
Acta Scientiarum 22(5):1311-1319, 2000.
ISSN 1415-6814.

Application of an object-oriented framework for task scheduling in
an ExPSEE environment

Itana Maria de Souza Gimenes1* and Sergio A. Tanaka2
1Departamento de Informática, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá-Paraná, Brazil.
2Cesulon, Av. JK 1626, Centro 86020-000 Londrina-Paraná, Brazil. *Author for correspondence. e-mail: itana@din.uem.br

ABSTRACT. The application of an object-oriented framework for task scheduling in the
ExPSEE Environment is provided. ExPSEE is an experimental Process-centred Software
Engineering Environment. However, this framework can be used in other domains such as
Workflow Management Systems and Project Management Systems. The task scheduling
framework was based on both current methods for the development of frameworks and on
an existing architectural pattern for process managers. A prototype of the framework was
developed using the Java Language. It shows the experience of extracting a framework from
well-known applications that can be reused in practical domains. The research in current
paper contributes in the production of a framework and gives insights in the application of
novel techniques towards the development of frameworks.
Key words: frameworks, software engineering environment, software process, workflow, task

scheduling.

RESUMO. Aplicação de um framework orientado a objetos para escalonamento de
tarefas no ambiente ExPSEE. Este artigo apresenta a aplicação de um framework
orientado a objetos para escalonamento de tarefas no ambiente ExPSEE. ExPSEE é um
ambiente experimental de engenharia de software orientado a processos, no entanto, o
framework também pode ser utilizado em outros domínios tais como sistemas de
gerenciamento de workflow e sistemas de gerenciamento de projetos. O framework foi
concebido com base em métodos atuais para desenvolvimento de frameworks e em um
padrão existente para gerenciadores de processos. Um protótipo do framework foi
desenvolvido usando a linguagem Java. O trabalho desenvolvido mostra a experiência de
extração de um framework a partir de aplicações conhecidas e que pode ser reutilizado em
domínios de aplicação prática. Assim, o presente trabalho contribui tanto na produção de
um framework quanto na geração de conhecimento sobre a aplicação de técnicas inovadoras
de desenvolvimento de frameworks.
Palavras-chave: frameworks, ambiente de engenharia de software, processo de software, workflow,

escalonamento de tarefas.

The objectives of software engineering are
centred both on improving the quality of the
software process and the quality of the software
product itself. Techniques for increasing
productivity and reducing costs and production
efforts must also be taken into account. Frameworks
and components reuse is an important issue in this
context. It allows the development of software based
on components, frameworks and models (templates)
that are already well specified and tested.

Software engineering techniques used in the
definition and application of software architectures,
frameworks, patterns and components are rapidly

evolving. These concepts have already reached the
commercial organisations triggering a new market of
products.

An object-oriented framework is generally
characterized as a set of abstract and concrete classes,
plus their collaboration relationships, which offer an
implementation scheme for applications (Lewis et al.
1995). The Catalysis method (D’Souza and Wills,
1999) proposes a wider concept of frameworks,
called model frameworks. Model frameworks are
designed at a higher level of abstraction establishing
a generic scheme that can be imported, at the design
level, with substitutions and extensions in order to

mailto:itana@din.uem.br

1312 Gimenes & Tanaka

generate specific applications. This paper follows
this approach and presents a framework for PSEE
(Process-centred Software Engineering
Environments) and WfMS (Workflow Management
Systems).

A software process is composed of an ordered set
of tasks for the development and maintenance of
software products. PSEE are environments that
support the management and automation of
software processes.

Workflow technology (Jablonski and Bussler,
1996) meets the current needs of organizations as
the reengineering of legacy processes and the
modeling and automation of business processes,
supported by workflow systems, are means to
improve the productivity and the quality of
processes and products. Moreover, workflow
systems allow rapid development and modification
of systems to comply with the transient and
unexpected variations of the business environment.

Workflow systems are applications supported by
WfMS. These systems support definition,
management and execution of workflows. WfMS
interpret process definitions, interact with the
participant users (the human agents), and, when
necessary, they invoke tools and applications to
execute parts of the workflow (Workflow, 1999),
(Workflow, 1995). WfMS and PSEE have many
similar features. The software process can be seen as
a workflow for the production of software.

This paper presents the application of a
framework for task scheduling to PSEE. The
ExPSEE is the Experimental Process-Centred
Software Engineering Environment where the
application of the proposed framework took place.
However, the framework can also be reused in
applications such as WfMS or any application that
involves some form of task management (ex.
building or course management). The framework
was based on both current methods for the
development of frameworks and on an existing
architectural pattern for process managers. A
prototype of the framework was developed using the
Java Language. The complete specification of the
framework was presented in (Gimenes et al., 2000)
(Tanaka, 2000). Section 2 presents the domain
analysis of the proposed framework. Section 3 and 4
describe the definition and the design of the
framework for task scheduling respectively. Section
5 discusses the connection of the framework in
ExPSEE application. Section 6 discusses the
prototyping and validation of the framework.

Finally, section 7, deals with the conclusions and
future work.

Domain analysis of the proposed framework

The domain analysis took a similar approach to
the Example Driven Project (Johnson, 1996) in
which frameworks are identified using application
examples and are generalised in an iterative process.
The main application examples explored for domain
analysis were WfMS and PSEE. Although these
applications are distinct, they have many common
elements. Thus, the objective of the domain analysis
is to identity these common elements as they
constitute potential frameworks.

The process manager pattern. The Process
Manager is an architectural pattern for definition of
PSEE process managers (Gimenes et al., 1999a). It
was developed from studies of existing
environments (Finkelstein, 1994) and from
experiences obtained in the development of the
ExPSEE (Experimental Process-centred Software
Engineering Environment) project (funded by
CNPq - a Brazilian research funding agency). The
pattern is based on a process model that allows the
definition and reuse of process architectures. It is
described according to (Buschmann et al., 1996),
using UML (Unified Modelling Language)
(Rumbaugh J. et al, 1999) (Rational, 2000) to
represent the diagrams that compose it. Figure 1
shows the main structure of the pattern through its
class diagram.

The top part of the diagram represents the classes
correspondent to the modules of the process
manager. The central and inferior parts of the
diagram were defined to support process
architecture reuse. The central part involves the
definition of the process architecture and the object
types related to it, whereas the inferior part
represents the software process instantiation,
according to the defined architecture, and its related
objects.

The WfMC reference model. WfMS are based on
the WfMC (Workflow Management Coalition)
reference models (Workflow, 1995). They include a
generic architecture for WfMS, as shown in Figure
2, and a reference model which encompasses 5
categories of interoperability and communication
standards.

Task scheduling in ExPSEE environment 1313

Process
Architeture
Manager

Interpreter

Task Manager Artifact Manager Role Manager Tool Manager Actor ManagerProject Manager

Process
Architecture Task Type Artifact

Type Role Type

Tool Type

Rights TypeAction Type

1..*1..*

1..*

1..*
1..*

1..*

Software
Process

Task Artifact Role1..*

Tool

1..* 1..*

Action Rights

ActorSchedule

1..*

1..*

1..*

1..*

Tool Manager

0..*

0..*

0..*

1..*

1..*

0..*

0..* 0..*

0..*

0..*

0..*

0..* 0..* 1..* 0..* 0..* 0..* 1..* 0..*

1..* 1..*

0..*1..* 1..*

0..*

1..*

1..*

1..*1..*

1..*

0..*

1..* 1..*
0..*

0..*0..*0..*
0..*

0..*

0..*

 Project

Figure 1. Class diagram of the Process Manager pattern (Gimenes et al., 1999a)

Task scheduling in ExPSEE environment 1314

This architecture contains the main components
and interfaces that a WfMS should have in order to
allow interoperability of sub-products from different
suppliers, such as process definition tools.

Definition

Tool

Application(s)
WFM

Engine(s)

Workflow
Control Data

Workflow
Relevant

Data

Process
Definition

Interpreted by

Work List

Worklist
Handler

 User Interface

Application(s)

Manipulates

Workflow
App data

Invokes

Interact via

Generates
May reference

Organization/
Role Model

Administration
& Monitoring

Workflow Participant

Invokes

References

Software component

System Control Data

External product/data

(Supervisor)

References

Figure 2. Generic architecture for a WfMS (Workflow, 1995)

Comparative synthesis. The class diagram of the
Process Manager, shown in Figure 1, is more
detailed as it was taken from the specification of the
ExPSEE (Gimenes et al., 1999a), (Gimenes et al.,
1999b). In contrast, the models of the WfMC are
generic architectures that represent a reference
model composed of large and abstract blocks.

Table 1 summarises the comparison undertaken
between WfMS and PSEE, based on the WfMC
generic architecture and the Process Manager
pattern. The table rows indicate the equivalence
between the common elements of both models. The
number of common elements and functionalities of
these systems provide evidences that the Process
Manager pattern can be refined in order to achieve
small frameworks that can be used in WfMS, PSEE
and even extended for related applications. The
identification of these frameworks represents a
significant contribution to facilitate the development
of this category of systems.

According to the Taligent approach (Taligent,
1996) for framework development, small and more
specific frameworks for each main function of an
application or domain can be produced based on a
more generic framework. In the case of the process
management domain dealt with in this paper, we
may have frameworks for task management, artifact
management, actor management and so on. These
smaller frameworks have more chances to be reused
in other contexts. This paper defines a framework

for task scheduling with this feature. It is an
important contribution as it explores the process of
identification and generalisation of frameworks
aiming at increasing their reuse potential.

The detailed comparison undertaken between
the WfMS and the PSEE components indicates that
the Worklist Handler of the WfMC generic
architecture and the Task Manager of the Process
Manager pattern have great similarity with regard to
the functionality for the management and the
execution of tasks. Thus, we have focussed our
attention on the development of a framework for
task scheduling as described in the following
sections.

Table 1. Comparison between WfMC reference models and the
Process Manager pattern

WfMC Generic Architecture Elements Pattern Structure Elements

WfMS Process Manager
Process Definition Tools Process Architecture Manager
Worklist Handler Task Manager
Workflow Control Data and Relevant
Workflow Data

Artifact Manager

Applications Tool Manager
Workflow Enactment Services Tool Manager
Administration and Monitoring Tools Actor Manager
Organisation Role Model Role Manager

Definition of the task scheduling framework

The domain analysis showed that the structure
of the Process Manager pattern contains many of the
types, actions and collaborations that constitute the
framework for task scheduling. Thus, the pattern
structure was chosen as a reference for the design of
the framework.

After the domain analysis, a package partitioning
based on the Catalysis method (D’Souza and Wills,
1999) was carried out. Other methods for
framework development also influenced the
framework development, such as Taligent (Taligent,
1996). This approach is interesting, intuitive and
emphasises the idea of designing small frameworks.
However, a consistent notation does not support it.
Catalysis proved to be better defined and more
complete. The Catalysis method uses UML, and its
package partitioning and model framework approach
are key techniques in the identification and design of
frameworks. Further, the method takes into account
the reuse of patterns, the extensibility of diagrams
and the interactions between diagrams.

The partitioning of the Process Manager
structure was based on the class diagram presented
in Figure 1 and the use cases developed within the
ExPSEE project. The package separates the work in
areas that can be treated individually with explicit
dependencies. The package partitioning helps

Task scheduling in ExPSEE environment 1315

control the propagation of modifications, allows
traceability and reduces maintenance costs. The
contents of the packages represent the business rules
that give a general definition of the target package. In
our work we have mainly used the following
partitioning approaches of Catalysis: vertical slices,
horizontal slices and different domains.

The first step of the package partitioning is to
analyse the existing dependencies in the classes
(types, in Catalysis) diagram. The next step consists
of partitioning the packages keeping a structure that
facilitates and reduces the number of package
importation.

Figure 3 presents the vertical slices, at a high
level, of the Process Manager obtained by
partitioning the system according to the actions
undertaken by the main agents which interact with
the environment. The agents were derived from the
general use cases identified in the ExPSEE project.
The vertical slices are Defining Process
Architecture, Instantiating Process Architecture,
Defining and Allocating Resources and Scheduling
Tasks.

The vertical slices diagram also contains a basic
package called Managing the Elements of the
Process, which contains the managers of the basic
elements of the PSEE. This package is imported by
the others throughout the horizontal layers. There
are two intermediate horizontal layers: the
Managing Process Architecture and the Managing
Projects.

Throughout the partitioning process we could
clearly isolate the potential for reuse of the
framework for task scheduling from the package
called Scheduling Tasks, thus, identifying its types,
actions and collaborations. The model framework
proposed represents the scheduling of tasks used in
applications such as PSEE, WfMS and project
management systems.

Definition of types related to
one architecture

Defining Process
Architecture

Instantiation of definined types in
one architecture

Instantiating Process
Architecture

Resources allocation and
management

Defining and
allocating resources

Selection, execution and
monitoring of tasks

Schedulling Tasks

Definition of process architectures

Managing Process
Architecture

Definition and execution of
software projects

Managing Projects

Managers of PSEE basic elements: task,
artefact, role, action, actor.

Managing Elements of
Process

Figure 3. Vertical slices from a common base of the Process
Manager

The design of the framework for task scheduling

This section presents the use cases, the design of
the framework, the model of its generic package and
the application of the framework in different
domains.

Use cases. The use cases are presented in two
figures, followed by their respective description
tables, to facilitate their explanation. The first set of
use cases is presented in Figure 4 and its description
in Table 2. This use case has a main actor, the
Project Manager, who interacts directly with the task
scheduling framework.

The stereotyped relationships <<include>>
and <<extend>>, defined in UML, and also
considered in (D’Souza and Wills, 1999) (Schneider,
1998) are applied to the use cases. The
<<extend>> is used to represent the dependency
relationship between Schedule Tasks and Visualise
Scheduled Tasks. The <<include>> is applied to
represent the fragmentation of the use cases. For
instance, Visualise Scheduled Tasks is split into
Postpone Task, Update Status, Cancel Task and Set
Progression Rate.

Visualise Scheduled Tasks

Project Manager

Define Role

Define Actor

Define Project

Cancel Task

Update StatusPostpone Task
Define Tasks

Select Actor

Select Role

Select Project

Select Task

Define Status

Schedule Tasks

<<include>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>> <<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>><<include>>

<<include>>

Set Progression
Rate

Figure 4. Use case diagram for task scheduling

Table 2. Description of the use case for task scheduling
presented in Figure 4

Use Case Who starts the action Description

Visualise
Scheduled Tasks Project Manager

Visualisation of all scheduled
tasks.

Cancel Task Project Manager
Cancellation of previously
defined tasks.

Update Status Project Manager Updating of the task status.

Postpone Tasks Project Manager
Postponing the initial or final
date of a task.

Set Progression
Rate Project Manager

Set the progression rate for a
certain task, ex.: (0%)
allocated, (25%, 50%, 75%)
executed.

Schedule Tasks Project Manager
Scheduling of a task to an
actor who plays a role in a
project.

Define Actor Project Manager Definition of a new actor.
Define Role Project Manager Definition of a new role.
Define Project Project Manager Definition of a new project.
Define Task Project Manager Definition of a new task.

Define Status Project Manager
Set the status of a certain task,
ex.: allocated, ready, in
execution, stopped or finished.

Select Actor Project Manager Selection of a previously

1316 Gimenes & Tanaka

Use Case Who starts the action Description
registered actor.

Select Role Project Manager
Selection of a previously
registered role.

Select Project Project Manager
Selection of a previously
registered project.

Select Task Project Manager
Selection of a previously
registered task.

Figure 5, followed by Table 3, describes the

second use case diagram of the framework for task
scheduling. Besides the actor project manager, this
diagram has the actor software engineer who can
only access some of the funcionalities presented in
the use case Visualise Personal Schedule.

Visualise Project Status

Request Task Change

Select Tasks to Execute

Project Manager

Visualise Personal Schedule

Software Engineer

<<include>>

<<include>>

<<include>>

Figure 5. Use case diagram for personal task visualization

Table 3. Description of the use case diagram for Individual Task
Visualisation

Use Case Who starts the action Description

Visualise Personal
Schedule

Project Manager or Software
Engineer

Visualisation of all tasks
scheduled for an actor
who plays a role in a
certain project.

Visualise Project
Status

Project Manager or Software
Engineer

Visualisation of the
status of a certain project
including number of
tasks of the projects,
number of completed
tasks and expected
project conclusion date.

Request Task
Change

Project Manager or Software
Engineer

Requisition of a task
change from a certain
actor.

Select Tasks to
Execute

Project Manager or Software
Engineer

Selection of the tasks to
be executed.

The model framework. According to the Catalysis
method, not only pieces of code can be reused but
also specifications and designs. The set of types,
relationships and constraints that are specified
within a package can be seen as a framework.
Frameworks are represented by a generic package
called model framework or template package. The
framework defined in this paper is a model
framework.

The framework for task scheduling is shown in
Figure 6. The package diagram of the model
framework was developed from the use cases

described in the previous section and the types,
actions and collaborations derived from the Process
Manager pattern. The figure shows the interaction
between the use cases and the package, a
characteristic of the Catalysis model. A type defines
the object by specifying its externally visible
behaviour. The concept of type in Catalysis is
different from the class one that describes the
implementation of an object. A type is more abstract
and does not prescribe an implementation.

The types with names written in brackets are
defined as placeholders. These types can be
substituted in the specific application. The concept
is similar to the extensibility of classes of the object-
oriented paradigm. There are also nonplaceholders
types, such as the FrPassword which is used by the
<FrIntSchedule>, represented by a dotted line. The
type <FrIntSchedule> (the Schedule Interface) is
related to <FrSchedule> by an aggregation. The
<FrSchedule> is an association between
<FrActor> and <FrTask>. It has attributes and
methods through which it can reference the types
<FrActor>, <FrRole>, <FrProject> and
<FrTask>. The <FrTask> is related to itself by an
aggregation, indicating that one task may be
composed of several tasks.

The use cases are represented by ellipses that
define the actor responsible for the action execution.
The use case diagrams as described in Figures 4 and
5 represent the detailed actions. The main actions of
the use cases are represented in Figure 6: Visualise
Personal Schedule, Schedule Task and Visualise
Scheduled Tasks.

Project
Manager

PKG_SC_TASKS

<FrActor>

+Actor_Remove()
+Actor_Create()
+Actor_Changes()

-Actor_Name : String
-Actor_Login : String
-Actor_Password : String

<FrProject>

+Pro_Remove()
+Pro_Create()
+Pro_Changes()

-Pro_Name : String

<FrTask>

+Tas_Remove()
+Tas_Create()
+Tas_Changes()
+Tas_Validate()
+Tas_Finish()
+Tas_Execute()

-Tas_Name : String
-Status : String

<FrRole>

+Role_Remove()
+Role_Create()
+Role_Changes()

-Role_Name : String

<FrSchedule>

+Get_ID_Actor()
+Get_ID_Project()
+Get_ID_Role()
+Get_ID_Tasks()

-Sc_Status : Int
-Sc_StartPeriod : String
-Sc_EndPeriod : String
-Sc_Progression : Int
-/Sc_Length : Int

FrPassword

+Validate()

Uses

Software
Engineer

1..n 0..nOwns

0..n
0..n Owns

<FrIntSchedule>

+Cancel()
+Postpone()
+Schedule()
+Visualise()
+Update_Status()
+Select()
+SetProgressionRate()

-TFActor : String
-TFRole : String
-TFRoot : String
-TFTasks : String
-TFProject : String
-TFStartPeriod : String
-TFProgression : String
-TFEndPeriod : String
-TFStatus : Slider

Visualise Scheduled
Tasks

Schedule Tasks

Visualise Personal
Schedule

1..n

1

1..n

0..n

Owns
1..n

1..n

Owns

Figure 6. Generic framework package diagram for the task
scheduling

Figure 7 shows the application of the framework
for task scheduling in the ExPSEE context,
according to the Catalysis notation. In this figure we
can see the application of the types defined as

Task scheduling in ExPSEE environment 1317

placeholders. The application of the framework is
carried out by importing the placeholders with
substitutions. This is represented by labelled arrows
from the package to each substitution. It can be
observed that the placeholders are substituted by the
correspondent classes of the ExPSEE Process
Manager presented in Figure 1.

The framework for task scheduling can be
reused in several domains. Figure 8a shows the
application of the framework in building
management, whereas Figure 8b shows the
application of the framework in the control of
subjects offered in a course. In the first application,
the types <FrProject>, <FrRole>, <FrTask>,
<FrActor>, <FrSchedule> and <FrIntSchedule>
are replaced by the classes Building, Role, Task,
Person, Schedule and BuildingSchedule. In the
course control application the same types are
substituted by Course, Teacher, Subjects, Person,
Schedule and SubjectSchedule.

Task Actor

Role

PKG_SC_TASK

FrRole

FrTask

Project

Schedule

ExPSEESchedule

FrSchedule

FrIntSchedule

FrProject

FrActor

Figure 7. Application of the Task Scheduling Framework in the
ExPSEE context

Subject Person

Teacher

PKG_SC_TASK

FrRole

FrTask

Course

FrProject

FrActor

SubjectSchedule

FrIntSchedule

Schedule

FrSchedule

Figure 8a. Application of the framework in the building
management domain

Task People

Role

PKG_SC_TASK

FrRole

FrTask

Building

FrProject

FrActor

BuildingSchedule

FrIntSchedule

Schedule

FrSchedule

Figure 8b. Application of the framework in the scheduling of
subjects in course management applications

The application of a model framework is further
unfolded to represent the complete model of the
specific application. Unfolding includes the
substitutions in the target context as well as
additional implementation classes.

A case study was carried out in which the
framework for task scheduling was unfolded down
to the level of implementation, taking into
consideration the ExPSEE context. Besides the types
presented in Figure 6, unfolding, shown in Figure 9,
contains implementation classes. For instance, the
class FrSchedule_Task contains the actions for
personal scheduling of a certain actor, role, task and
project and allows the insertion of new registers.
The class FrVisualise represents the visualisation of
the tasks from a certain actor who works in a given
project playing an established role. The class
Request was added to represent the requests made
by the software engineers to the project manager,
informing the problem description.

The class ExPSEESchedule is the result of the
substitution and specialisation of the type
<FrIntSchedule>. This class represents the visual
interface through which the project manager and the
software engineers visualise all the scheduled tasks.

1318 Gimenes & Tanaka

Project

+Pro_Remove()
+Pro_Create()
+Pro_Changes()

-Pro_Name : String

Request

+Req_Remove()
+Req_Create()
+Req_Changes()

-Description : String

Actor

+Actor_Remove()
+Actor_Create()
+Actor_Changes()

-Actor_Name : String
-Actor_Login : String
-Actor_Password : String

ExPSEESchedule

+Apply()
+Cancel()
+Remove()
+Postpone()
+Schedule()
+See_Changes()
+Visualize()
+UpdateStatus()
+Update_Root()
+Disables()
+Start()
+Restores()
+Select()
+SetProgressionRate()
+Exit()

-TFActor : String
-TFRole : String
-TFRoot : String
-TFTask : String
-TFProject : String
-TFStart_Period : String
-TFProgression : String
-TFEnd_Period : String
-TFStatus : Slider

Tasks

+Tas_Remove()
+Tas_Create()
+Tas_Changes()
+Tas_Validate()
+Tas_Finish()
+Tas_Execute()

-Tas_Name : String
-Status : String

Role

+Role_Remove()
+Role_Create()
+Role_Changes()

-Role_Name : String

Schedule

+Get_ID_Actor()
+Get_ID_Project()
+Get_ID_Role()
+Get_ID_Tasks()

-Ag_Status : Int
-Ag_Start_Period : String
-Ag_End_Period : String
-Ag_Course : Int
-/Ag_Lenght : Int

1..n 0..nOwns

1..n

0..n

Owns

FrVisualise

+FrSchedule()
+Creates_Objects()
+Selects_Schedule()
+Prepares_Project()
+Prepares_Role()
+Clears_Dates()
+Prepares_Tasks()
#Activates_Actor(Actor : Object)
#Searches_Tasks(ID_Tasks : int)
#Insert_Tasks(Tasks : Object)
#Searches_Root(No_Top, ID_Root_Task : int)
#Activates_Attributes(Atri_Tas : Object)
#Selects_Project()
#Selects_Role()
#Exit()

-A_Current : Actor
-Actor : (Array)
-Current_Schedule : Schedule
-Schedule : Array
-CB_Project : ComBox
-P_Current : Project
-Project : Array(Project)
-CB_Role : ComBox
-C_Current : Role
-Role : Array(Role)
-TSchedule : Tree
-TF_StartPeriod : Text
-TF_EndPeriod : Text
-Status_Bar : Label
-BExit : Jbutton

FrSchedule_Task

+Apply()
+Actor()
+Tasks()
+Role()
+Project()
+Cancel()

-CBActor : ComBox
-CBRole : ComBox
-CBTask_Root : ComBox
-CBTask : Combox
-CBProject : ComBox
-CBCourse : ComBox
-TFStart_Period : String
-TFEnd_Period : String
-Status : Slider

0..n

0..n

Owns

0..1

0..n

Owns

1..n

1..n

Owns

1..n

1

Figure 9. Unfolding of the application of the task scheduling
framework in the ExPSEE context

Connecting frameworks to applications

According to Catalysis (D’Souza and Wills,
1999), a component framework establishes a
collaboration within which all its elements are
specified as types. In order to use the framework, the
elements of connection (plug ins and plug points)
must be plugged in the applications. The
implementation of the connections may have even
more functionalities than the specified ones due to
their generalization.

The most usual form of connection provided by
object-oriented programming languages is the class
inheritance approach. The superclasses implement
skeleton of applications within the framework.
Methods of these superclasses call the operations
defined in the subclasses to accomplish the
connection.

Thus, a way of connecting the task scheduling
framework to applications is by importing it by
using the class inheritance approach. The application
must also be prepared to allow the framework
connection and thus makes plug points available. A
framework may have different interfaces (front
ends) according to its different users. This view is
shown in Figure 10 and takes into account the use of
the framework in the ExPSEE context. In Figure 10,
the letter b (lower case) represents a button that
triggers the action represented by the ellipses.

ExPSEESchedule

+Apply()
+Cancel()
+Remove()
+Postpone()
+Schedule()
+See_Changes()
+Visualise()
+UpdateStatus()
+Update_Root()
+Disables()
+Start()
+Restores()
+Select()
+SetProgressionRate()
+Exit()

-TFActor : String
-TFRole : String
-TFRoot : String
-TFTask : String
-TFProject : String
-TFStart_Period : String
-TFProgression : String
-TFEnd_Period : String
-TFStatus : Slider
-TFTable : JDBTable

bApply:JButton

bRemove:JButton

bCancel:JButton

actionPerformed

actionPerformed

actionPerformed

bVisualise:JButton

bStatus:JButton

bExit:JButton

actionPerformed

actionPerformed

actionPerformed

bPostpone:JButton

bSchedule:JButton

bChanges:JButton

actionPerformed

actionPerformed

actionPerformed

Project
Manager

Visualise Scheduled
Tasks

Exit()

Update
Status()

Visualise()

See_Changes()

Schedule()

Postpone()

Cancel()

Remove()

Apply()

Figure 10. Specification of the task scheduling in the ExPSEE

Prototyping and validating the framework

A prototype was developed to validate the
framework for task scheduling. The prototype was
implemented in the Java Language and used
Microsoft Access 97 (Microsoft, 1997) to manage
the database. The task scheduling prototype contains
the visual interfaces through which the actors may
select the tasks to be executed and to obtain
information about their tasks. Figure 11 shows the
interface Visualise Scheduled Tasks. Interface also
shows attributes such as start and end date, root task,
progression rate and task status. The interface also
provides buttons to start actions such as apply,
cancel, schedule, remove, postpone, visualise status
and updates, and exit. These actions correspond to
the use cases in Figure 4. When the option Visualise
is chosen, a password is requested from the actor.
Afterwards, the interface shows the actor schedule
that contains the tasks that he/she can execute. This
corresponds to the software engineer use cases
presented in Figure 5.

Task scheduling in ExPSEE environment 1319

Figure 11. Interface of the framework for task scheduling

The connection of a framework within the
specific applications is made through plug points. In
the prototype, the plug ins were implemented by
class extensions.

The development of the task scheduling
framework in the ExPSEE context required a re-
evaluation of the implementation of the ExPSEE so
that its architecture could become more flexible and
allow the reuse of other frameworks.

Discussion

Research work in current paper shows the
similarities between the reference models of WfMC
and PSEE. The comparative analysis of these
systems indicates that it is possible to define generic
frameworks that can be reused in these domains.
Thus, this paper proposes a framework for task
scheduling, which can be used in these domains or
related applications such as task scheduling in
building or course management. It also shows the
process of defining the framework. This paper
shows the application of the proposed framework to
PSEEs. In particular, the framework was applied to
the ExPSEE environment.

The Process Manager pattern was used as a basis
to derive the proposed framework. The main
development method was Catalysis. The method
was used due to its emphasis on factoring and
composing frameworks and components. The
package partitioning of Catalysis and the model
framework proved to be very useful. The package
partitioning is important to discuss how to refactor
the system while respecting the users category views
and structuring the system into horizontal layers.
The model framework approach enables the design
of framework to abstract away from any

implementation details. Further, the model
framework can be used as a design template to
generate components for more specific applications.
This facilitates the production of components for
any domain.

The use of an architectural pattern was
important since it gave the main structure from
which the types, actions and collaborations of the
framework were derived. Architectural patterns
provide generic structures that can be used to derive
small and more specific frameworks. These smaller
frameworks are usually less complex and easier to
understand. Therefore, they have higher reuse
potentiality.

The development of frameworks requires time,
experience and techniques that range from the
domain analysis to their implementation and use. In
the development of the framework for task
scheduling the experience in the previous
development of the ExPSEE and the Process
Manager pattern proved to be a key issue.

The application of the framework for task
scheduling to the ExPSEE environment made it
possible to validate and test the framework. The
application forced a re-evaluation of the
implementation of ExPSEE so that its architecture
became more flexible and permitted the reutilization
of other frameworks.

The possibility of reusing this framework in
several domains was emphasised in sections 2 and 4.
Further work will be concerned with applications of
task scheduling in WfMS to manage courses. This
work will take place in the context of the Tapejara
Project (Oliveira et al., 1998) (a cooperative project
funded by CNPq/Protem-CC) which aims at
developing an environment for distance learning,
training and education supported by the workflow
technology. In this environment the task scheduling
is a key issue to obtain successful results of the
courses. This work will give an even deeper analysis
of the similarities and adaptations necessary to the
application of the framework proposed in this paper.

References

Buschmann, F. A System of Patterns. Pattern – Oriented
Software Architecture. New York: John Wiley, 1996.

D'Souza, D.; Wills, A. Objects, Components and Frameworks
with UML - The Catalysis Approach, USA: Addison-
Wesley, 1999.

Finkelstein, A.; Kramer, J.; Nuseibeh, B. (Ed.). Software
Process Modelling and Technology, England: John Wiley,
1994.

Gimenes, I.M.S.; Weiss, G.M.; Huzita, G.H.M. Um
padrão para definição de um gerenciador de processos

1320 Gimenes & Tanaka

de software, In: WORKSHOP IBERO AMERICANO
DE ENGENHARIA DE REQUISITOS E
AMBIENTES DE SOFTWARE, 2., 1999. Memorias ...
Cartago: Cit, 1999. p. 36-46.

Gimenes, I.M.S.; Huzita, G.H.M.; Carniello, A.;
Fantinato, N. ExPSEE. An Experimental Process
Centred Software Engineering Environment. Maringá:
UEM/CTC/DIN, 1999.

Gimenes, I.M.S.; Tanaka, S.A.; Palazzo, J.P. An object-
oriented framework for task scheduling. In: TOOLS
EUROPE 2000, 2000, Mont St Michel - France. Tools
33 Technology of Object-oriented Language and
Systems. Los Alamitos, USA: IEEE Computer Society
Press, 2000. v.1. p.383-394.

Jablonski, S.; Bussler C. Workflow Management
Modeling Concepts, Architecture and Implementation,
England: Thomson Computer Press, 1996.

Johnson, R. How to Develop Frameworks, In:
EUROPEAN CONFERENCE ON OBJECT-
ORIENTED PROGRAMMING, ECOOP, 1996,
Linz, AT. Tutorial Notes ... [Linz:s.n.], 1996.

Lewis, T. Object Oriented Application Frameworks, USA:
Manning, USA, 1995.

Microsoft Office. Microsoft Access. User Guide. Relational
Database Managerial System for Windows. 1997.

Oliveira, J.P.; Nicolao, M.; Edelweiss, N. Conceptual
Workflow Modelling for Remote Courses, In: IFIP
WORLD COMPUTER CONGRESS,
TELETEACHING '98 DISTANCE LEARNING,

TRAINING AND EDUCATION, 15., 1998.
Proceedings ... Vienna, 1998. p. 789-797.

Pree, W. Design Patterns for Object-Oriented Software
Development. USA: Addison-Wesley, 1995.

Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified
Language Reference Manual. USA: Addison-Wesley, 1999.

Rational Software Corporation, UML Notation Guide,
Available at: http://www.rational.com/uml/html/
notation, 2000.

Scheider, G.; wiinters J.P. Applying Use Cases a Practical
Guide, USA: Addison-Wesley, 1998.

Taligent White Paper, Building Object-Oriented Frameworks,
Taligent, Inc, Apple Computer, Inc, IBM Corporation
and Hewlett-Packard Company, 1996. Disponível em:
http://www-4.ibm.com/software/ace/taligent

Tanaka, S. Um Framework de Agenda de Tarefas para
Gerenciadores de Processos. Porto Alegre, 2000. (Master’s
Thesis in Computer Science) - PPGCC, Institute of
Information, UFRGS, 2000.

Workflow Management Coalition, Terminology &
Glossary, Technical Report TC-1011, 1999. Disponível
em: http://www.wfmc.org

Workflow Management Coalition, The Workflow Reference
Model, Technical Report TC-1003, 1995. Disponível
em: http://www.wfmc.org.

Received on October 17, 2000.
Accepted on November 27, 2000.

http://www.taligent.com/

