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ABSTRACT. Simple experiments obtained with a laser beam are proposed in this article. 
Diffraction phenomena and their interpretation in terms of Fourier’s transforms in the 
spatial domain are discussed in order to introduce some interesting application of the spatial 
filtering in optics. A straightforward introduction of convolution theorem is also suggested. 
A stimulus is given to the discussion concerning the utility of Fourier transforms in high 
school and undergraduate physics teaching. 
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RESUMO. Uma introdução à ótica de Fourier. Alguns experimentos simples com um 
feixe de laser (laser pointer, p.ex.) são propostos no presente artigo. Serão discutidos os 
fenômenos de difração e suas interpretações em termos das transformadas de Fourier no 
domínio espacial, com o intuito de introduzir algumas aplicações interessantes da filtragem 
espacial em ótica. Será mencionado brevemente o teorema de convolução, além de discutir 
a utilidade das transformadas de Fourier na Física da Escola Média e de cursos de 
graduação. 
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Light is an electromagnetic field, varying in space 
and in time: in wave optics we are well accustomed 
to studying how this field can be represented by a 
sum of harmonic components of different time 
frequency. 

If we use a particular non-monocromatic laser 
beam entering a dispersing prism, we can see the 
emerging rays having deflected their original 
direction by angles which are different for each 
colour, that is, for each component of different time 
frequency. 

Obviously if we use a beam of white light 
(obtained by the use of an overhead projector) we 
obtain the empirical evidence of the existence in 
white light of a continuum spectrum of time 
frequencies. 

MethodMethodMethodMethod    

Diffraction of the same white light beam through 
a grating demonstrates the different behaviour of the 
different spectral components: various coloured 
images of the source corresponding to slightly 
different diffraction angles spread out in series of 
beautiful continuous spectra to the left and to the 
right of the white zero order maximum. 

But what if we use a monochromatic laser beam 
through the same diffraction grating? In this case the 
monochromatic beam spreads out on the image 
plane determining a periodic spatial distribution of 
maxima whose intensity may be described by a cos2x 
function. A similar effect can be obtained using now 
a single slit, but the diffraction pattern is slightly 
different from the previous one since its intensity I is 
proportional to (sinx/x)2. In Figure 1, we can see its 

plot against sinθ(where θ is the angle between the 
undeflected ray and the diffracted one). The position 
of the maxima is given by the well-known formula: 

 
b sin θ = m λ, 
 
where b is the width of the slit. Thus sin θ is also 
equal to (mλ/b), hence it is proportional to the 
reciprocal of a unit of length: so that we can call it 
“spatial frequency”. The plot may be now 
interpreted as the presentation of the intensity of 
light as a function of these “spatial frequencies”.  

In Figure 2, the black line is a plot of the square 
root of the intensity function I, that is, proportional 
to sinx/x. 
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Figure 1 

 

Figure 2 

If we represent, as shown in Figure 3, the so-
called “aperture function”, that is, the 
electromagnetic field of light distribution across the 
object illuminated by the source light (the single slit, 
in this case), we obtain the square pulse profile. 
Comparing this function with the pattern of the 
square root of the intensity I of the diffracted light, 
we ask ourselves if there is a mathematical link 
between these two functions: the answer is yes. Each 
function can be considered as Fourier’s transform of 
the other. 

 

Figure 3 

In Figure 4, we can see the aperture function of a 
grating and, below, its Fourier’s transform as a 
function of spatial frequencies: the square of this 
spectrum gives the typical diffraction pattern of light. 
If we choose a grating in which the slits are more 
separated, we notice that Fourier’s transform and, in 

other words, the diffraction pattern shows maxima 
that are less spread out. At last, if we let the 
separation among the slits tend to infinity, we obtain 
the well-known single slit's diffraction pattern which 
we discussed before (in the bottom part of the 
figure). 

 

 

Figure 4 

We also see, from a phenomenological point of 
view, that if the aperture function is periodic (and 
this is the case of a grating), the diffraction pattern 
does not change if we move the grating horizontally, 
because the components of different spatial 
frequencies remain the same. But, if we now rotate 
the grating the diffraction pattern rotates, too: we 
can conclude that the diffraction pattern is 
constantly perpendicular to the slits of the grating. 

It is well known that diffraction phenomena are 
obtained when light encounters an opening (such as 
a hole, for example), but also when it encounters an 
obstacle (such as a disk, for example). In optics, hole 
and disk are said “complementary diffracting 
screens”, or, in other words, the transparent regions 
on the one, correspond exactly to the opaque regions 
on the other, and vice-versa. Babinet's principle, valid 
for any wave phenomena, states that diffraction 
patterns from complementary screens are identical 
(see Figure 5). Therefore, the diffraction pattern 
obtained from a fine thread is almost identical to the 
one obtained from a single slit. 
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Figure 5 

Now, we want to study diffraction patterns 
produced by the obstacles shown in Figure 6, which 
are characterized by particular symmetries 
(Hodkingson, 1992). Obviously, the reasoning does 
not change if we use complementary apertures for 
Babinet's principle. As a consequence, we obtain 
diffraction patterns as shown in the set of Figures 7. 

 

 

Figure 6 

 

Figure 7 

ResultsResultsResultsResults    

In Figure 8, the sketch of the experimental set is 
shown to demonstrate the role of a converging lens 

interposed on the optical path beyond the diffraction 
pattern: we can observe that it produces on the 
screen a Fourier antitransform of the diffraction 
pattern, giving us back on the screen the original 
obstacle (object - in this case the letter “E”). 

 

 

Figure 8 

We want now to introduce an important 
application of Fourier’s optics known as “spatial 
filtering”. In particular, we want to ideally pose the 
“spatial filtering” in the mainstream of the so-called 
“linear response theory”. This formalism, based 
essentially upon Fourier’s transforms, has been 
extensively adopted in solid state physics and in the 
theory of electromagnetic signal processing and, 
recently, its introduction has been proposed in high 
school level by some physics teaching researches 
(Vicentini, 1995; Wanderlingh, 1991). 

We can start now focusing on three important 
parts constituting our ideal spatial filtering set (see 
Figure 9). First, the role of the source object 
illuminated by the laser beam which we will call the 
cause. Then, the spatial filter (the single slit in the 
Figure 9) we will call response, and, at last, the image 
obtained on the screen we will call effect. 

 

 

Figure 9 

One can demonstrate (see Figure 10) that simple 
mathematical relations exist between the cause, the 
response, and the effect. We have a double slit 
illuminated by a laser beam; mathematically the 
aperture function, g(x), may be represented by two 
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δ-functions. Below, the diffraction pattern, G(k), is 
represented mathematically corresponding to a (cos 
k)2. Both g(x) and G(k) may be thought as causes in 
our experiment. Then, we interpose a spatial filter, 
which is in this case a single slit. It is mathematically 
described by a square pulse, H(k). Its diffraction 
pattern, as we have seen before, is a (sinx/x)2 

function, h(x): both H(k) and h(x), may be thought 
as responses in our experiment. 

 

 

Figure 10 

At last, we have a new diffraction pattern: it 
corresponds mathematically to a symmetrically 
truncated (cos k)2 function, F(k). Its Fourier’s 
transform, which experimentally may be obtained 
using a converging lens, corresponds mathematically 

to a f(x) function, where in the place of the two δ-
functions now appear two (sinx/x)2 functions. We 
call effect both f(x) and F(k) functions. 

The essence of the convolution theorem (a 
milestone of linear response theory) is this: in the 
space domain, the effect is obtained convolving the 
response with the cause. In the frequency domain, on 
the contrary, the effect is obtained as a simple algebric 
multiplication between the response and the cause. 

The final part of this work present’s a couple of 
applications of the spatial filtering technique (Xuan, 
1995, personal communication). We produced an 
image of a musical partiture on slide and illuminated 
it with a laser beam. Truncating the horizontal 
maxima in the diffraction pattern by the use of a 
variable single slit as a spatial filter, we obtained on 
the screen, after the interposition of a converging 
lens, a new figure without the vertical lines, as we 
can see in the Figure 11a. Truncating now the 
vertical maxima in the diffraction pattern, we obtain 
a filtered image sketched in Figure 11b. 

The same technique (Heicht, 1987) is used in 
the composite photography of the Moon, taken by 
Lunar Orbiter (see Figure 12a), to eliminate 
horizontal lines. In the unfiltered Fourier’s 
transform, we can distinguish (Figure 12b) the 
vertical dot pattern describing the horizontal lines of 
the source image. When it is filtered out (Figure 

12c), we obtain a version of the photo without 
horizontal lines (Figure 12d). 

 

Figure 11 

 

Figure 12 

DiscussionDiscussionDiscussionDiscussion    

The interest in optical processing, raised since 
the 1960s: in particular, in the areas of photographic 
image enhancements, radar and sonar signal 
processing, pattern recognition and so on. 

To appreciate these technological applications, it 
is necessary, as we have seen, to have a good 
knowledge of this new branch of optics: this is why 
we presented, in a rather intuitive way, some of the 
most important ideas upon which Fourier’s optics is 
based. 

We also hope to have given a stimulus to the 
discussion recently raised in teaching research, 
concerning the proposal to introduce the “linear 
response approach” in high school level. 
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