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ABSTRACT. This paper presents a geometrical method to calculate orbits of comets, 
especially Halley’s and Hale Bopp’s besides, it discusses the important notion of odograph 
of cometary movement. 
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RESUMO. Órbitas aproximadas de cometas. Este artigo apresenta um método 

geométrico para calcular órbitas de cometas, especialmente aquelas dos cometas Halley 
e Hale-Bopp, discutindo ainda a importante noção de odógrafa de um movimento 
cometário. 

Palavras-chave: leis de Kepler, cometas Halley e Hale-Bopp, ensino de física e astronomia. 

In the present article we will develop a 
geometrical technique based on the second law of 
Kepler (Law of Areas). Basically it consists of a 
reproduction of triangles of the same area on an 
ellipsis from an original triangle. 

Method of triangles in ellipsisMethod of triangles in ellipsisMethod of triangles in ellipsisMethod of triangles in ellipsis    

The second law of Kepler states that in a given 
amount of time a line joining any planet to the sun 
sweeps out the same amount of area no matter 
where the planet is on its elliptical orbit. 

Figure 1 exemplifies the geometrical method of 
reproduction of triangles on a curve that allows the 
possibility of triangles of the same area. The method 
consists of the following stages: from the principal 
focus (occupied by the sun) we construct the first 

triangle ∆1. When the height h1 of the triangle is 
found, we will extend it to keep a right angle, 
perpendicular to cathetus of the first triangle. With 
two setsquares we will find a point in the ellipsis 
which will give us the same height h1. When this 
point is found, we will pass a straight line through it 
till we find the sun, the principal focus of the 

ellipsis. Thus, we have a second triangle ∆2 with the 

same area as the first ∆1 using as a common base one 

side (cathetus) of the previous triangle. Figure 2 
shows this method (called Method of Triangles in 
Ellipsis, or MTE) applied in its totality on an ellipsis 
with a great eccentricity. 

 

Figure 1. Method of triangle in ellipsis (MTE) 

Let us apply this method to the orbit of a well-
known comet: Halley’s comet. First, we have to 
know some of its orbital characteristics: 

- Period of orbital revolution: 76.008 years; 
- Minimum distance of comet from sun 

(perihelion): a’ = 0.587 A.U.; 
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- Inclination of orbit’s plane in relation to 

ecliptic: i = 162.24°; 
- Major semi-axis: a = 17.94 A.U.; 

- Longitude of ascendent node: Ω = 58.15°; 
- Argument of perihelion: ϖ = ω - Ω = 

111.80°; 
- Minimum distance of comet from Earth 

(perigee): 0.42 A.U. (in April 11, 1986);  
- Time of perihelion passage: February 9, 1986; 

- Eccentricity: ε = 0.97; 

- Direction of orbital movement: retrograde. 
 

 

Figure 2. Method of triangles in ellipsis (MTE) applied in its 

totality 

Figure 3 shows the orbital elements of Halley’s 
comet. To apply MTE we should, first construct the 
characteristic ellipsis of a comet orbit. Figure 4 
demonstrates the elements of the ellipsis. Below, 
formula (1) agrees with the equation of ellipsis in its 
polar form: 

r = [a (1 - ε2)] / (1 - ε cosθ)     (1) 

 

Figure 3. Orbital elements of Halley’s comet 

We see that the only variable present in the 

equation (1) is the angle θ. Thus, if we alter the 
latter (on the condition that we have previously 
chosen a scale for the astronomical unit, A.U.) we 

get the angular variation of r, giving us the 
possibility of constructing the ellipsis. 

For the construction of the first triangle we 
have a fundamental datum: the date of the 
perihelion passage of the comet (the passage of 
time referring to previous appearances in 1759, 
1835-36 and 1909-11). If we want to monitor the 
comet’s orbit every ten days, for instance, we have 
to know the area travelled by the comet during 
this interval of time. 

We know that the area of an ellipsis is given as ST 

= π a b1. So, finding the partial area SP in an interval 
of ten days is an easy matter, using only the simple 
rule of proportion. 

Having the value of the perihelion distance a’ 
(Figure 4) and the partial area SP, we can find 

the height of triangle ∆1 in an approximative 

method: 

h1 = (2 SP) / a’         (2) 

 

Figure 4. Elements of an ellipsis  

When the first triangle is found, we will 
reproduce it along the ellipsis (due to its extreme 
eccentricity of the comet’s orbit it will not be 
reproduced along all the ellipsis) using MTE. 

Figure 5 shows the orbit of the comet deduced 
by MTE and table 1 exhibits the values of ecliptical 

longitude λ for the points present in the Figure and 
obtained by the method of decentered 
circumferences (Neves and Argüello, 1986). Table 2 
compares some important events between the values 
calculated and the values referred to in the 
bibliography (Anuário Astronômico, 1986). 

                                                 
1  a2 = b2 + c2 and c = ε a are proper to ellipsis. Thus, b = a (1 - 

ε2)1/2 
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Figure 5. Orbit of Halley’s comet deduced by MTE 

To delineate the apparent movement of the 

comet, we must know the various ecliptic latitudes β. 
To calculate this in a simple way (this method was 
presented for appreciation to high school students) 
we take Figure 5 and draw it once more. However, 
this time it will be inverted. From this figure we can 
still cut the part that corresponds to Halley’s orbit in 
the strict sense and invert it too. We can thus 
construct a tridimensional model (Figure 6) which 

allows us to find latitude β with certain ease. 

 

Figure 6. Tridimensional model 

We deduce an elementary trigonometric relation 
from the tridimensional model so that we may find 
the ecliptic geocentric latitude (as seen from the 
Earth – see Figure 7). From this last figure we have: 

β = arc [tan (DCE / DTC)]     (3) 

where, 
DCE is the distance of the comet to the plane of 

the ecliptic. 
DTC is the distance of the Earth to the comet. 

 
β = Ecliptic geocentic latitude 

Figure 7. Trigonometric relation from the tridimensional model 

Table 3 presents values of some ecliptic latitudes 
found. 

Figure 8 shows the apparent trajectory calculated 
by MTE and Figure 9, the same trajectory, but given 
in the bibliography (Anuário Astronômico, 1986). 
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Figure 8. Apparent trajectory of Halley’s comet by MTE 

 

Figure 9. Apparent trajectory given in the bibliography 

Table 1. Ecliptic longitudes 

Points in the orbit 

of Halley’s comet 

Corresponding 

dates 

Ecliptic longitude 

(degrees) 

Ecliptic longitude 

(hours) 

13’ 10.01.1985 93 6.2 

12’ 10.11 91 6.0 

11’ 10.21 87 5.8 

10’ 10.31 84 5.6 

9’ 11.10 72 4.8 

8’ 11.20 52 3.5 

7’ 12.01 25 1.7 

6’ 12.11 0 0.0 

5’ 12.21 344 22.9 

4’ 12.31 335 22.3 

3’ 01.10.1986 328 21.9 

2’ 01.20 325 21.7 

1’ 01.30 321 21.4 

0 02.09 (perihelion) 315 21.0 

1 02.19 309 20.6 

2 03.01 305 20.3 

3 03.11 299 19.9 

4 03.21 291 19.4 

5 03.31 273 18.2 

6 04.10 232 15.5 

7 04.20 187 12.5 

8 04.30 172 11.5 

9 05.10 164 10.9 

10 05.20 160 10.7 

11 05.30 159 10.6 

12 06.09 159 10.6 

13 06.19 160 10.7 

Table 2. Comparative values 

Event Calculated date Date given in bibliography 

(Anuário Astronômico, 1986) 

1st Opposition Between 20 and 11.21.85 11.18.1985 

Conjuction Between 04 and 02.05.86 02.06.1986 

2nd Opposition Between 16 and 04.17.86 04.17.1986 

Perigee Between 11 and 04.12.86 04.11.1986 

Table 3. Ecliptic latitudes and longitudes (the sign (+) indicates 

superior position to the ecliptic, and sign (-), position inferior to 
it) 

Days Point in the comet’s 

orbit 

Latitude 

(degrees) 

Longitude 

(hours) 

11.01.85 ≅ 10’ - 2.2 ≅ 5.6 
11.27.85 Between 8’ and 7’ + 3.8 ≅ 2.6 
01.01.86 ≅ 4’ + 8.7 ≅ 22.3 
02.01.86 ≅ 1’ + 9.1 ≅ 21.4 
02.09.86 ≅ 0 + 9.1 ≅ 21.0 
03.01.86 ≅ 2 + 4.2 ≅ 20.3 
04.01.86 ≅ 5 - 21.8 ≅ 18.2 
04.11.86 ≅ 6 - 32.9 ≅ 15.5 
05.01.86 ≅ 8 - 28.5 ≅ 11.5 
06.01.86 ≅ 11 - 20.4 ≅ 10.6 
07.04.86 Between 11 and 12 - 15.6 ≅ 10.4 
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HaleHaleHaleHale----Bopp CometBopp CometBopp CometBopp Comet    

Using the same method for a comet that was 
recently discovered in our skies, we can also 

calculate the orbit of the Hale-Bopp’s comet. The 
Figure 10 shows the comet as photographed in the 
skies of Maringá (city in the south of Brazil, latitude 

23.5°S and longitude 52°), toward west direction, 
below the Constellation of Orion, on the 
04.29.1997, at 19h00min (local time). 

 

 

Figure 10. Hale-Bopp’s comet in the skies of Maringá 

This comet was recently discovered (on July 23, 
1995) by the astronomers Alan Hale and Thomas 
Bopp. Its initial periodicity is estimated in a value 
already 4,200 years, but due to the intense force 
gravitational of Jupiter, your orbital period is 
estimated in about 2,380 years. 

The orbital elements of that comet are: 

- Age of comet: ≅ 4.5 billion years. 
- Nucleus’ diameter: 40 km. 
- Dimension: 137,000,000 km. 
- Minimun distance from Earth: 195,250,000 

km. 
- Date of perigee: March 22, 1997. 
- Period: 2,380 years. 
- Minimun distance from the sun (perihelion): 

137,000,000 km. 

- Argument of perihelion: ω = 130.59°. 
- New date of perihelion: year 4,377 a.C. 
- New aphelion: year 3,187 a.C. 
- Last date of aphelion: 103 b.C. 
- Orbital velocity in the perihelion: v = 44 

km/sec. 

- Eccentricity: ε = 0.9951. 

- Inclination with respect to ecliptic: i ≅ 90°. 
- Longitude of ascendent node: Ω = 282.47°. 
 
The Figure 11 shows the trajectory of Hale-

Bopp’s comet using MTE and the Figure 12 shows 
the apparent trajectory (right ascension and 

declination): the full line is that one given in the 
bibliography (Anuário Astronômico, 1997) and the 
dotted line those calculated by the method. The 
differences in the values of the right ascensions are 
verified because they were not made the three-
dimensional model to obtain the values of those 
variables. However, the results obtained by the 
method it is possible to locate, approximately, the 
position of the comet. 

Odograph ofOdograph ofOdograph ofOdograph of a Comet’s Movement a Comet’s Movement a Comet’s Movement a Comet’s Movement    

If we wish to verify the precision of the method 
developed here (and to confirm forecasts of other 
comets, for instance, Hale-Bopp’s comet) we may 
use the notion of odograph2. 

The odograph of a movement corresponds to a 
polar diagram of a vectorial velocity (Boczko, 1984), 
that is, to the curve obtained by the union of the 
extremities of vectorial velocities, drawn from a 
point considered as the odographic pole (pole O – 

see Figures 13). 
The odograph is a way of verifying the 

conservation of the angular momentum and the law 
of the areas for a cometary (or planetary) movement, 
based on figures obtained in the previous section 
and, in a special manner, in Figure 5. 

For the conservation of angular momentum, we 
have, 

r
r
 x v

r
 = constant        (4) 

In polar coordinates we would have, 

r2 dθ / dt = A = constant       (5) 

where r and θ are the polar coordinates of the ellipsis 
and A is a constant that has a dimension of area, or 
better, of areolar velocity which, according to 
Kepler’s law, is always constant. 

We can deduce the equations of velocities in the 
diagram vx versus vy: 

vx = - (A / R) sin θ        (6) 

vy – (A ε) / R = (A / R) cos θ      (7)✠ 

Thus, 

vx
2 + {vy – [(A ε) / R]}2 = (A2 / R2)    (8) 

 

                                                 
2  The idea of a odograph originated with A. F. Möebius (1843) and, 

in an independent way, with Sir William Rowan Hamilton (1846) 
to whom we owe the name and certain original developments of 
the theory (Encyclopaedia Britannica, 1971). 

✠
  The equation to vy obtained in the bibliography (Toth and 

Bardócz, 1983) is incorrect. The mistake occured when the 
authors differentiated y with respect to time t. This fact affected 
the final interpretation of the diagrams obtained by the dynamic 
demonstration model of planetary movements. 
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Figure 11. Hale-Bopp’s comet deduced by MTE  

 

Figure 12. Comparative apparent trajectory of Hale-Bopp’s comet 
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which corresponds to the equation of a 
circumference of radius (A / R) and of focus F 

displaced [(A ε) / R] from the center O of the 
circumference thus obtained [R is a semi-latus 

rectum and equal to → a (1 - ε2)]. 
 

 

Figure 13. Diagrams of vectorial velocities 

By equation (8) we perceive that the odograph of 
an elliptic movement is a circumference. This may 
be seen in Figures 14 and 15 which correspond to 
the odograph of Halley’s elliptic movement, 

obtained from Figure 5 of the previous section, with 
the pole O of the former on the principal focus of 
the comet’s orbit, that is, on the sun. 

We also perceive on Figure 14 how the linear 
velocity of the comet varies with respect to its 
distance from the sun. 

We may finish this article since we have 
discussed the odograph. Using a relatively simple 
geometrical technique, it is possible to teach 
Kepler’s laws (especially the first and second) ones 
in an alternative form. It is practical and accessible to 

students of college level. Depending on the 
presentation of the theme by the teacher, it is also 
accessible to upper secondary school students as it 
was proved in previous given courses to the writing 
of this paper. 

 

 

 

Figure 14. Odograph of Halley’s comet 
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Figure 15. Odograph of Halley’s elliptic movement 
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