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The universe of Ptolemy revisited
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ABSTRACT. In this work we will present an alternative method to teach the first two
Kepler's laws, using basic concepts of geometry, but achieving conclusions in the important
notions of reference systems and the equivalence between heliocentrism (Copernican-
Keplerian system) and geocentrism (Ptolemaic system). We used this method for students
of junior (last year), high school and for undergraduate courses (Physics and Mathematics).

Key words: geocentrism, heliocentrism, Ptolemy, Kepler, referential systems

RESUMO. O universo de Ptolomeu revisitado. Serd apresentado um método alternativo
para se ensinar as duas primeiras leis de Kepler, usando conceitos bisicos de geometria,
procurando-se chegar 3 importante nogio de sistemas de referéncia e 2 equivaléncia entre o
heliocentrismo (sistema Copernicano-Kepleriano) e o geocentrismo (sistema Ptolomaico).
O método foi utilizado para estudantes de Ensino Fundamental (dltimo ano), Ensino
Meédio e em cursos de graduagio (Fisica e Matemitica).
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The historical development of Astronomy,
specially in the period between the transition from
Ptolemaic to Copernican conception of the universe,
found in the person of Johannes Kepler its
maximum exponent. In high school teaching and in
the first years of undergraduate courses, the
description of planetary motions is reduced using
simple memorization of the Kepler's laws, without a
true phenomenon comprehension. The
mathematical relations involved in this kind of
teaching are not so simple to encourage the teachers
to treat this theme with a difterent form from that
presented in common (and, frequently, very
complicated way) astronomical textbooks.

It is a great disappointment for students use the
memorization of laws without a real and eftective
comprehension of the studied phenomenon. Some
authors (Brehme, 1976) worked with Kepler's laws
using alternative methods, based in science history
or in geometrical arguments. The present work will
treat this important and forgotten chapter of the
Physics using geometry as tool to try to find out an
alternative way to teach Mathematics (geometry),
Astronomy and History of Science.

Our method consist in using two first of the
Kepler's laws in a close form: replacing the ellipsis by
non-centered circumferences (Neves and Arguello,
1986), and using, also, the very old equant's point
instead the area's velocity to calculate the planetary

trajectories as seeing in the Earth's sky. Results were
confronted with that presented in current
bibliography and, at the end, it was made a change of
the  reference  systems  (heliocentrism  to
geocentrism). This method was tested with junior
(last year), high school and college students.

Non-centered circumference’s method

Kepler's first law in a simplified form. Kepler's first
law (or orbit's law) states that motion of the planets
forms an ellipsis with the sun posed in the focus of
this ellipsis.

We know that the planetary eccentricities are
very small. Nevertheless, we can replace the
elliptical shape of a planetary motion by a circular
shape. But, this circumference will not be centered,
e.g., with the sun occupying the center of this new
circular orbit. The sun must be shifted from the
center O until the distance s = R . & where R is the
circumference radius (Figure 1).

The point occupied by the sun is called solar focus
F, and the other point, symmetrically located around
the center O, angular focus F'.

The  equivalence  between  non-centered
circumferences and ellipses with very low
eccentricities can be shown using the ellipse's
equation in its polar form:

r=R/[1-€ (cos 0)] 1)
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Figure 1

Equation 1, using a very low eccentricity (6‘2 <<
1), becomes:

r =R + Re (cos ) )

Observing Figure 1 we can write the following
mathematical relation:

x = s (cos 0) (3)
And, finally,

r =R + s (cos 0) “)

r' =R -s(cos 0) (5)

As we know that € = s / R, we can finally write
(4) in the following form:

r=R + Re(cos0)

that corresponds to equation 2 valid for an ellipse
with low eccentricity and, for our purpose, also valid
for a circumference of radius R having two
“focuses”, both shifted from the center by the
distances = R . &

Kepler's second law in a simplified form. Kepler's
second law (or area's law) states that areas swept in
equal units of time by a planet orbiting around the
sun are always the same.

For our purpose, we will enunciate this law in an
alternative way, using the concept of the angular
velocity with respect to angular focus F', or, as we
can denominate it, equant point.

Using equation 1 and putting in it £ = s/ R, and
making use of the relations 4 and 5, we can find:

r=R2/r'
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We know that R is constant (corresponding in
planetary motion, to the mean distance between the

sun and the planet so we have that:

r.r' = constant 6)

Figure 2

From the Figure 2a e 2b we can find also:
Liri=Ly rp =2 . Area

(where L is the length of the arc traversed by the
planet).
Using 6, we can finally arrive to:

Li/r)=L2/r,=¢§ )

where & is the angle, with respect to equant point
(focus F'), that always remains constant in equal time
intervals.

Nevertheless, considering the angles described
by the planets always constant with respect to F', and
linking the points on the circumference until the
solar focus F (where the sun is placed), equal areas
in equal time intervals are obtained (this fact can be
proved using the Hero's formula to calculate the area
of a triangle of unequal sides 4, b and ¢ - Area = [p
(p -a) (p - b (p - c)]llz, where p is the
semiperimeter = (a+b+c)/2).

It is very interesting to observe that until now we
have worked with three different concepts of
velocity: angular velocity, constant with respect to
focus F'; area's velocity, constant with respect to
focus F; and linear velocity, inversely proportional to
the planet-sun distance.

Using the non-centered circumferences method to
calculate the orbits of Mercury and Earth. To draw
Mercury’s orbit (valid also to any other planet) we
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need know the following orbital elements: longitude
@, ascendent node 2, longitude A in the epoch
(here, epoch = 1980.0) and the period T of a
complete revolution of the planet around the sun.
The final drawing of the orbit is possible
transferring orbital elements in spatial representation
by a plane representation. Figure 3 shows the final
result obtained. The most external circumference
corresponds to fixed stars, with an infinite radius
when it is compared to the radii of the planet orbits.

Figure 3

Drawing the apparent trajectory of Mercury. To
obtain the apparent behaviour (resulting from the
motion composition: Earth and planet) of
“Mercury’s motion around the Earth”, we must
work with a specific coordinate system. The system
most used is the equatorial or absolute coordinate
system (right ascension O and declination ).
However, for this specific method developed here, it
ecliptical coordinates will be wused: ecliptical
longitude A and ecliptical latitude 3.

Taking the longitude A close to right ascension 0,
we can calculate the ecliptical latitude B using the
following formula:

B =i (DSP/DEP)sen (A - Q) (8)

where i is the inclination of planetary orbit with
respect to ecliptic, DSP is the sun-planet distance,
and DEP is the Earth-planet distance.

Knowing A and, obviously, a, corresponding to a
specific epoch, 1980.0, and using precedent results,
it is possible to determine the position of the Earth
and the planet (in present section, Mercury) to
sucessive posterior times (in this example, 1985).
The geocentric apparent trajectory is obtained
finding the ecliptical longitude, e.g., reducing to a
point the radius of the Earth and the planet orbit,
considering the radius of the fixed stars
circumference as infinite (Menzel, 1964).

Using a graph right ascension O versus
declination &, and drawing the ecliptic “line” (that is
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our reference frame), we can obtain the geocentric
apparent motion made by Mercury in 1985. Figure 4
shows this trajectory. Some of the assumptions
made here seems to be not so accurate, but the
results obtained are the best validity justification of
the method developed here, using non-centered
circumferences (Anudirio Astrondmico, 1985). Using
this method we can change the origin of coordinate
systems to any other planet. So, in an analogous way,
we may suggested as an exercise: what would be the
trajectory of the Earth by hypothetic in habitant of
Saturn.

343381

Figure 4

Conclusion: from Kepler to Ptolemy

The present work has been restricted until this
point to the presentation of an alternative method,
using basic and simple geometry to calculate and
make previsions about the apparent trajectories of
the planets in the sky. It seems to be a contradiction
with the title: from Kepler to Ptolemy. However, this
contradiction is only apparent, because by using the
equant point we are working with a powerful tool
charactheristic of the Ptolemaic system (geocentric).
The use of equant law as presented in the previous
section is an alternative and analogous way to meet
to the Kepler's second law (area's law).

However, observing Figure 3, and linking the
points where Mercury and Earth were in 1985 (or, if
we wish, to any other year), as illustrated in Figure 5,
and having registered the length of Earth-planet
(DEP) segments and angles with respect to the
ecliptic, we can obtain a geocentric or geostatic
system as imagined by Ptolemy. Figure 6 illustrates
the final result after this change of reference system.

Observing the model of the universe as
conceived by Ptolemy, in a very simplified way, the
retrogradation motions were explained using a great
deferent circumference, with the Earth placed at
point E (Figure 7). The retrogradation motions like
that presented in Figure 6 were obtained using an
epicycle (little circumference on the deferent), with
a constant angular velocity with respect to equant
point D.
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Figure 7

This last figure states correspondence between
heliocentrism and geocentrism, using two different
reference frames. Kuhn (1974) writes that Ptolemy
and Copernicus had chosen equally justifiable
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processes to describe the position of the planets and
the Earth.

Using non-centered circumferences method and
observing Figure 6 we can, intuitively, make
predictions about the number of the retrograde
motions for each planet in the Earth's sky. In the
case of external visible (with naked eye) planets
(Mars, Jupiter and Saturn), the number of
retrogradations corresponds to the number of
rotations by the Earth during a complete orbital
period around the sun. For example, the orbital
period of Jupiter is 12 years. So, the number of the
retrogradations is around twelve, for each twelve-
year orbital period of the Earth around the sun.

In the case of internal planets (Venus and
Mercury), the same scheme is valid. For example: to
Mercury, which revolves around the sun in 88 days,
at least, three retrogradations, are predictable,
because this number of days is within the duration
of a complete revolution of the Earth around the
sun.

Using this method in schools we can introduce
geometrical notions (perspective and spatial views in
an applied form), history of science and physical
principles of reference frames. The most important
thing that we can show using this method is that
both reference systems, Ptolemaic and Copernican-
Keplerian, are equally valid and correct to describe
the phenomena of the observable world.
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