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ABSTRACT. Structural optimization has received increasing attention in several different areas of 
engineering and has been identified as the most challenging and economically rewarding task in the field of 
structural design. In this context, the current paper proposes a methodology based on Evolutionary 
Structural Optimization (ESO) that corresponds to an evolutionary procedure applied for topological 
optimization in which the finite elements with the lowest stress levels are progressively removed from a 
structure. The optimization studies are applied for structures subjected to a transient dynamic response 
where different damping ratios are applied in the physical models, since its determination is extremely hard 
and can even change the structural stiffness in case of elastoplastic regime. Thus, a nonlinear behavior is 
considered to evaluate the effects for each damping ratio, and elastoplasticity theory for small strains is 
extended for a von Mises material with linear, isotropic work-hardening. For this purpose it is possible to 
evaluate a combination of different optimal topologies for the different damping ratios through an 
algorithm developed in the Python programming language. The stress levels present such a difference for 
each linear and nonlinear response, which characterizes a marked change in the structural stiffness of each 
analyzed model. 
Keywords: evolutionary structural optimization, dynamic response, damping, finite element method. 

Influência da taxa de amortecimento no projeto de otimização estrutural considerando 
análise dinâmica no domínio do tempo  

RESUMO. A otimização estrutural vem recebendo cada vez mais atenção em diversas áreas da engenharia 
e tem sido identificada como um dos maiores desafios em projeto estrutural. Neste contexto, o presente 
trabalho propõe uma metodologia baseada na Otimização Estrutural Evolucionária (ESO) que corresponde 
a um procedimento evolutivo aplicado em otimização topológica em que os elementos finitos com os mais 
baixos níveis de tensão são progressivamente removidos da estrutura. Os estudos de otimização são 
aplicados em estruturas sujeitas a uma resposta dinâmica transitória, e diferentes taxas de amortecimento 
são aplicadas nos modelos físicos, pois a sua determinação é extremamente difícil, podendo inclusive, 
alterar a rigidez da estrutura em casos de regime elastoplástico. Assim, o comportamento não linear é 
considerado a fim de se avaliar os seus efeitos para cada taxa de amortecimento, e a teoria da 
elastoplasticidade para pequenas deformações é estendida a um material de von Mises com encruamento 
isotrópico linear. Com este propósito é possível avaliar uma combinação das topologias ótimas distintas para 
as diferentes taxas de amortecimento através de um algoritmo desenvolvido em linguagem de programação 
Python. Os níveis de tensões apresentaram diferenças significativas para respostas linear e não linear, 
caracterizando acentuada alteração na rigidez estrutural dos modelos analisados. 
Palavras chave: otimização estrutural evolucionária, resposta dinâmica, amortecimento, método dos elementos finitos. 

Introduction 

Topology optimization has an extremely 
important role in several different engineering 
problems, where the main objective is to establish a 
final optimal topology within the project domain in 
relation to the given objective function subject to 
certain restrictions (Bendsøe & Sigmund, 2003).  

In this context, owing to the computational 
progress,  various  topology  optimization  methods  

have been studied, among which the Evolutionary 
Structural Optimization (ESO) method stands out. 
This evolutionary procedure is based on a gradual 
removal of materials considered inefficient within 
the project region, which must be discretized using a 
suitable polynomial approximation in a chosen finite 
element mesh, where the maximum von Mises 
stress will be used as an element removal parameter 
through a rejection criterion (Xie & Steven, 1993). 
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This technique has already generated several 
different studies involving static actions in the linear 
regime, such as those by Huang and Xie (2010) and 
Xie and Steven (1997). However, little progress has 
been made under other application conditions. 
Currently, one of the most interesting optimization 
problems is associated with the physical properties 
of an optimized structure. The structural stiffness is 
dependent on the damping ratio, particularly for 
higher frequencies. A methodology applied to a 
dynamic analysis of the structures within the 
elastoplastic regime, together with the geometric 
nonlinearity, should therefore be considered to 
obtain a more reliable structural optimization 
design. 

The basic idea of the ESO methodology is to 
analyze the complete area where a structure may 
exist, i.e., the design domain, and based on the 
chosen objective function, evaluate the effectiveness 
of each element within the structure, gradually 
removing the less efficient elements. 

For each optimization problem, one or more 
types of material removal criteria exist, including the 
stiffness, displacement, pressure, stress level, natural 
frequency, and critical buckling load. 

Material and methods 

The optimization of a structure based on its 
stress level is a process used in many areas of 
structural mechanics. Through an analysis using the 
Finite Element Method (FEM), it is possible to 
determine the level of the structure, which can then 
be used as an indicator of the efficiency of each 
element within the structure. The rejection criteria 
can then be established based on the maximum 
stress level, in which a material under low stress is 
considered underutilized and can be removed from 
the structure (Xie & Steven, 1997). Considering a 
structure discretized using a proper finite element 
mesh, the material removal is conveniently 
represented by excluding the elements from the 
mesh according to the design criterion adopted. 

The stress level at each point can be measured as 
the overall average of the stress components. For 
this purpose, the equivalent von Mises stress has 
been more commonly used for isotropic materials 
(Xie & Steven, 1997; Tanskanen, 2002; Fernandes  
et al., 2017). 

Thus, after finishing the structural analysis 
through an FEM, the stress level applied for each 
element is determined by comparing the equivalent 
von Mises stress of the element with the maximum 
equivalent von Mises stress throughout the structure 
in such a way that all elements that satisfy the 

condition represented through Equation 1 are 
excluded from the model. 

௠௔௫௩௠ߪ௘௩௠ߪ  < ܴܴ௜  (1)

 
where: ܴܴ௜ is the rejection ratio (ܴܴ) at iteration i, ߪ௘௩௠ is the equivalent von Mises stress of the 
element, and ߪ௠௔௫௩௠  is the maximum equivalent von Mises stress 
throughout the structure. 

The analysis cycle by FEM with the respective 
element removal occurs using the same value until a 
steady state is reached, i.e., when there are no more 
elements to be removed by the current element (Xie 
& Steven, 1997). This implies that the number of 
elements removed for each analysis is not necessarily 
the same for all iterations. Reaching this state of 
equilibrium, but not reaching a stopping criterion of 
the iterative process (with the optimum 
configuration based on the ESO method), the 
evolutionary process is reset by adding an evolution 
ratio (ܴܧ). Thus, a new development cycle begins 
and is repeated until there are no more elements to 
be eliminated using this new rejection ratio. In this 
way, when a steady state is reached, the ܴܧ is added 
to ܴܴ௜, as shown in Equation 2: 

 ܴܴ௜ାଵ = ܴܴ௜ + ܴܧ (2)
 

where: ܴܴ௜ାଵ is the ܴܴ at iteration i + 1, and  ܴܧ is the evolution ratio. 
The initial rejection ratio is generally 

conditioned to the prescribed values within the 
range of 0 < ܴܴ௜ାଵ < 1%. However, there are cases 
in which, depending on the type of analysis and the 
discretization of the finite element mesh, it may be 
necessary to use values higher than 1% owing to the 
non-removal of the elements. The initial value of ܴܴ௜ is defined empirically according to the user 
experience for each type of problem. Two 
evolutionary process stopping criteria can be 
established, namely, the prescribed final volume ( ௙ܸ) 
and the final rejection ratio (ܴ ௙ܴ).  

The main advantages of the ESO methodology 
are the possibility of monitoring the component 
shape at every stage of the optimization process, the 
simplicity of the implementation and execution, the 
potential application of various types of analysis, and 
easy integration with any type of commercial 
software, which provide an excellent alternative of 
use. 
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The ESO method creates cavities in a structure 
from the removal of inefficient elements, regardless 
of their location in the field, which can result in a 
numerical instability of the chessboard. 

To mitigate the chessboard irregularities, a 
Nibbling ESO technique has been used, which is an 
adaptation of the ESO method containing 
optimization features to control the cavities. This 
technique evaluates the stress field and checks the 
possibility of opening cavities within the project 
domain, resulting in the elimination of only those 
elements that are present in the contours of the 
structure, avoiding excessive and unnecessary voids 
in the optimization process (Lanes & Greco, 2013). 
The need to create a new cavity within the domain is 
verified at each iteration, and if necessary, the ESO 
method is applied. Otherwise, the Nibbling ESO 
method proceeds with the removal of only elements 
that are present in the contours of the structure, 
modifying their shape and size until a new cavity 
opening is needed.  

Regarding the mesh dependency problem, an 
approach by Kim et al. (2002) has been used, which 
considers the use of the mean stress of the finite 
element as the removing criterion in the analysis of 
the stress levels. When the maximum stress is used, 
the results become very dependent on the mesh 
owing to the singularities occurring near the 
boundary conditions.  

For an optimization of linear problems, the ESO 
method based on the Python programming language 
using Abaqus® scripting was first implemented by 
Lanes and Greco (2013). To consider the combined 
optimization for different damping ratios, a new 
script was developed. 

Physically nonlinear behavior (elastoplastic constitutive 
model) 

The elastoplastic behavior is characterized 
through a response of the material, which is initially 
elastic, and from a certain stress level based on an 
essentially plastic behavior. 

The nonlinear behavior of the material is 
described through a von Mises criterion suitable for 
metallic materials with ductility. In this criterion, 
the yield function ∅ (ܵ, ݇) includes the deviatory 
stress tensor |ܵ| and yield stress with isotropic 
hardening (ߪ௞), which is described as a function of 
the internal variable ݇, which is related to plastic 
deformation (Maute, Schwarz, & Ramm, 1998). To 
better describe this criterion, Equations 3 through 5 
can be used. 

 ø(ܵ, ݇) = |ܵ| − ඨ23 . ௞ߪ (3)

௞ߪ = ௬ߪ + .௛ܧ ݇ (4)݇ = ඨ23 . ߛ (5)

 
where: ∅ (ܵ, ݇) is the yield function,  |ܵ| is the deviatory stress tensor,  ߪ௞ is the yield stress with isotropic hardening,  ߪ௬ is the yield stress,  ܧ௛ is the plastic hardening modulus,  ݇ is the internal variable, and  ߛ is the plastic multiplier. 

Assuming the presence of small deformations, it 
can be divided into incremental portions of plastic 
and elastic deformation. Thus, the additive 
decomposition rule can be applied according to 
Equations 6 through 9: 

ߝ݀  = ௘௟ߝ݀ + ௣௟ߝ݀ ௘௟ߝ݀(6) = .ଵିܦ ߪ݀ ௣௟ߝ݀(7) = ߛ݀ ߲ø߲ߪ (8)߲ø߲ߪ = ܵ|ܵ| (9)

 
where: ݀ߝ is the total deformation increment,  ݀ߝ௘௟ and ݀ߝ௣௟ correspond to the increments of 
elastic and plastic deformations, respectively, and  ܦ denotes the elastic tensor of the material. 

The gradient డఏడఙ is evaluated after each iteration 

step considering an implicit Euler algorithm. For a 
plastic deformation to occur, the yield function must 
be zero, i.e., ∅ (ܵ, ݇) = 0. If ∅ (ܵ, ݇) < 0, only the 
elastic regime exists, and thus ݀ߝ௣௟ = 0. However, 
when ∅ (ܵ, ݇) > 0, there is an inadmissible stress 
state, and it is necessary to find the answer to ∅ (ܵ, ݇) = 0 using an iterative algorithm. Several 
algorithms have been developed to represent a 
return mapping of the stress to the yield surface and 
integrate the elastoplastic equations (Simo & 
Hughes, 1998). 

Through the iterative Newton-Raphson method, 
the elastoplastic constitutive tensor must be 
rewritten using a consistent linear approximation 
considering the plane stress state conditions (Ramm 
& Matzenmiller, 1988). Thus, Equation 10 can 
represent the sum of the elastic compliance tensor 
using a Hessian matrix for yield condition ∅. 

ܪ  = ଵିܦ + ߛ݀ ߲ଶø߲ߪଶ (10)
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where: ܪ is the sum of the elastic compliance tensor with a 
Hessian matrix for yield condition ∅, ିܦଵ is the elastic compliance tensor, and ݀ߛ డమøడఙమ is a Hessian matrix for yield condition ∅. 

To obtain a Hessian matrix, two implicit 
algorithms based on the tangent formulations are 
used: the full Newton-Raphson algorithm and a 
modified Newton-Raphson algorithm. Using the 
full Newton-Raphson algorithm, the Hessian matrix 
is updated at every iteration, which implies a higher 
computational cost, but fewer iterations for 
convergence. In the modified Newton-Raphson 
algorithm, the Hessian matrix remains constant, 
which is an advantage for advanced plastification 
problems, where the Hessian matrix becomes 
singular at a certain point during the analysis; 
however more iterations are needed for 
convergence. 

Influence of the damping ratio in the plastification 

Damping is a phenomenon in which the 
mechanical energy of a system is dissipated (mostly 
through the generation of heat or energy). It 
determines the vibration amplitude during 
resonance, and the time during which the vibration 
continues after the excitement has ceased. 

When a damping ratio is applied in a physically 
non-linear model, the residual displacements caused 
by plastification of a structure decrease as the 
damping ratio increases. This behavior can be 
explained as lower levels of displacement causing 
lower levels of deformation, and hence lower levels 
of stress. Among the main forms of energy 
dissipation in an oscillatory system, viscous damping 
is most frequently used. Its model assumes that the 
nature of damping is viscous and the friction force is 
proportional to the velocity, representing an 
opposition to the motion. This system can be 
represented through Equation 11, which is called an 
equation of motion for one degree of freedom: 

(ݐ)ሷݔ݉  + ሶݔܿ (ݐ) + (ݐ)ݔ݇ = 0 (11)
 

where: ݉ is the mass,  ݇ is the spring constant, and  ܿ is the viscous damping coefficient. 
This partial differential equation has a 

homogeneous solution that physically corresponds 
to a transient response of motion, i.e., it is not 
permanent. Starting with the solution of the 
equation of motion, it is possible to obtain the 
damping ratio ߞ, as shown in Equation 12: 

ߞ = ܿ2√݇. ݉ (12)

 
where: ߞ is the damping ratio. 

The oscillatory motion occurs when 0 ≤ ζ < 1, 
which corresponds to the underdamped case. 

In dynamic structural problems with damping, 
the equation can be started from the material 
rheological model to introduce into the structure the 
portional influence of damping related to the 
stiffness and/or mass. The damping model used by 
multiphysics software Abaqus® is of a Rayleigh type, 
which is proportional to the mass and stiffness, as 
shown in Equation 13. 

 ܿ = .ߙ ݉ + .ߚ ݇, (13)
 

where: ߙ and ߚ relate to the mass and stiffness 
contributions, respctively.  

Thus, the representation of the damping ratio is 
now described on the basis of the contribution 
portions of mass and stiffness, as shown in  
Equation 14. 

ߞ  = 2߱௡ߙ + .ߚ ߱௡2  (14)

 
where: ߱௡ is the natural frequency of the structure. 

The influence of the damping ratio on the 
structural stiffness of elastic and elastoplastic models 
can result in changes to the end of a given 
optimization problem solution becuase the elastic 
structure may have a greater amount of stiffness 
than the elastoplastic structure for a given damping 
ratio. However, the opposite may occur if another 
damping ratio is adopted (Oliveira & Greco, 2014). 

Results and discussion 

In this section, a similar model as that presented 
by Jung and Gea (2004) is described, which is a 
representation of a slender beam fixed along both 
ends in an initial rectangular design domain with 
dimensions of 1.6 x 0.2 m and a thickness of 0.1 m. 
The material properties used are a young modulus 
of 30 MPa, density of 1000 kg m-3, and Poisson ratio 
of 0.30. 

In the model studied by Jung and Gea (2004), 
the structure was subjected to an action 
corresponding to static loading; however, to evaluate 
the objectives outlined in this paper, this example 
should simulate a structure subjected to a dynamic 
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action within the time domain, requested by a 
central load of 300 N for a period of 0.01 s. The 
project domain was discretized within a finite 
element mesh with 72 x 10 quadrilateral elements of 
type M3D4 from Abaqus®, as shown in Figure 1. 

 

 
Figure 1. Initial project domain for a transient analysis. 

The initial parameters used for optimization are 
as follows: ܴܴ଴ = 10% and ܴܧ =  0.5%, with 
cavity control to open a maximum of five holes 
during the evolutionary process. A high initial 
rejection ratio was adopted owing to the non-
removal of elements for lower values, and for this 
reason, a good element removal process can be 
obtained. In this example, the structure should be 
optimized until a volume fraction of 50% is 
removed. 

To evaluate the influence of the damping ratio 
on the optimization, two types of analyses should be 
conducted, a linear analysis and a physical and 
geometric non-linear analysis. For both cases, an 
undamped model is considered, as are two 
additional models with different damping ratios 
assigned to the material, i.e., damping ratio A (ߞ୅) 
for values of ߙ = 10 and ߚ = 0,0001, and damping 
ratio B (ߞ୆) for ߙ = 20 and ߚ = 0,0002.  

To ensure that the adopted coefficients 
correspond to the underdamped case, which denotes 
an oscillatory movement, a modal analysis of the 
initial geometry was conducted to obtain the first 
natural frequency of the structure, the first vibration 
mode of which is shown in Figure 2. 

 

 
Figure 2. First vibration mode of the initial geometry applied to 
the optimization studies for damping ratios A and B.  

Thus, the respective damping ratios A and B 
based on the first vibration mode can be obtained 
according to Equations 15 and 16 for the mass and 

stiffness adopted portions as the analysis parameters, 
and the fundamental frequency, ߱௡ = 12,72 Hz, 
was determined through a modal analysis. 

୅ߞ  = 102.12,728 + 0,0001.12,722 = ୆ߞ(15) 0,393 = 202.12,728 + 0,0002.12,722 = 0,787 (16)

 
Therefore, it is possible to ensure that oscillatory 

movement occurs because the damping ratios are 
found to be within the range of 0 ≤ ζ < 1. 

The calculation method used for this type of 
analysis corresponds to an implicit convergence 
approach because the represented problem 
corresponds to a long-term scenario, which is almost 
similar to a static solution characterized as a quasi-
static problem. Another relevant factor is the use of a 
simple model with few degrees of freedom, enabling 
an inversion of the matrix proportional to the mass, 
damping, and stiffness. 

Linear dynamic analysis 

In the first structural optimization example, it is 
possible to verify the optimal topology obtained for 
the undamped linear dynamic analysis according to 
Figure 3. 

 

 
Figure 3. Optimal topology for the undamped linear dynamic 
analysis. 

The structural optimum design obtained 
through the corresponding ESO method for a 
transient dynamic analysis is very similar to the final 
result by Jung and Gea (2004), although its solution 
refers to a static condition. This clearly occurs 
because the dynamic action in this study is first 
applied using a slow load rate.  

The similarity of Jung and Gea’s (2004) final 
topology is shown in Figure 4.  

 

 
Figure 4. Optimal topology obtained by Jung and Gea’s solution 
for a linear analysis under static loading condition. Source: adapted 
from Jung and Gea (2004). 

Based on Figure 5, it is possible to verify the 
displacements of the load application node over time 
as a sinusoidal curve because there is no influence of 
damping. 
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Figure 5. Displacements of the load application node over time to 
the optimized geometry for the undamped linear model.  

For the case involving the application of 
damping ratio A, the optimal topology obtained is as 
shown in Figure 6. 

 

 
Figure 6. Optimum topology for a linear dynamic analysis with 
damping ratio A. 

To validate the results obtained by the 
optimization performed by ESO methodology 
considering the damping ratio ‘A’. It was run an 
additional optimization study in the commercial 
software Tosca® by using the Controller 
methodology, as well as the ESO methodology 
penalizes the elements in such a binary form not 
applying intermediate densities to the least efficient 
elements. The implementation of this methodology 
is based on an article by Sigmund (2001), in which 
the material distribution is applied according to the 
total strain energy of the model, and thus the 
volume is used as a restriction, and the minimization 
of the compliance is applied as an objective. The 
final topology obtained through this solution is as 
shown in Figure 7. 

 

 
Figure 7. Optimal topology obtained by Tosca® for a linear 
dynamic analysis with damping ratio A. 

It is worth noting that stresses along the iterative 
process do not necessarily occur in the same 
element, providing a global aspect to the 
optimization. In this analysis, the stresses are 
concentrated in regions close to the load application.  

Figure 8 shows the displacements of the load 
application node over time for the optimized 
geometry corresponding to damping ratio A. 
Therefore, a smoothing curve owing to the damping 

effect can be seen, minimizing the oscillatory 
motion.  

 

 
Figure 8. Displacements of the load application node over time in 
the optimized geometry for the linear model with damping ratio 
A.  

For the case involving the application of 
damping ratio B, the optimum topology obtained is 
as shown in Figure 9. 

 

 
Figure 9. Optimum topology for a linear dynamic analysis with 
damping ratio B. 

In the same manner, for a model optimization 
using damping ratio A, an additional optimization 
study was applied to the model when considering 
damping ratio B through Tosca® software to validate 
the results obtained through the ESO methodology, 
as shown in Figure 10. 

 

 
Figure 10. Optimal topology obtained using Tosca® for a linear 
dynamic analysis with damping ratio B. 

Figure 11 shows the displacements of the load 
application node over time for the optimized 
geometry corresponding to damping ratio B. For 
this condition, it is possible to realize a reduction in 
oscillatory motion relative to the previous one 
because there is a significant increase in the damping 
ratio. 

According to the different solutions obtained for 
models with their respective damping ratios A and 
B, a response based on a combination of their final 
topologies can be considered, as shown in Figure 12. 

To ensure that this evolutionary process 
optimizes the structure, an optimization rate was 
created. This rate consists of the relation between 
the volume fractions removed  for  each  maximum  
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level of von Mises equivalent stress obtained when 
considering all finite elements involved in the 
analysis. This maximum von Mises stress can occur 
for a different finite element during the evolutionary 
process, providing a global performance for the 
structural optimization. 

 

 
Figure 11. Displacements of the load application node over time 
for the optimized geometry of the linear model with damping 
ratio B.  

 
Figure 12. Optimal topology for the combined effect of damping 
ratios A and B, considering a linear behavior. 

The optimization rates for each iteration for the 
three damping conditions addressed for the linear 
elastic model are shown in the curves of Figure 13, 
and in this way it is possible to ensure that the 
evolutionary process optimizes the structure. 

 

 
Figure 13. Rate of evolutionary optimization process for each 
iteration of the linear elastic model. 

Using such graphs, it is possible to check the best 
optimization stages for each damping ratio 
considered, and to show the best optimization 
points throughout the process. 

Nonlinear dynamic analysis  

For structural optimization with nonlinear 
behavior, a model with geometric nonlinearity was 
adopted in the elastoplastic regime, which will be 
simulated through a von Mises yield model when 
considering a material with linear isotropic work-
hardening. The elastoplastic properties were taken 
generically, where the yield stress is represented as ߪ௬ = 180 KPa and the hardening modulus is 
represented as ܧ௛ = 100 KPa. According to Li  
et al. (2014), the plastic behavior of ductile materials 
can be also represented by a combination between 
isotropic and plastic hardening modules. 

In the same way presented for the example of 
linear behavior, three models will be considered, 
two of which have different damping ratios A and B, 
and the other has no damping application. Through 
Figure 14, it is possible to check the optimal 
topology obtained for an undamped dynamic 
analysis when applying nonlinear behavior. 

 

 
Figure 14. Optimum topology for undamped nonlinear dynamic 
analysis. 

The optimum structural design obtained by the 
ESO method for this nonlinear analysis is also 
similar to the solution obtained by Jung and Gea 
(2004) even under different loading condition, as 
shown in Figure 15. 

 

 
Figure 15. Optimal topology obtained using Jung and Gea’s 
solution for a nonlinear analysis under a static loading condition. 
Source: adapted from Jung and Gea (2004). 

From Figure 16, it is possible to see a significant 
change in relation to the linear model for a 
displacement of the load application node over time 
owing to the influence of the elastoplastic properties 
during the yield phase. 

For the case involving the application of 
damping ratio A, the optimum topology obtained is 
presented in Figure 17. 

As with the example of the previous linear 
model, to validate the results obtained from the 
ESO method for damping ratio A, an additional 
optimization study was conducted using the 
commercial software Tosca®, the final topology of 
which is shown in Figure 18. 

Figure 19 shows the displacements of the load 
application node over time for the optimized 
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geometry corresponding to damping ratio A. It is 
possible to see a minimization of the displacement 
owing to the damping effect. 

 

 
Figure 16. Displacements of the load application node over time 
for an optimized geometry for the undamped nonlinear model .  

 
Figure 17. Optimal topology for a nonlinear dynamic analysis 
with damping ratio A. 

 
Figure 18. Optimal topology obtained using Tosca® for 
nonlinear dynamic analysis with damping ratio A. 

 
Figure 19. Displacement of the load application node over time 
for the optimized geometry of the nonlinear model with damping 
ratio A.  

For the case involving the application of 
damping ratio B, the optimum topology obtained is 
as shown in Figure 20. 

 

 
Figure 20. Optimal topology for nonlinear dynamic analysis with 
damping ratio B. 

In the same way as applied for the model 
optimization with damping ratio A, an additional 
optimization study was conducted  for  the  model  

with damping ratio B using Tosca® software to 
validate the results obtained through the ESO 
methodology, as shown in Figure 21. 

 

 
Figure 21. Optimal topology obtained using Tosca® for nonlinear 
dynamic analysis with damping ratio B. 

Figure 22 shows the displacements of the load 
application node over time for the optimized 
geometry corresponding to damping ratio B. For 
this condition, it is possible to see a small increase in 
displacement when compared to the previous one, 
even with a significantly increasing damping ratio. 

 

 
Figure 22. Displacement of the load application node over time 
for the optimized geometry of the nonlinear model with damping 
ratio B.  

When applying the elastoplastic models, it is very 
important to verify that, as the damping ratio 
increases, the displacement curve over time tends to 
approach a static response curve, and becomes 
nearly linear. Otherwise, without material nonlinear 
behavior consideration, signifficant differences are 
observed between linear and geometric nonlinear 
optimum solutions (Fernandes et al., 2015). 

According to the different solutions obtained for 
models with their respective damping ratios A and 
B, it is possible to consider a response based on a 
combination of the final topology of each model, as 
shown in Figure 23. 

 

 
Figure 23. Optimal topology for the combined effect of damping 
ratios A and B, considering nonlinear behavior. 

As mentioned earlier, it is important to analyze 
the optimization rate for each iteration, as shown in 
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the curves of Figure 24, for the three damping 
conditions addressed for the nonlinear model, 
thereby ensuring that the evolutionary process 
optimizes the structure. 

The next step of the present study is to minimize 
sensitivity to uncertainties, which is the subject of the 
robust topological optimization (Zhao et al., 2015). 

 

 
Figure 24. Optimization rate of the evolutionary process for each 
iteration of the nonlinear model. 

Conclusion 

This evolutionary process has been shown to be 
capable of performing a routine in which it is possible 
to obtain a directional of the optimum disposition and 
the structural shape under dynamic conditions. 

The proposed work used various resources 
available in the commercial software Abaqus®, 
which enables structural analyses requested through 
either static or dynamic actions to be conducted 
with or without nonlinearity. 

According to the results, a modification of the 
damping ratio can cause significant changes in the 
structural stiffness, mainly for elastoplastic 
problems, as can be seen through the displacement 
curves over time, which consequently brings about 
changes in the structural stress levels. 
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