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ABSTRACT. In this work we will present an alternative method to teach the first two 
Kepler's laws, using basic concepts of geometry, but achieving conclusions in the important 
notions of reference systems and the equivalence between heliocentrism (Copernican-
Keplerian system) and geocentrism (Ptolemaic system). We used this method for students 
of junior (last year), high school and for undergraduate courses (Physics and Mathematics). 
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RESUMO. O universo de Ptolomeu revisitado. Será apresentado um método alternativo 
para se ensinar as duas primeiras leis de Kepler, usando conceitos básicos de geometria, 
procurando-se chegar à importante noção de sistemas de referência e à equivalência entre o 
heliocentrismo (sistema Copernicano-Kepleriano) e o geocentrismo (sistema Ptolomaico). 
O método foi utilizado para estudantes de Ensino Fundamental (último ano), Ensino 
Médio e em cursos de graduação (Física e Matemática). 
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The historical development of Astronomy, 
specially in the period between the transition from 
Ptolemaic to Copernican conception of the universe, 
found in the person of Johannes Kepler its 
maximum exponent. In high school teaching and in 
the first years of undergraduate courses, the 
description of planetary motions is reduced using 
simple memorization of the Kepler's laws, without a 
true phenomenon comprehension. The 
mathematical relations involved in this kind of 
teaching are not so simple to encourage the teachers 
to treat this theme with a different form from that 
presented in common (and, frequently, very 
complicated way) astronomical textbooks. 

It is a great disappointment for students use the 
memorization of laws without a real and effective 
comprehension of the studied phenomenon. Some 
authors (Brehme, 1976) worked with Kepler's laws 
using alternative methods, based in science history 
or in geometrical arguments. The present work will 
treat this important and forgotten chapter of the 
Physics using geometry as tool to try to find out an 
alternative way to teach Mathematics (geometry), 
Astronomy and History of Science. 

Our method consist in using two first of the 
Kepler's laws in a close form: replacing the ellipsis by 
non-centered circumferences (Neves and Arguello, 
1986), and using, also, the very old equant's point 
instead the area's velocity to calculate the planetary 

trajectories as seeing in the Earth's sky. Results were 
confronted with that presented in current 
bibliography and, at the end, it was made a change of 
the reference systems (heliocentrism to 
geocentrism). This method was tested with junior 
(last year), high school and college students. 
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Kepler's first law in a simplified form. Kepler's first 
law (or orbit's law) states that motion of the planets 
forms an ellipsis with the sun posed in the focus of 
this ellipsis. 

We know that the planetary eccentricities are 
very small. Nevertheless, we can replace the 
elliptical shape of a planetary motion by a circular 
shape. But, this circumference will not be centered, 
e.g., with the sun occupying the center of this new 
circular orbit. The sun must be shifted from the 

center O until the distance s = R . ε, where R is the 
circumference radius (Figure 1). 

The point occupied by the sun is called solar focus 
F, and the other point, symmetrically located around 
the center O, angular focus F'. 

The equivalence between non-centered 
circumferences and ellipses with very low 
eccentricities can be shown using the ellipse's 
equation in its polar form: 

 

r = R / [1 - ε (cos θ)]       (1) 
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Figure 1 

Equation 1, using a very low eccentricity (ε2 << 
1), becomes: 

 

r = R + R ε (cos θ)       (2) 
 

Observing Figure 1 we can write the following 
mathematical relation: 

 

x = s (cos θ)         (3) 
 

And, finally, 
 

r = R + s (cos θ)        (4) 

r' = R - s (cos θ)        (5) 
 

As we know that ε = s / R, we can finally write 
(4) in the following form: 

 

r = R + R ε (cos θ) 
 
that corresponds to equation 2 valid for an ellipse 
with low eccentricity and, for our purpose, also valid 
for a circumference of radius R having two 
“focuses”, both shifted from the center by the 

distance s = R . ε. 

Kepler's second law in a simplified form. Kepler's 
second law (or area's law) states that areas swept in 
equal units of time by a planet orbiting around the 
sun are always the same. 

For our purpose, we will enunciate this law in an 
alternative way, using the concept of the angular 
velocity with respect to angular focus F', or, as we 
can denominate it, equant point. 

Using equation 1 and putting in it ε = s / R, and 
making use of the relations 4 and 5, we can find: 

 

r = R
2

 / r'  

We know that R is constant (corresponding in 
planetary motion, to the mean distance between the 
sun and the planet so we have that: 

 
r . r' = constant        (6) 

 

Figure 2 

From the Figure 2a e 2b we can find also: 
 

L1 r1= L2  r2  ≈ 2 . Area 

 
(where L is the length of the arc traversed by the 
planet). 

Using 6, we can finally arrive to: 
 

L1 / r1’ = L2  / r2
’ ≈ ξ       (7) 

 

where ξ is the angle, with respect to equant point 
(focus F'), that always remains constant in equal time 
intervals. 

Nevertheless, considering the angles described 
by the planets always constant with respect to F', and 
linking the points on the circumference until the 
solar focus F (where the sun is placed), equal areas 
in equal time intervals are obtained (this fact can be 
proved using the Hero's formula to calculate the area 

of a triangle of unequal sides a, b and c → Area = [p 

(p - a) (p - b) (p - c)]
1 2/

, where p is the 
semiperimeter = (a+b+c)/2). 

It is very interesting to observe that until now we 
have worked with three different concepts of 
velocity: angular velocity, constant with respect to 
focus F'; area's velocity, constant with respect to 
focus F; and linear velocity, inversely proportional to 
the planet-sun distance. 

Using the non-centered circumferences method to 

calculate the orbits of Mercury and Earth. To draw 
Mercury’s orbit (valid also to any other planet) we 
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need know the following orbital elements: longitude 

ϖ, ascendent node Ω, longitude λ in the epoch 
(here, epoch = 1980.0) and the period T of a 
complete revolution of the planet around the sun. 

The final drawing of the orbit is possible 

transferring orbital elements in spatial representation 

by a plane representation. Figure 3 shows the final 

result obtained. The most external circumference 

corresponds to fixed stars, with an infinite radius 

when it is compared to the radii of the planet orbits. 

 

Figure 3 

Drawing the apparent trajectory of Mercury. To 

obtain the apparent behaviour (resulting from the 

motion composition: Earth and planet) of 

“Mercury’s motion around the Earth”, we must 

work with a specific coordinate system. The system 

most used is the equatorial or absolute coordinate 

system (right ascension α and declination δ). 
However, for this specific method developed here, it 

ecliptical coordinates will be used: ecliptical 

longitude λ and ecliptical latitude β. 

Taking the longitude λ close to right ascension α, 

we can calculate the ecliptical latitude β using the 

following formula: 
 

β = i (DSP / DEP) sen (λ - Ω) (8) 
 
where i is the inclination of planetary orbit with 
respect to ecliptic, DSP is the sun-planet distance, 
and DEP is the Earth-planet distance. 

Knowing λ and, obviously, α, corresponding to a 

specific epoch, 1980.0, and using precedent results, 

it is possible to determine the position of the Earth 

and the planet (in present section, Mercury) to 

sucessive posterior times (in this example, 1985). 

The geocentric apparent trajectory is obtained 

finding the ecliptical longitude, e.g., reducing to a 

point the radius of the Earth and the planet orbit, 

considering the radius of the fixed stars 

circumference as infinite (Menzel, 1964). 

Using a graph right ascension α versus 

declination δ, and drawing the ecliptic “line” (that is 

our reference frame), we can obtain the geocentric 

apparent motion made by Mercury in 1985. Figure 4 

shows this trajectory. Some of the assumptions 

made here seems to be not so accurate, but the 

results obtained are the best validity justification of 

the method developed here, using non-centered 

circumferences (Anuário Astronômico, 1985). Using 

this method we can change the origin of coordinate 

systems to any other planet. So, in an analogous way, 

we may suggested as an exercise: what would be the 

trajectory of the Earth by hypothetic in habitant of 

Saturn. 
 

 

Figure 4 

Conclusion: from Kepler to PtolemyConclusion: from Kepler to PtolemyConclusion: from Kepler to PtolemyConclusion: from Kepler to Ptolemy    

The present work has been restricted until this 

point to the presentation of an alternative method, 

using basic and simple geometry to calculate and 

make previsions about the apparent trajectories of 

the planets in the sky. It seems to be a contradiction 

with the title: from Kepler to Ptolemy. However, this 

contradiction is only apparent, because by using the 

equant point we are working with a powerful tool 

charactheristic of the Ptolemaic system (geocentric). 

The use of equant law as presented in the previous 

section is an alternative and analogous way to meet 

to the Kepler's second law (area's law). 

However, observing Figure 3, and linking the 

points where Mercury and Earth were in 1985 (or, if 

we wish, to any other year), as illustrated in Figure 5, 

and having registered the length of Earth-planet 

(DEP) segments and angles with respect to the 

ecliptic, we can obtain a geocentric or geostatic 

system as imagined by Ptolemy. Figure 6 illustrates 

the final result after this change of reference system. 

Observing the model of the universe as 

conceived by Ptolemy, in a very simplified way, the 

retrogradation motions were explained using a great 

deferent circumference, with the Earth placed at 

point E (Figure 7). The retrogradation motions like 

that presented in Figure 6 were obtained using an 

epicycle (little circumference on the deferent), with 

a constant angular velocity with respect to equant 

point D. 
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Figure 5 

 

Figure 6 

 

Figure 7 

This last figure states correspondence between 
heliocentrism and geocentrism, using two different 
reference frames. Kuhn (1974) writes that Ptolemy 
and Copernicus had chosen equally justifiable 

processes to describe the position of the planets and 
the Earth. 

Using non-centered circumferences method and 
observing Figure 6 we can, intuitively, make 
predictions about the number of the retrograde 
motions for each planet in the Earth's sky. In the 
case of external visible (with naked eye) planets 
(Mars, Jupiter and Saturn), the number of 
retrogradations corresponds to the number of 
rotations by the Earth during a complete orbital 
period around the sun. For example, the orbital 
period of Jupiter is 12 years. So, the number of the 
retrogradations is around twelve, for each twelve-
year orbital period of the Earth around the sun. 

In the case of internal planets (Venus and 
Mercury), the same scheme is valid. For example: to 
Mercury, which revolves around the sun in 88 days, 
at least, three retrogradations, are predictable, 
because this number of days is within the duration 
of a complete revolution of the Earth around the 
sun. 

Using this method in schools we can introduce 
geometrical notions (perspective and spatial views in 
an applied form), history of science and physical 
principles of reference frames. The most important 
thing that we can show using this method is that 
both reference systems, Ptolemaic and Copernican-
Keplerian, are equally valid and correct to describe 
the phenomena of the observable world. 
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