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ABSTRACT. A numerical simulation of interstitial fluid flow and blood flow is developed to a tissue 
containing a two-dimensional cylindrical tumor. The tumor is assumed to be a rigid porous medium with 
a necrotic core, interstitial fluid and two capillaries with an arterial pressure input and a venous pressure 
output. The interstitial fluid pressure, velocity, blood pressure as well as velocity are calculated using finite 
difference method. Results show that the interstitial pressure has a maximum value at the center of the 
tumor and decreases by moving toward the first capillary. The reduction continues between two capillaries, 
and interstitial pressure finally decreases in the direction of the tumor perimeter.  
Keywords: interstitial fluid, porous media, finite difference, blood, cylindrical tumor. 

Características do fluxo de fluido intersticial junto com o fluxo sanguíneo no interior de 
um tumor cilíndrico: uma simulação numérica 

RESUMO. Neste trabalho desenvolveu-se uma simulação numérica de fluxo de fluido intersticial e fluxo 
sanguíneo para um tecido contendo um tumor cilíndrico bidimensional.  Considerou-se  o tumor como 
um meio poroso rígido com núcleo necrótico, fluido intersticial e dois capilares com entrada de pressão 
arterial e saída de pressão venosa. A pressão do fluido intersticial, a velocidade, a pressão sanguínea e a 
velocidade foram calculadas usando o método da diferença finita. Os resultados mostraram que a pressão 
intersticial apresentou um valor máximo no centro do tumor e diminuiu movendo-se em direção ao 
primeiro capilar. Observou-se que a redução continua entre os dois capilares, e finalmente a pressão 
intersticial diminuiu na direção do perímetro do tumor. 
Palavras-chave: fluido intersticial, meio poroso, diferenças finitas, sangue, tumor cilíndrico. 

Introduction 

Cancer is a sophisticated illness which contains 
phenomena across different scales from the 
molecular genetic level to the tissue as a whole. 
Most of the cancers are made of solid tumors. 
Cancerous cells of solid tumors have under gone 
mutations all of which combined lead to cancer 
(Welter & Rieger, 2013). Chemo (drug/chemical) 
therapy, radiation, surgical ablation and 
hyperthermia methods are options generally 
available in cancer treatment (Attaluri, Ma, Qiu, Li, 
& Zhu, 2011). Although the most important cancer 
treatment is surgical removal of such tumors, the 
key to a successful cure often involves efficient 
delivery of anticancer drugs to  the  tumor  site  after  
the surgery. But drug delivery has many problems 
such as two factors that inhibit the effective delivery 
of drugs within tumors: non-uniform blood supply 
and non-uniform interstitial pressure distribution 
(Jain & Baxter, 1988; Jain, 1988). 

Drugs inhabit most readily in areas with the best 
blood supply. In solid tumors, these areas are near to 
the vessels and tumor’s peripheral space; however, 
90% of a tumor receives no drug, it means that 
treated tumors tend to grow, because only their 
outer walls have been killed by the drugs (Goldacre 
& Sylven, 1962; Powe et al., 1984; Shah, Gallagher, 
& Sands, 1985; Blakeslee, 1989). Two techniques are 
currently used to deliver drugs to a tumor. The first, 
is to deliver drugs to the tumor vasculature through 
its supplying artery; however, this method is not 
effective for poorly perfused tumors. Furthermore, 
for a tumor with an irregular shape, inadequate 
drugs distribution may cause under-dosage of 
treatment in the tumor. The second approach, is to 
directly inject drugs into the extracellular space in 
tumors. Drugs diffuse inside the tissue after 
injection and move by interstitial fluid. Variations in 
the interstitial pressure reduce fluid exchange and 
further inhibit the movement of the drug into the 
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center of the tumor. Previous research has shown 
the drug delivery mechanism in tumors (Matsuki & 
Yanada, 1994). 

McDougall, Anderson, Chaplain, and Sherratt 
(2002) simulated blood flow and drug delivery 
through the vascular network from a nearby parent 
vessel to the tumor surface via an associated capillary 
bed generated from their mathematical model of 
tumor-induced angiogenesis. Baxter and Jain, based 
on the theoretical framework in their 1D 
mathematical model, found that in addition to blood 
flow heterogeneities, some parameters such as 
interstitial fluid pressure (IFP) and interstitial fluid 
velocity (IFV) have important role in drugs delivery 
(Jain & Hartley, 1984; Baxter & Jain, 1990, 1991a). 
Saltzman and Radomsky (1991) developed methods 
for modeling drug transport in tissue in the vicinity 
of a continuous source by using polymers. Netti, 
Baxter, Boucher, Skalak, and Jain (1995) studied the 
effect of elevated IFP on vascular flow. In this case, 
the IFP was assumed constant, and the vascular 
pressure profile along the length of the vessels was 
predicted. Baish, Netti, and Jain (1997) investigated 
transmural coupling of fluid flow in 
microcirculatory network and interstitium in 
tumors. In this study they considered a potential 
source of nonuniformity in the blood flow: the 
enhanced fluid exchange between the vascular and 
interstitial space mediated by the high leakiness of 
tumor vessels which could lead to a coupling 
between vascular, transvascular and interstitial fluid 
flow. 

Soltani & Chen (2011), Sefidgar et al. (2014) 
developed a mathematical model of interstitial fluid 
flow using a numerical element-based finite volume 
method for modeling the continuity equation in the 
porous media of spherical tumors. They introduced 
two new parameters: the critical tumor radius and 
the critical necrotic radius. 

Wang and Li (1998) and Wang, Li, Teo, and Lee 
(1999) developed a simulation framework of drug 
delivery to tumors. They considered high interstitial 
pressure in tumors, the consequences of blood and 
lymphatic drainage. They compared in vitro results 
with numerical results. Jain and Hartley (1984), 
Baxter & Jain (1990, 1991) used a model of a 
spherical tumor that had continuously distributed 
vasculature inthe presence of the lymphatic system. 
Soltani and Chen (2012) investigated the effects of 
tumor shape, size and tissue transport properties on 
drug delivery to the solid tumors. In their study, 
they showed that among diffusion and convection 

mechanisms of drug transport, diffusion is 
dominant in most different tumor shapes and sizes. 
In the tumors in which, the convection has 
considerable effect, the drug concentration is larger 
than that of other tumors at the same time post 
injection. Pozrikidis (2010) and Pozrikidis and 
Farrow (2003) studied numerical simulation of 
blood and interstitial flow through a solid tumor. 
Their results showed that, the assumption of 
uniform interstitial pressure is not generally 
appropriate, and the effect of the interstitial 
hydraulic and vascular permeability on the fractional 
plasma leakage is considerable.  

It should be mentioned that in none of these 
studies, the tumor with cylindrical geometry, and 
fluids flow (interstitial fluid and blood) in normal 
and tumor tissues is not considered. Therefore, in 
this work, a two-dimensional cylindrical geometry 
of a tumor with a variable necrotic region and two 
capillaries with a defined diameter and defined 
distance is considered. To obtain the interstitial fluid 
pressure and velocity in the tumor, blood flow 
pressure and velocity in the capillaries, a numerical 
scheme is proposed and the effects of different 
parameters such as necrotic radius, hydraulic 
conductivity and intercapillary distance (the distance 
between two capillaries) are investigated. 

Material and methods 

Proposed model 

The aim of this study is to calculate the 
interstitial fluid pressure of a tumor using a 
simplified tumor vascular network. Real vascular 
system is comprised of arteries and veins. The blood 
path inside a real tumor is complicated and includes 
loops, trifurcations, shunts and dead ends. However, 
to simplify such a complex system, a cylindrical 
tumor with a necrotic core has been modeled in this 
study which there is no vessel in the necrotic core. 
The external part of the tumor contains two 
capillaries as it is shown in Figure 1. Actually, this 
geometry provides an interstitial flow from tumor 
center toward it’s around. Besides, the possibility of 
observation of the interstitial pressure variations 
between capillaries is provided. 

In this proposed model, the tumor has a 
diameter of 1 cm and the necrotic radius is variable. 
The capillaries diameter is 15 μm and the 
intercapillary distance is 100 μm (Soltani & Chen, 
2012). Also the height of the tumor is 1 cm. It is 
considered thatthe blood flow through capillaries 
embedded in tumor tissue, as shown in Figure 1. 
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Figure 1. Geometry of tumor with capillaries; a) 2-D cylindrical 
tissue; b) r-z computational domain; and c) Upside view.  

Mathematical model of interstitial and blood flows 

The mathematical model should be accurate 
enough to include all physiological parameters, such 
as necrotic region radius and the hydraulic 
conductivity. Nevertheless, because the time scale of 
transport phenomena is much less than that of 
tumor growth, the physiological parameters can be 
considered time independent (Baxter & Jain, 1990). 

We begin setting up the mathematical model by 
regarding the interstitium as an isotropic porous 
material, and describe the flow through the 
interstitium by Darcy’s law (Scheidegger, 1963; 
Whitaker, 1986; Lowe & Barbenel, 1988; Bear, 1988; 
Huyghe, Arts, Van Campen, & Reneman, 1992), 
according to Equation 1: 

 u = k∇P୧ (1)
 

where: 
k (cm2 mm-1 Hg-1 s-1),  
Pi (mm Hg-1) and  
u (m s-1) are the hydraulic conductivity of the 
interstitium, the interstitial fluid pressure and the 
interstitial fluid velocity respectively (the 
Nomenclatures are listed in Appendix 1). There are 
some limitations to the use of Darcy’s law. For 
instance, it is not applicable for non-Newtonian 
fluids, Newtonian fluids at high velocities, or for 
gases at very low or very high velocities. It is also 
shown that the friction within the fluid and 
exchange of momentum between the fluid and solid 
phases is neglected by Darcy’s law. Fortunately, in 
the interstitium of biological tissues, all these 

exceptional cases are rare (most of the phenomena 
are low velocity for Newtonian fluids) except for the 
friction within the fluid; therefore, Darcy’s law is 
quite applicable to the analysis of interstitial fluid 
flow. 

The mass balance equation for a steady state 
incompressible fluid is that the divergence of the 
fluid flow is zero, or mathematically, according to 
Equation 2: 

 ∇. u = 0 (2)
 
Equation 2 is applicable in porous media. 

However, in tumors, sources and sinks are present. 
For example, between interstitial space and the 
blood vessels, fluid is exchanged; therefore, the 
steady state incompressible form of the continuity 
equation must be modified as Equation 3: 

 ∇. u = φ୆ − φ୐ (3)
 
Because there is no blood vessels in the necrotic 

region, we can rewrite Equation 3 as follows 
Equation 4: 

 ∇. u = ቂφ୆ − φ୐0 forr ≥ R୬ forr < R୬ (4)

 
where: 
Rn (cm),  
φB (s-1) and  
φL (s-1) are the radius of the necrotic core, the fluid 
source term, and the lymphatic drainage term, 
respectively. There is no lymph vessels in a solid 
tumor and that means φL = 0. 

The fluid source term is governed by Starling’s 
law as follows Equation 5 (Starling, 1896): 

 φ୆ = L୔SV (Pୠ − P୧ − σୱ(πୠ − π୧)) (5)

 
where: 
S V-1 (cm-1) is surface area per unit volume for 
transport in the tumor; Lp (cm mm-1 Hg-1 s-1) 
hydraulic conductivity of the microvascular wall;  
Pb (mm Hg-1) blood pressure, Pi (mm Hg-1) 
interstitial pressure, σs (mm Hg-1), average osmotic 
reflection coefficient for plasma proteins;  
πb (mm Hg-1), osmotic pressure of the plasma; and 
πi (mm Hg-1), osmotic pressure of the interstitial 
fluid. 

Which the osmotic pressure contribution σs  
(πb-πi) is small (Stohrer, Boucher, Stangassinger, & 
Jain, 1995; 2000), Equation 5 reduces to Equation 6: 
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φ୆ = L୔SV (Pୠ − P୧) (6)

 
Combination of Darcy’s law and the continuity 

equation results in Equation 7 and 8: 
 −∇. k∇P୧ = φ୆ (7)−∇. k∇P୧ = L୔SV (Pୠ − P୧) (8)

 
For necrotic region there is no blood vessels and 

so Equation 7 can be expressed by the very well-
known Laplace Equation 9: 

 ∇ଶP୧ = 0 (9)
 
In Equation 8 all parameters exept Pi and Pb are 

assumed constant, so Equation 8 can write as 
Equation 10: 

 ∇ଶP୧ = L୔SkV (P୧−Pୠ) (10)

 
In this study, we assume that interstitial fluid, 

flows in radial direction in cylindrical coordinate. In 
cylindrical coordinate Equation 10 can express as 
Equation 11: 

 1r ∂∂r ൬r ∂p୧∂r ൰ = L୔SkV (P୧−Pୠ) (11)

 
Applying the appropriate boundary conditions 

and also all the constants mentioned earlier, the 
governing equation, Equation 11 can be used to 
calculate the interstitial fluid velocity (IFV) and 
interstitial fluid pressure (IFP) profiles in solid 
tumors. For calculating IFP in Equation 11 we need 
to calculate blood pressure in capillaries. 

The axial flow in a vessel (Qb) follows 
Poiseuille’s law with constant viscosity, (implicitly 
assumes steady, laminar flow with constant 
hematocrit and no shear rate dependence), 
according to Equation 12 (Pozrikidis, 2010): 

 Qୠ = − πaସ8μ dPୠdz  (12)

 
where: 
μ is the blood viscosity, a is the capillary radius and 
Pb is the position dependent pressure inside the 
capillaries. 

We assume that the extravasation flux of fluid 
from the vasculature into the surrounding 
interstitium is described by Starling’s law, according 
to Equation 13 (Pozrikidis, 2010): 

qୣ = L୔ሾPୠ(z) − P୧(r)ሿ (13)
 
Mass conservation for the fluid transported along 

a capillary requires (Pozrikidis, 2010), according to 
Equation 14: 

 dQୠdz + 2πaqୣ(z) = 0 (14)

 
Substituting Equation 12 and 13 into  

Equation 14 and rearranging, we have, according to 
Equation 15: 

 dଶPୠdzଶ = 16μL୔aଷ ሾPୠ(z) − P୧(r)ሿ (15)

 
Now Equation 11 and 15 are used to obtain IFP 

and blood pressure. Applying the appropriate 
boundary conditions, due to symmetry, there is a no 
flux boundary condition at the center of the tumor; 
i.e., according to Equation 16: 

 ∂P୧∂r (r = 0) = 0 (16)

 
At the outer edge of the solid tumor, r = R, 

the pressure in the surrounding tissue is fixed, 
and equal zero, according to Equation 17 (Baish  
et al., 1997). 

 P୧(r = R) = 0 (17)
 
For blood pressure in capillaries, we have 

Equation 18: 
 Pୠ(z = 0) = Pୟ୰୲ୣ୰୷ Pୠ(z = h) = P୴ୣ୧୬ (18)
 
Now Equation 11 and 15 are coupled and 

appropriate boundary conditions are provided by 
Equation 16-18. To obtain interstitial and blood 
pressures, this two equation should be solved 
together. The solution now can be obtained 
analytically or numerically to find the IFV, IFP, 
blood pressure and velocity profiles for this 
condition. In this work, the numerical method 
has been used. A finite difference method (FDM) 
is applied to discretize the equations. The grids 
near the capillary wall are fine. In order to check 
the grid independency of the code, the results for 
three different grids are compared, indicating the 
conservative property of the numerical method. 
Final choice of the grid includes 12224 nodes. 
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Results and discussion 

In order to validate the numerical method, the 
results of the paper are compared with Soltani and 
Chen (2011). In their work, the tumor is assumed 
as a sphere and blood flow in vessels has a 
constant pressure. The material properties (see 
Table 1) for tumor and normal tissue are 
considered the same as ones available in Soltani 
and Chen’ study (2011). 

Table 1. Material properties used in numerical simulations 
(Soltani & Chen, 2011). 

Parameter Tissue Baseline value

k (cm2 mm-1 Hg-1 s-1) 
Normal 8.53x10-9

Tumor 4.13x10-8

S V-1 (cm-1) 
Normal 70 
Tumor 200 

Lp (cm mm-1 Hg-1 s-1) 
Normal 0.36x10-7

Tumor 2.8x10-7

πb(mm Hg-1) Both 20 

πi (mm Hg-1) 
Normal 10 
Tumor 15 

σs(mm Hg-1) 
Normal 0.91 
Tumor 0.82 

Pb(mm Hg-1) Both 15.6 
 

For R = 1 cm in spherical tumor and 
properties in Table 1, IFP in tumor tissue is 
shown in Figure 2. 

 

 
Figure 2. Interstitial pressure distribution in a spherical tumor 
with R = 1 cm. 

For this paper, the tumor is assumed as  
a cylinder with constant radius and variable 
necrotic core and also variable intercapillary 
distance. Table 2 shows the parameters used in 
this paper. 

In this paper we divide the tumor into three 
sections as it is shown in Figure 1: 

• Section 1: the necrotic core,  

• Section 2: the intercapillary space (the space 
between two capillaries), 

• Section 3: the space between second 
capillary and tumor peripherical space. 

Table 2. Properties used in this paper (Baish et al., 1997). 

Parameter value
k (cm2 mm-1 Hg-1 s-1) 2x10-7

S V-1 (cm-1) 200 
Lp (cm mm-1 Hg-1 s-1) 2.5x10-6

Arterial pressure (mm Hg-1) 15μ (mm Hg-sec-1) 3x10-5

Vessel diameter (μm) 15 
Venous pressure (mm Hg-1) 10 
Peripherical interstitial pressure (mm Hg-1) 0 
 

Figure 3 shows the interstitial pressure 
distribution in a tumor with 0.4 cm necrotic core 
radius in z = 0 and in the necrotic core region 
(section1). 

 

 
Figure 3. Interstitial pressure distribution in the necrotic core. 

As it is shown in Figure 3, interstitial pressure 
has a constant value and near the first capillary it 
decreases. 

Figure 4 shows the interstitial pressure 
distribution between two capillaries (intercapillary 
distance) (section 2). In this section, the IFP 
decreases rapidly. This figure shows that in the space 
between the capillaries, the interstitial fluid pressure 
profiles decreases with higher rate than near the 
capillaries. Figure 5 shows the interstitial pressure 
distribution after second capillary (section 3). In this 
section, IFP decreases until reaches to zero in the 
peripheral region of tumor. 

For the first and second capillaries, the blood 
pressure are shown in Figure 6 and 7.  
Figure 8, 9 and 10 show the interstitial fluid velocity 
in the necrotic core (section 1), the intercapillary 
distance (section 2) and after the second capillary 
(section 3) respectively. 
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Figure 4. Interstitial pressure distribution in the intercapillary 
space. 

 
Figure 5. Interstitial pressure distribution after the second 
capillary. 

 
Figure 6. Blood pressure distribution in the fisrt capillary. 

As it is shown in Figure 8, the interstitial fluid 
velocity in the necrotic region is zero and near the 
fisrt capillary it increases. In the intercapillary 
space, the interstitial fluid has more velocity 
magnitude than the necrotic core and finaly in 
Figure 10 the interstitial fluid has the most 
velocity magnitude. Blood velocity magnitude in 
the fisrt and second capillaries are the same and is 
shown in Figure 11. Figure 12 shows the 
interstitial pressure distribution in a 0.5 cm radius 
tumor, as a function of radius for different values 
of necrotic radii. This figure shows that an 
increase in the necrotic radius increases the 
maximum pressure inside the tumor. In this 
figure, the value of interstitial pressure is 
calculated from center of the tumor to second 
capillary (section 1 and 2). 

 

 
Figure 7. Blood pressure distribution in the second capillary. 

 
Figure 8. Interstitial fluid velocity in the necrotic core. 
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Figure 9. Interstitial fluid velocity in intercapillary space. 

 
Figure 10. Interstitial fluid velocity after second capillary. 

 
Figure 11. Blood velocity in the first and second capillaries. 

Figure 13 shows the interstitial pressure 
distribution in whole tumor as a function of necrotic 
radius. 

 
Figure 12. Interstitial pressure distribution from tumor center to 
second capillary at z = 5, a) Rn = 3.6, b) Rn = 3.8, c) Rn = 4.2, 
and d) Rn = 4.5 mm. 

 
Figure 13. Interstitial pressure distribution as a function of 
necrotic radius at z = 5 mm. 

Now in Figure 14, the intercapillary distance 
(named d) is changed in this geometry. In Figure 14 
the interstitial pressure is calculated in section 1 and 
2 due to the intercapillary distance changes. As it is 
shown, by increasing ‘d’ the IFP increases. 

 

 
Figure 14. Interstitial pressure distribution as a function of 
intercapillry distance at z = 0 mm. 

In Figure 15, the effect of geometrical parameters 
is considered. The surface area per unit volume for 
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transport in the tumor (S V-1) is changed and result 
is shown in Figure 15. In this figure other 
parameters are: Rn = 4 mm, d = 120 μm and results 
is considered at z = 5 mm. Figure 16 shows the 
effect of hydraulic conductivity of the microvascular 
wall on the interstitial pressure distribution. 

 

 
Figure 15. Interstitial pressure distribution as a function of S V-1, 
at z = 5 mm. 

 
Figure 16. Interstitial pressure distribution as a function of Lp, at 
z = 5 mm.   

Finally the IFP contribution in whole tumor, is 
shown in Figure 17. As it is mentioned, the IFP has 
maximum value in the necrotic core and by moving 
to the tumor peripheral space it decreases. 
Regardless of considering the Newtonian or NON-
Newtonian assumptions, the pressure variation 
behavior inside the tumor is the same, which means 
that the maximum pressure always exists at tumor 
center and pressure decreases by moving toward the 
peripherical space. It should be mentioned that the 
values of the pressure for Newtonian and NON- 
Newtonian assumptions are not the same and this 
issue is now under investigation by authors.     

Conclusion 

A numerical solution is considered to calculate 
interstitial pressure in a cylindrical tumor with two 
capillaries and necrotic region. The results show that 
main cause of insufficient delivery of drugs is high 

interstitial pressure in the necrotic core. The main 
assumption used to draw this conclusion is that, 
drug particles flow with the interstitial fluid. The 
distribution of interstitial fluid pressure and velocity 
and pressure and velocity of blood, have been 
calculated by finite difference numerical method to 
the governing equations. Comparison of these 
numerical solutions and previous studies evidences 
the acuuracy of results. 

Results show that the interstitial pressure has a 
maximum value at the center of the tumor and 
decreases towards the first capillary. This reduction 
continues in the region of between two capillaries 
and finally, interstitial pressure decreases toward the 
periphery of tumor. This study also shows that 
reduction in intercapillary distance may cause a 
decrease in the interstitial pressure and also changes 
in the necrotic radius can change the interstitial 
pressure. 

In this study, interstitial and blood flow velocity 
distribution are considered. The results reveal that 
in the necrotic region, interstitial fluid velocity is 
zero and increases gradually and after second 
capillary, the interstitial fluid velocity decreases. 
Blood pressure and velocity have a quasi-linear 
changes. 

 

 
Figure 17. Interstitial pressure distribution in whole tumor. 
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Appendix 1. Nomenclatures.  

k Hydraulic conductivity 
Pi Interstitial fluid pressure 
Rn Necrotic core radious 
φB Fluid source term 
φL Lymphatic drainage term 
Lp Hydraulic conductivity 
Pb Blood pressure 
σs Average osmotic reflection coefficient 
πb Osmotic pressure of the plasma 
πi Osmotic pressure of the interstitial fluid 
A Capillary radius 
μ Blood viscosity 
S Tumor surface 
V Tumor volume 
 

 

 


