resources (Chen, Huang, Shih, & Chang, 
2016, He, Qiu, Fan, & Liu, 2016, Ergai et al., 2016).  

However, changes are taking place on this 
subject and the incorporation of human factors has 
become a major discussion among professionals 
from different areas of modeling and simulation, as 
reported by Cummings and Guerlain (2007), 
Bruzzone, Briano, Bocca, and Massei (2007), 
Hannah and Neal (2014) and Chen, et al. (2016).  

In this context, current paper will explore and 
illustrate the influence of human factors on 
operators’ performance and how these factors may 
alter the results predicted by simulation models. 
Thus, our initial aim is to discover how to insert 
human factors into a simulation model; afterwards 
we assess whether the incorporation of such factors 
has changed the expected results. 

To this end, a simulation study was conducted 
on a highly manual assembly line, in which two 
human factors were incorporated into the 
simulation model that would influence the 
operator´s performance: circadian rhythm and shift 
work. These factors were added to the model by 
performing a time analysis in four periods during 

each work shift. This analysis ended up changing the 
standard time stipulated by the engineering team.  

Current paper is divided into four sections. The 
first section contextualizes the research problem and 
its objectives. The second section presents the 
research method, whilst the third section discusses 
the application of the research method, followed by 
an analysis of the results. The final section 
comprises the conclusions. 

It is important to consider HF as early in the 
design process as possible because its effectiveness is 
constrained by time; the longer it takes to apply HF 
in design the harder and more expensive it is to 
make changes to products and systems, since the 
window of opportunity contracts over time (Miles & 
Swift, 1998). 

Material and methods  

The simulation computational model was 
constructed using the method proposed by Leal, 
Costa, Montevechi, Almeida, and Marins (2011). 
The method presents the phases of a simulation 
project in which three models must be developed: 
(1) conceptual model at the conception phase;  
(2) computer model at the implementation phase; 
and (3) operational model at the analysis phase. 

Due to the peculiarity of this research, namely, 
the inclusion of human factors in a simulation 
model, the steps presented by Baines et al. (2004) for 
selecting the human performance model were 
followed. They were based on three aspects: 

- The models must be valid in the context from 
which they were originally derived. 

- The literature should sufficiently indicate that 
the human factor represented by the model is 
present in the industrial context. 

- The inputs required for the models should be 
easy to obtain.  

Hence, current study will use the methods by 
Leal et al. (2011) and Baines et al. (2004) to conduct 
the simulation project associated with the insertion 
of human factors. As indicated earlier, usually 
humans are considered ‘machines’ in simulation 
models with default behaviors during the simulation 
time, with no distinctions in human behavior 
between the different scenarios.  

Application of the method 

Current research was applied in a production line 
of cable harnesses (electrical system components of 
electronic injection vehicles) with a high proportion of 
manual work and 12 operators. Although three types of 
cable harnesses are produced in this line, only one of 
the products was analyzed since it comprised 91.6% of 
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the production mix. In the case of this particular 
product, the line studied has an expected output of 189 
pieces per shift.  

Following the aspects presented, some human 
performance models in the literature were identified 
but they had been applied in contexts which were 
different from the object of current investigation. 
The context of current study involves a highly 
manual assembly line and, consequently, human 
resources in the system are a key factor for 
performance success. This main feature supports the 
incorporation of human factors in a discrete event 
simulation model, which is the main goal of current 
research.  

Due to the scarcity of literature on the 
identification of human performance models that 
may be applied in any context, we decided to first 
identify by a theoretical review which human factors 
might affect the operators’ performance during shift 
work. We chose to assess the influence of two 
factors: circadian rhythm and shift work. Further, 
the above factors were chosen due to the feasibility 
of measuring the operators’ performance variability 
through changes in processing time. 

Hence, the processing time of activities in the 
assembly line was analyzed, with four periods over 
two shifts and then variation in total production was 
assessed. The work shifts were divided into four 
periods due to the feasibility of collecting the data 
during the periods. The First Shift was divided up as 
follows: 

- First Period (6:00 to 08:00 a.m.): this period 
was chosen to assess the operators’ performance at 
the beginning of the shift, when the operators were 
starting their activities; 

- Second Period (08:00 to 10:00 a.m.): this 
period was chosen to assess the operators’ 
performance before lunchtime; 

- Third Period (10:00 to 12:00 p.m.): this period 
was chosen to assess the operators’ performance 
after lunch to verify whether performance was 
affected by their returning from the lunch break; 

- Fourth Period (12:00 to 03:00 p.m.): this 
period was chosen to assess operators’ performance 
during the last period of the shift to verify whether 
the operators’ performance was affected by fatigue, 
monotony and variations related to biorhythm. 

- Four periods were similarly determined for the 
second shift. 

After defining the human factor to be analyzed 
and determining how to insert it into the simulation 
model, we were able to develop the model within 
the method proposed by Leal et al. (2011).  

In the conception phase, the Idef-SIM mapping 
technique was used to prepare the conceptual 
model. This technique was chosen because it 
allowed a graphical representation of human 
resources (operators) to be inserted in the process 
flow or in the state and object transition network 
(Maurício, Montevechi, Leal, Miranda, & Lombardi, 
2015), which was important for the context of the 
study.  

The conceptual model was developed and 
validated by the face-to-face technique through 
which experts of the system assessed whether the 
model accurately represented the real thing. After 
this phase, the model was documented (Figure 1). 

For the development of the conceptual model, it 
was necessary to establish the following elements in 
the graphical library of the simulation model: 
Hanger (parts positioner), Test Hanger (place for 
storing the products to be tested in the test bench), 
Cell and Station (place where the pre-assembly and 
assembly activities are carried out), Basket (place to 
store the finished products), Retention (bench used 
to perform quality and dimensional inspection of 
whips), Labor Error (place to check the product and 
perform the electrical test), Shuttle (tool for 
gravitational connection), and Test (bench used to 
perform the final electrical test of the harnesses). 
This nomenclature, common to the company, was 
maintained in current paper due to the familiarity 
with these terms by the people involved in the 
simulation project within the company (Figure 1). 

The next step was the modeling of the input 
data. The activity was developed by conducting a 
detailed time analysis of the activities to assess the 
influence of ‘circadian rhythm’ and ‘shift work’ on 
operators’ performance. 

During the first phase of data collection, 
information was collected in loco by direct 
observations and from interviews with the 12 
operators. The second phase comprised the 
collection of the following data: product processing 
times, trading volume and production mix. In the 
third phase, the ‘Times and Methods’, considered in 
current study as the standard engineering times, 
were collected. These times were used by the 
company to calculate the daily production of the 
assembly line. 

In the fourth and final phase, a time analysis in 
all 12 work stations was conducted. It was 
established that the times had to be collected in 4 
periods defined during a normal working day of the 
production line, in the first and second shifts, as 
mentioned earlier and shown in Table 1. 



618 Paiva et al. 

Acta Scientiarum. Technology Maringá, v. 39, suppl., p. 615-622, 2017 

 
Figure 1. Conceptual model through the Idef-SIM technique.  

Table 1. Periods of data collection. 

Shift 
Period 

First Second Third Fourth 
First 6:00 - 7:00 a.m. 9:45 - 10:45 a.m. 12:45 - 1:45 p.m. 2:45 - 3:45 p.m.
Second 4:40 - 6:00 p.m. 7:00 - 8:00 p.m. 9:00 - 10:00 p.m. 12:00 - 1:40 a.m
 

Probability distributions for each data set were 
identified from the data collected in each period, and 
were inserted into ProModel® by using a software 
feature for reading external files in Excel®. So that 
the model could ‘understand’ which distribution 
should be used in each period, the Macro feature of 
Promodel® was used. A logic using each of the 
distributions at different periods was defined for the 
model. Hence, every two hours the model used the 
distribution associated with the respective period. 
Probability distributions were identified for all 
processing times collected during the four periods in 
the first and second shifts. 

The conceptual model in the implementation 
phase was converted into a computational model by 
the ProModel® software. At this point, verification 
of the computational model was first performed by 
means of debuggers in software to verify possible 
programming errors. When verification was done, 
the validation process was initiated. 

Techniques proposed by Sargent (2013), 
comprising validation by model animation, 
validation by comparison of the simulated model 
with other analytical models, face-to-face validation, 
and validation by comparison of the production 
records of the real model in relation to the simulated 
model (statistical validation) were used for model 
validation.  

In the case of statistical validation, the chosen 
variable was the total number of parts produced per 
hour. Although the processing times collected by 
engineering were initially used, it was not possible to 
validate the computer model by using these times 
due to outdated engineering times which no longer 
reflected real production line. 

Therefore, processing times collected through 
time analysis to validate the model were employed. 
Validation was made by comparing parts produced 
per hour using time analysis data to parts produced 
per hour for the same period during the real system.  

Statistical validation was conducted with the 
method proposed by Leal et al. (2011). First, a 
normality test to simulated and observed data was 
applied. Then, Anderson-Darling’s test was applied 
to prove that the real-world data (p-value = 0.226) 
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and the simulated data (p-value = 0.726) could be 
approximated by a normal distribution at a 95% 
confidence level. 

Further, the F test tested the hypothesis that 
both sets of data (real and simulated) have equal 
variances. In fact, both sets of data (real and 
simulated) did not have equal variances, at p-value 
< 0.05. 

According to Leal et al. (2011), when variances 
are different, it is necessary to use the Smith-
Satterthwaite’s method before the application of the 
T-test. Smith-Satterthwaite’s method adjusts the 
degrees of freedom in relation to samples´ variance 
difference. T-test was applied using the Smith-
Satterthwaite’s method and the equality of real and 
simulated average rates was proved  
(p-value = 0.467). Results in Table 2 indicate that 
the model may be considered statistically validated 
for the output variable ‘total number of pieces 
produced’. Therefore, the computer model is called 
an operational model because it provides the real 
system too. 

Table 2. Statistical tests. 

Test P-value Results 
Normality Test of Real Data 0.226 Accepts H0 = Real data are normal 
Normality Test of Simulated 
Data 0.726 Accepts H0 = Simulated data are normal

F-test < 0.05 Reject H0 = Variances are equal 
Two Sample T-Test 0.467 Accepts H0 = Validated Model 
 

Thirty replications were initially performed 
during one working day for each of the seven 
scenarios in the two shifts. The initial number of 
replications was calculated according to Kleijnen 
(1995) to ensure an error of less than 1 piece 
produced, considered satisfactory by the company’s 
management. 

After validation, it was possible to use the model 
for the last step of the method by Leal et al. (2011), 
or rather, analysis. Seven scenarios were developed 
for the first and second shift, presented in Table 3. 

The first experiment involved the deterministic 
processing times provided by engineering, named 
Scenario 1 in current study. Since time was 
deterministic, it was not necessary to perform 
replications. In Scenario 1, total production 
amounted to 184 pieces per day. 

The remaining experiments performed at this 
stage took into consideration stochastic processing 
times and were divided into different scenarios, as 
presented in Table 2.  

Since times were stochastic, the simulator was 
programmed to perform 30 replications of the 
model according to the probability distributions 
previously inserted in the software. Consequently, 

the number of pieces produced per day was 
generated at random. 

Table 3. Description of Scenarios. 

First shift Second shift Description 

Scenario 1-T1: 
Model using 
deterministic 
engineering times.

Scenario 1-T2: 
Model using 
deterministic 

engineering times. 

For the whole shift, the times 
collected by engineering, taking into 
account the average standard time of 
five samples collected, regardless of 

the time of day, in the first shift. 

Scenario 2-T1: 
Model using 
stochastic 
engineering times. 

Scenario 2-T2: 
Model using 

stochastic 
engineering times. 

For the whole shift, the times 
collected by engineering, taking into 
account the average standard time of 
five samples, the standard deviation,

and its distribution, collected, 
regardless of the time of day, in the 

first shift. 
Scenario 3-T1: 
Model using the 
times collected in 
the first period. 

Scenario 3-T2: 
Model using the 
times collected in 
the first period. 

The distribution in the first period 
was used during the whole shift. 

Scenario 4-T1: 
Model using the 
times collected in 
the second period.

Scenario 4-T2: 
Model using the 
times collected in 
the second period. 

The distribution in the second 
period was used during the whole 

shift. 

Scenario 5-T1: 
Model using the 
times collected in 
the third period. 

Scenario 5-T2: 
Model using the 
times collected in 
the third period. 

The distribution in the third period 
was used during the whole shift. 

Scenario 6-T1: 
Model using the 
times collected in 
the fourth period. 

Scenario 6-T2: 
Model using the 
times collected in 
the fourth period. 

The distribution in the fourth 
period was used during the whole 

shift. 

Scenario 7-T1: 
Model using the 
times collected in 
all periods. 

Scenario 7-T2: 
Model using the 
times collected in 

all periods. 

For each period of the day the 
corresponding distribution. 

 

Table 4 and 5 provide a summary of the results 
obtained from the initial seven replications of Scenarios 
2, 3, 4, 5, 6 and 7, respectively for the first and second 
shifts. Data exemplify the results achieved during the 
first simulated week, but data analysis was performed 
taking into consideration all 30 replications. 

Table 4. Results of experiments generated for the first week by 
Promodel® - First Shift. 

Replication
Total of pieces produced 

Scenario 2Scenario 3Scenario 4 Scenario 5 Scenario 6Scenario 7
1 185 185 182 184 176 182 
2 185 186 182 185 175 183 
3 185 185 183 184 174 183 
4 184 184 183 185 174 183 
5 184 185 182 185 177 182 
6 185 185 182 185 175 181 
7 184 183 182 183 177 182 
 

Table 5. Results of experiments generated for the first week by 
Promodel® - Second Shift. 

Replication
Total of pieces produced 

Scenario 2Scenario 3Scenario 4 Scenario 5 Scenario 6Scenario 7
1 185 184 187 184 180 184 
2 185 185 183 186 180 187 
3 185 182 184 183 178 186 
4 184 185 185 184 179 184 
5 184 186 185 182 179 188 
6 185 186 187 186 177 182 
7 184 186 185 185 182 185 
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Results and discussion 

A statistical test was initially performed for the 
two shifts to verify the normality of the total 
number of pieces produced. The statistical 
normality test rate (p-value) for each scenario was 
smaller than the significance level (0.05), signifying 
that all sets of data could not be approximated by a 
normal distribution.  

The first experiment investigated whether there 
was any difference between the deterministic and 
stochastic engineering times among the total 
produced.  

A One-Sample Sign test was performed to 
compare the mean rate of the total number 
produced in Scenario 1 (deterministic engineering 
times) with the total number produced under 
Scenario 2 (stochastic engineering times). Since the 
test resulted in a p-value of 0.00, the null hypothesis 
that production is equal between the scenarios was 
rejected. Consequently, the total number of pieces 
produced in Scenario 1 was significantly different 
from the total number produced under Scenario 2. 

The second experiment verified whether there 
existed a difference in total production between 
default time used by the company (Scenario 2) and 
the times collected in the assembly line (Scenarios 3, 
4, 5, 6, 7). In this case, the Mann-Whitney test was 
performed to assess median equality of non-normal 
samples, as shown in Table 6 and 7, for the first and 
second shifts, respectively. To utilize the Mann-
Whitney test, the equality of variances of the data for 
each scenario was initially warranted by Levene's test 
and tested samples were ensured to follow the same 
distribution. 

Table 6. Results of the hypothesis test of the first shift.  

Hypothesis tests P–value 
Mann-Whitney/One–sample sign Total produced 

Scenario 1 Scenario 2 0.00 
Scenario 2 Scenario 3 0.00 
Scenario 2 Scenario 4 0.00 
Scenario 2 Scenario 5 0.03 
Scenario 2 Scenario 6 0.00 
Scenario 2 Scenario 7 0.00 
 

Table 7. Results of hypothesis test of the second shift. 

Hypothesis test P–value 
Mann-Whitney Total produced 

Scenario 2 Scenario 3 0.00 
Scenario 2 Scenario 4 0.00 
Scenario 2 Scenario 5 0.00 
Scenario 2 Scenario 6 0.00 
Scenario 2 Scenario 7 0.00 
 

When Scenario 2 was compared with Scenarios 
3, 4, 5, 6, 7 of the first shift, the Mann-Whitney test 
resulted in a p-value that was less than 0.05 for all 

cases, i.e., the hypothesis of samples being equal was 
rejected. As a result, the total amount of pieces 
produced by Scenario 2 was different from total 
produced in the other five scenarios. Interpretation 
of results revealed that production obtained by using 
data collected in a laboratory was different from the 
production actually obtained by the assembly line. 

The Scenarios of the second shift were 
successively analyzed. At this stage, it was not 
necessary to assess the difference between numbers 
produced in Scenario 1 and Scenario 2 of the second 
shift, since both scenarios would result in a total 
production that was statistically equal to the total 
produced in Scenarios 1 and 2 of the first shift.  

The same conclusions from the data analysis 
carried out earlier could be reproduced for the 
second shift, i.e., the total number of pieces 
produced under Scenario 2 would be different from 
the total produced in the other five scenarios. These 
results enhanced the difference between the 
laboratory simulations under these two scenarios 
and assembly line conditions. 

The third experiment examined whether there 
was a significant difference in production between 
the times collected in the assembly line according to 
the shifts. Results may be seen in Table 8. The 
Mann-Whitney test demonstrated that only the 
totals produced by Scenarios 3 and 5 could be 
considered statistically equal. 

Table 8. Results of hypothesis test of the first and second shifts. 

Hypothesis test P–value 
Mann-Whitney Total produced 

Scenario 3 – T1 Scenario 3 – T2 0.44 
Scenario 4 – T1 Scenario 4 – T2 0.00 
Scenario 5 – T1 Scenario 5 – T2 0.07 
Scenario 6 – T1 Scenario 6 – T2 0.00 
Scenario 7 – T1 Scenario 7 – T2 0.00 
 

In the case of Scenario 3, the result may be 
explained by the fact that the processing time of the 
first period of each shift was applied to all shifts. 
Since operators usually start their shift in good 
conditions, free from any symptoms of fatigue or 
hunger, it is expected that they probably have similar 
performance at the beginning of each shift. 
Moreover, the processing times of Scenario 5 have 
been collected just after lunch and dinner, when 
employees are going to restart their work and 
probably have the same conditions. 

For the other scenarios, the Mann-Whitney 
test´s statistics was smaller than the significance 
level. Consequently, totals produced were 
statistically different. 

The difference for Scenario 4, which uses the 
time frame of the second period of each shift, is 
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probably caused by reduced worker performance. At 
this time of the day, workers have already been 
working for two hours and they are also getting 
closer to lunch or dinner hour.  

In Scenario 6, the difference between totals 
produced by both shifts may have been caused by 
the processing times being collected at the last 
period of each shift, and, hence, workers were 
affected by fatigue, monotony and variations related 
to biorhythm.  

Finally, when Scenario 7 of the first shift was 
compared to Scenario 7 of the second shift, the 
Mann-Whitney test resulted in a p-value of 0.00, or 
rather, the hypothesis that samples were equal had 
to be rejected. Therefore, it follows that the total 
number of pieces produced during the first shift was 
different from that of the second shift.  

Based on the results of the hypothesis test, it may 
be concluded that there was a significant difference 
between the times provided by engineering 
(considering standard conditions in a laboratory) 
and the times collected in the assembly line.  

Finally, so that the differences between the totals 
produced during each period of the day and the 
difference between the totals produced by shift 
could be assessed, Mood’s median test was 
performed to verify the equality of medians of non-
normal samples. Figure 2 shows the average results 
in Mood’s median test for both shifts at 95% 
confidence level. 

 

 
Figure 2. Comparison of production per scenario and per shift. 

Figure 2 reveals that the difference between the 
totals produced in the first shift was greater than the 
difference between the totals produced in the 
second shift. 

In the first shift, the number of pieces produced 
in Scenarios 3 and 5 is equal, whereas it is different 
in Scenarios 4 and 6. The greatest variability in this 
case occurred in Scenario 6, explained by the 
accumulation of fatigue, monotony and variations 
related to biorhythm.  

On the other hand, in the second shift there was 
no difference between the production in Scenarios 

3, 4, and 5. However, the number of pieces 
produced under Scenario 6 is different from that in 
the other scenarios. Similar to the first shift, the 
greatest variability occurred in Scenario 6, explained 
similarly as that for the first shift. Further, Scenario 
6 of the second shift displays the last two hours of 
the workday, a period when the human body is 
preparing for sleep through a reduction in body 
temperature and increasing melatonin (sleep 
hormone) production. 

When the productions of Scenario 7 of the first 
shift was compared with Scenario 7 of the second 
shift, the difference between the shifts was 
significant, in spite of the difference between the 
periods of the second shift was smaller when the 
four periods were taken into account in the same 
model. 

Conclusion 

Current research studied the effect of circadian 
rhythm and shift work on the performance of 
operators, through time analysis performed in the 
assembly line. Results showed that the circadian 
rhythm and shift work required models to take into 
account variations in production throughout the 
entire work shift. For the increase in accuracy and 
quality, it is important to take human factors into 
account when developing simulation models. We 
consider the inclusion of human factors in 
simulation models is a challenge that has yet to be 
overcome and further research is required for such 
purpose.  

Acknowledgements 

The authors would like to thank Capes, CNPq, 
and Fapemig for their support throughout the 
research and the anonymous referees for their 
suggestions that contributed towards substantial 
improvements in the paper. 

References 

Baines, T., Mason, S., Siebers, P. O., & Ladbrook, J. 
(2004). Humans: the missing link in manufacturing 
simulation? Simulation Modelling Practice and Theory, 
12(7), 515-526. 

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. 
(2010). Discrete-event simulation. Upper Saddle River, 
NJ: Prentice-Hall. 

Bruzzone, A. G., Briano, E., Bocca, E., & Massei, M. 
(2007). Evaluation of the impact of different human 
factor models on industrial and business processes. 
Simulation Modelling Practice and Theory, 15(2), 199-218. 

Chen, S. Y., Huang, P. R., Shih, Y. C., & Chang, L. P. 
(2016). Investigation of multiple human factors in 



622 Paiva et al. 

Acta Scientiarum. Technology Maringá, v. 39, suppl., p. 615-622, 2017 

personalized learning. Interactive Learning Environments, 
24(1), 119-141. 

Cummings, M. L., & Guerlain, S. (2007). Developing 
operator capacity estimates for supervisory control of 
autonomous vehicles. Human Factors, 49(1), 1-15. 

Ergai, A., Cohen, T., Sharp, J., Wiegmann, D., 
Gramopadhye, A., & Shappell, S. (2016). Assessment 
of the human factors analysis and classification system 
(HFACS): Intra-rater and inter-rater reliability. Safety 
science, 82(2), 393-398. 

Garza-Reyes, A. J., Eldridge, S., Barber, K. D., & Soriano-
Meier, H. (2010). Overall equipment effectiveness 
(OEE) and process capability (PC) measures: a 
relationship analysis. International Journal of Quality & 
Reliability Management, 27(1), 48-62. 

Hannah, S. D., & Neal, A. (2014). On-the-fly scheduling 
as a manifestation of partial-order planning and 
dynamic task values. Human Factors, 56(6), 1093-1112. 

He, Q., Qiu, S., Fan, X., & Liu, K. (2016). An interactive 
virtual lighting maintenance environment for human 
factors evaluation. Assembly Automation, 36(1), 1-11. 

Hendrick, H. W. (2008). Applying ergonomics to systems: 
some documented “lessons learned”. Applied 
Ergonomics, 39(4), 418-426. 

Kleijnen, J. P. (1995). Verification and validation of 
simulation models. European Journal of Operational 
Research, 82(1), 145-162. 

Leal, F., Costa, R. F. D. S., Montevechi, J. A. B., Almeida, 
D. A., & Marins, F. A. S. (2011). A practical guide for 
operational validation of discrete simulation models. 
Pesquisa Operacional, 31(1), 57-77. 

Maguire, M. (2001). Methods to support human-centred 
design. International Journal of Human-Computer Studies, 
55(4), 587-634. 

Mallam, S. C., Lundh, M., & MacKinnon, S. N. (2015). 
Integrating Human Factors & Ergonomics in large-
scale engineering projects: Investigating a practical 
approach for ship design. International Journal of 
Industrial Ergonomics, 50(11), 62-72. 

Maurício, T. B., Montevechi, J. A. B., Leal, F., Miranda, 
R. C., & Lombardi, F. (2015). Using discrete event 
simulation to change from a functional layout to a 
cellular layout in an auto parts industry. Acta 
Scientiarum. Technology, 37(3), 371-378. 

Meister, D. (1989). Conceptual aspects of human factors. 
Baltimore, MD: Johns Hopkins University Press. 

Miles, B. L., & Swift, K. (1998). Design for manufacturing 
and assembly. Manufacturing, 77(5), 221-224. 

Pereira, T. F., Montevechi, J. A. B., Miranda, R. C., & Friend, 
J. D. (2015). Integrating soft systems methodology to aid 
simulation conceptual modeling. International Transactions 
in Operational Research, 22(2), 265-285. 

Perez, J., & Neumann, W. P. (2015). Ergonomists’ and 
engineers’ views on the utility of virtual human factors 
tools. Human Factors and Ergonomics in Manufacturing & 
Service Industries, 25(3), 279-293. 

Rutberg, M. H., Wenczel, S., Devaney, J., Goldlust, E. J., 
& Day, T. E. (2015). Incorporating discrete event 
simulation into quality improvement efforts in health 
care systems. American Journal of Medical Quality, 30(1), 
31-35.  

Sargent, R. G. (2013). Verification and validation of 
simulation models. Journal of Simulation, 7(1), 12-24.  

Siebers, P. O. (2006). Worker performance modeling in 
manufacturing systems simulation: proposal for an 
agent-based approach. In J. P. Rennard (Ed.), 
Handbook of Research on Nature Inspired Computing for 
Economics and Management (p. 661-678). Hershey, PA: 
IGI Global. 

 
 
Received on December 29, 2015. 
Accepted on May 10, 2016. 

 
 
License information: This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

 
 


