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ABSTRACT. Given a directed graph G, a covering is a subset B of arcs which meets all 
directed cuts of G. Equivalently, the contraction of the elements of B makes G strongly 
connected. An O(n5) primal-dual algorithm is presented by Frank (1981) for finding a 
minimum covering of a directed graph. For a planar graph, the dual problem is to find a 
minimum set of arcs whose removal makes G acyclic. The dual problem may be solved 
with Frank's algorithm. Further, some improvements that may be used to make such 
algorithm faster in practical cases are prescuted. 

Key words: feedback arc set, kernel, covering directed cuts. 

RESUMO. Um algorítmo melhorado para encontrar FAS para grafos planares. 

Dado um grafo orientado G, uma cobertura é um subconjunto B de arestas que interceptam 
todos os cortes de G. De maneira equivalente, a contração das arestas de B tornam o grafo G 
fortemente conexo. Um algoritmo primal-dual de complexidade O(n5) é apresentado por 
Frank (1981), este algoritmo encontra uma cobertura mínima do grafo orientado. No caso 
de um grafo planar, o problema dual será encontrar um conjunto mínimo de arestas cuja 
remoção torna G acíclico. Neste trabalho será mostrado como utilizar o algoritmo de Frank 
para resolver o problema dual. Será também apresentado uma melhoria que torna o 
algoritmo de Frank mais eficiente em casos práticos. 

Palavras-chave: FAZ, núcleos, cortes de coberturas orientadas. 

History. A problem in the topology of directed 
graphs (digraphs) that has attracted some interest is 
the following: to determine, for an arbitrary digraph, 
a minimum set of arcs which, if removed, leaves the 
resultant digraph free of directed loops (dicircuits). 
The problem was originally suggested by Runyon1, 
who observed that the analysis of sequential 
switching circuits with feedback paths would be 
simplified by the knowledge of such a set. Increased 
interest in this problem was in a large measure due 
to Moore, who had encouraged attempts to find a 
solution. It was at first expected that a simple and 
efficient algorithm might be found, perhaps even an 
algorithm such that the number of operations 
required would increase linearly with the number of 
nodes in the graph. However, the problem turned 

                                                           
1  Seshu and Reed in the book of Ford and Fulkerson (1962) 

included this among a list of research problems given in the 
appendix. 

out to be more difficult and suggested algorithms 
fell far short of that goal. 

This problem lies within in a series of unsolved 
problems called NP-complete as proved by Karp 
(1972). Previous investigations into this problem have 
produced algorithms which, in general, yield a sub 
optimum solution (Younger, 1963; Diaz et al. 1972) or 
require severe restrictions on the source graph 
(Ramamoorthy, 1967), or are practical only for small 
graphs, as circuits (Lempel et al., 1966; Divieti and 
Granselli, 1968; Guardabassi, 1971). Finally it was 
solved for planar directed graphs (Lucchesi and 
Younger, 1967; Frank, 1981; Karzanov, 1979) and for 
reducible flow graphs (Ramachandran, 1988). Some 
heuristics were developed to find some sub optimum 
solutions (Eades et al. 1989, 1993, 1995). Another 
variant of the problem is the Feedback Vertex Set 
which has also several polynomially solvable cases 
including: the cyclically reducible graphs (Wang et al., 
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1987), a variant2 of Smith and Walford (1975), the 
chordal graphs (Corneil and Fonlupt, 1988; Yannakakis 
and Gavril 1987), the interval graphs (Marathe, Rangan 
and Ravi, 1992; Lu and Tang, 1997), the permutation 
graphs (Brandstädt and Kratsch, 1985; Brandstädt, 
1993; Liang 1994). For a survey on the Feedback Arc 
(Vertex) Set Problem the reader may refer to Festa, 
Pardalos and Resende (1999). We point out that the 
authors in this survey are not aware of the algorithm of 
Frank (1981) improved here. 

The problemThe problemThe problemThe problem    

The feedback arc set (FAS). Given a directed graph 
D=(V,E), find a minimum cardinality subset E’ ⊆ E 
such that E' contains at least one arc from every 
directed cycle in D. 

Finding a FAS for a planar praphFinding a FAS for a planar praphFinding a FAS for a planar praphFinding a FAS for a planar praph    

Basic definitions. 
Let G = (V,E) be a directed graph, or digraph, with 

the vertex set V and arc set E. The arcs are ordered 
pairs (u,v) where u is the tail and v is the head. 

A digraph is said to be planar if it can be drawn in 
a plane without crossings or overlappings. In other 
words the digraph admits a planar drawing. Note that 
a graph may admit several planar drawings. A face in 
a planar drawing is a continuous subset of the 
surface surrounded by a subset of arcs of G. 

A potential p is an integer value function on V. 
A path P is a subset {v1, (v1,v2),v2,...,vk-1,(vk-1,vk),vk} 

of G where vl ≠ vj if l>j and (vj,vj+1) belongs to E. 
A directed circuit, or dicircuit, is a path P from v1 to 

vk in G plus the arc (vk,v1) (note that the arc (vk,v1) 
must be in E). 

A set X is said to be a kernel if there is no arc 
leaving X. The non-empty set D(X) of arcs entering 
X is called directed cut, or dicut. It is very easy to show 
that a digraph G is not strongly connected if and 
only if there are no kernels in G but V. 

We say that a digraph D is a dual of a digraph G if 
(i) G admits a planar drawing such that each vertex 
of G is associated to a face in D and vice-versa. (ii) 
for each arc e in G there is an arc e’ in D such that e’ 
has its tail in the face (vertex of D) at right of e and 
head in the face at left of e. In our convention we 
assume that the associated set of arcs of a clockwise 
dicircuit C in the planar drawing of G is a dicut 
D(X) in D where X is the set of vertices associated 
with the inside faces of the region bounded by the 
dicircuit C. Exceptionally, an arc e of G may not 
separate two faces in the planar drawing, namely, 

                                                           
2  The exact algorithm is exponential, but polynomial in some 

cases. 

when e is the only incident arc with a set of vertices 
X. In this case the corresponding arc e’ in D forms a 
self-loop on the vertex associated with the outside 
face of the set X. Another problem exists when more 
than one arc connects the same pair of vertices. It is 
very easy to handle these problems by deleting the 
self-loops from D (these arcs will never be in a 
covering) and all multiple arcs connecting the same 
oriented pair of arcs (only one of these multiple arcs 
can be a minimum covering). 

It is an easy exercise to show that circuits in a 
planar drawing of a digraph are related to dicuts in 
the corresponding dual digraph. For more detailed 
description of dual graphs and its properties see 
Gibbons (1980). 

A kernel X is said to be strict with respect to a 
subset B ⊆ E if for each arc of B entering X there is 
one weak component in V\X, i.e. this arc leaves a 
component of V\X and enters X. This kernel is said 
to be 1-strict if it is strict with only one arc of B 
entering X. Let R(x) be the intersection of all strict 
kernels containing a fixed vertex x. In section on 
improvements it is shown how R(x) can be 
efficiently calculated. 

A covering is a subset B of arcs which meets all 
dicuts of G. We call the arc set B blue arcs and the 
arc set V\B white arcs. Obviously, B is a covering if 
and only if by contracting its elements G becomes 
strongly connected. 

If a digraph G is planar then we can find its 
minimum FAS by finding the associated arc set of a 
minimum covering for its dual. 

Let B be a minimum covering of a digraph D 
which is a dual digraph of a digraph G. Let F be the 
set of the arcs of G related to the arcs in B. The set 
of arcs F forms a minimum FAS in G. Therefore, 
the subgraph G\F is acyclic, conversely the 
contraction of the edges in B from D yields a planar 
digraph D’. It is an easy exercise to show that G\F is 
a dual digraph of D’. Thus, we will concentrate our 
attention on the dual problem which is to find a 
minimum cost covering for a digraph. 

In our work we depend heavily on the following 
characterization by Lucchesi and Younger as follows. 

Theorem 1. [Lucchesi-Younger (1978)]. The 
minimum cardinality of a covering is equal to the maximum 
number of (arc) disjoint dicuts. 

In other words, we only need find a covering B 
and a family K of kernels such that: 

- Every blue arc is in exactly one dicut D(X), X 
in K. 

- Every white arc is in at most one dicut D(X), 
X in K. 
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- There is exactly one blue arc entering X for 
each X in K. 

In the next section we will see how to produce 
the family K by potentials. 

Covering and potentials. 

A potential p is an integer value function on V. 
For each arc (x,y) of E let a differential be a 

function d(x,y)= 1-p(y)+p(x). It was shown by 
Frank in 1981 that the family K and the covering B 

can be easily produced if you find a covering B and a 
potential p for which the following optimality 
criteria hold: 

a) For every blue arc (x,y), d(x,y)≤0. 
b) For every white arc (x,y), d(x,y)≥0. 
c) For every y in R(x), p(y)≥p(x). 
The core of Frank's algorithm is the following. 

Frank’s algorithm. 

Input: A covering B, a potential p, and a blue arc 
(a,b) such that (b) and (c) of the optimality criteria 
hold but (a,b) violates (a). 
Output: A covering B' and a potential p' such that (b) 
and (c) of the optimality criteria hold again, (a,b) 
does not violate (a) and every arc which violates (a) 
with respect to B' and p' also violates (a) with respect 
to B and p. 

Given that such an algorithm is available and 
repeating it successively until there is no blue arc 
violating (a), at the beginning the covering B may be 
the arc set of a spanning tree and p≡0. Then after no 
more than |B|≤n-1 applications of this algorithm 
where n=|V|, we will get a covering B and a 
potential p which satisfy all three optimality criteria. 

Improving a covering-potential pair. 

To describe the core procedure properly, we 
define an auxiliary graph H=(V,A) as follows. Let A 
be the following three - not necessarily disjoint - 
parts AB, AW and AR. You may note that H depends 
on G, B and p, and H may contain multiple arcs. 
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We will try to find a ba-path from b to a in H for 

an arc (a,b) which does not satisfy (a) of the 
optimality criteria. We have two cases. 

Case 1. Improving the potential. There is no path 
from b to a in H. 

In this case let T be the vertex set {x:x can be 

reached from b in H}. If a is not in T (there is not 
such path change p as follows. 
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From the definition of δ we have for the new 

d'(x,y)= 1-p'(y)+p'(x) that: 
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We have now that after at most n-1 iterations, 

either δ=δε or a ∈ T is achieved (case 2). If we need 
such iterations, we observe that the definition of δ 
assures that H' contains at least one arc leaving T 
(which is in AB, AW or AR according as δ is equal to 
δB, δW or δR. Consequently the set T' of vertices 
which can be reached by a directed path from b in H' 
properly includes T. (Note that, in this case, the new 
auxiliary graph arises simply from the old one by 
joining some new arcs leaving T and deleting some 
old ones entering T.) 

Case 2. Improving the covering. There is a path 
from b to a in H. 

Let F*={(xy):(yx) ∈ F}. 
In this case let U be the shortest path from a to b 

in H. Since (a,b) ∈ AB, U and (a,b) form a directed 
circuit C in H. Let CB and CW be the set of blue and 
white arcs of C respectively. Let B'=B\CB∪CW*. 
Now this change was between a set of vertices 
which satisfy the optimality criteria. 

A complete proof of correctness of the above 
algorithm may be found in Frank (1981). 

ComplexityComplexityComplexityComplexity    

Let n and m be |V| and |E| respectively. 
Let B be the covering {ei=(xi,yi):i=1,2,...,l }. Let 

Gi denote the graph obtained by adding to G a set 
(B\ei)* of new arcs (i. e. the new arcs are the reversed 
elements of (B\ei)). Let Ri(x)={y: y can be reached 
from x in Gi}. Therefore, using the well-known 
labeling technique (Ford and Fulkerson, 1962), Ri(x) 
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can be produced in at most O(n) steps (since Gi is 
planar). 

Let )()( ,...,2,1 xRxR ili== I . 

By the last paragraph we see that we can 
construct R(x) in O(n2) steps for fixed x. So 
determining all R(x)'s requires at most O(n3) steps. 
Therefore, this part has complexity O(n3). 

The other part of the algorithm finds a path from 
b to a in H. To this end we may apply again the 
labeling technique. In case 1 the set T is just the set 
of vertices having received a label during the labeling 
algorithm. In case 2 the path U produced by the 
labeling algorithm is automatically free of red arcs 
which does not increase the number of steps. 

The labeling algorithm uses at most O(n) steps 
for a planar graph. Moreover, if δ>δe occurs in the 
course of the algorithm and we apply it again with 
the modified potential, then the labels calculated 
previously may be used (T⊆T', you may note that, in 
this case  the new auxiliary graph arises simply from 
the old one by joining some new arcs leaving T and 
deleting some old ones entering T). 

Therefore, the core of the algorithm needs at 
most O(n3) steps. Since it is applied at most (n-1) 
times, the complexity of the whole algorithm 
developed here is O(n4). 

ImprovementsImprovementsImprovementsImprovements    

To improve the time complexity of this 
algorithm we took three actions: 

1. Find R(b) for a vertex b of one arc (a,b) in B 
which does not satisfy our optimality criteria. 
We call the arc (a,b) good blue arc or bad blue arc 
f a ∈ R(b) or a ∉ R(b) respectively. 

2. Change the color of all good blue arcs to white. 
3. Run the algorithm for all bad blue arcs. 
The proof of correctness of this improved 

algorithm follows from the fact that Frank's 
algorithm works regardless the input order of the 
violating arcs. Therefore, without loss of generality, 
we should input such arcs in a specified order (good 
blue arcs first). The step 2 follows from the fact that 
the shortest path from b to a in the auxiliary graph is 
just the red arc (b,a) and the removing of a good 
blue arc does not change the potential, 
consequently, any other good blue arc is still 
violating our optimalty criteria. 

We ran both algorithms in Turbo Pascal 5.5 on a 
386 SX (slow) machine obtaining the results shown 
in figures 1 and 2. It is clear that our algorithm is 
faster than Frank's algorithm and it suggests that 
ours is running in time O(n3) rather than O(n4). 

Although our improvements in this algorithm 

seems to be only better by constant factor, in 
practical cases it showed to be better by a linear 
factor. 

 

Figure 1. The performance of both algorithms 

|B| |V| |E| 
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||
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a1 a2 ||

||

1

2

a

a  

2 9 18 2.00 0.71 0.93 1.3 

5 18 42 2.33 1.65 7.36 4.5 

8 27 66 2.44 3.90 32.52 8.3 

11 36 90 2.50 9.88 97.38 9.9 

14 45 114 2.53 14.83 234.37 15.8 

17 54 138 2.55 30.34 481.69 15.9 

20 63 162 2.57 48.44 893.39 18.4 

23 72 186 2.58 71.08 1522.53 21.4 

26 81 210 2.59 100.57 2444.07 24.3 

29 90 234 2.60 167.09 3716.59 22.24 

32 99 258 2.60 182.35 5458.23 29.93 

Figure 2. a1=improved Frank’s algorithm, a2=Frank’s algorithm, 
time in seconds. 

The improved algorithmThe improved algorithmThe improved algorithmThe improved algorithm    

Step 0 

0.1  (Start) The covering B is the arc set of a 
spanning tree and p ≡ 0. 

0.2  Determine R(b) for all blue arc (a,b) 
which does not satisfy (a) of the 
optimality criteria. 

0.3  Change the color of each good blue arc 
to white. 

Step 1 

1.1  Determine R(x) for all x ∈ V. 
1.2.  If every blue arc satisfies (a) of the 

optimality criteria: Halt. The current 
covering B is optimal. 

1.3  Select a blue arc e=(a,b) violating (a) of 
the optimality criteria. 

1.4  Construct the auxiliary graph H and try 
to find a path from b to a in H by the 
labeling technique Ford and Fulkerson 
(1962). In the new auxiliary graph H' 
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the arc set spanned by T is the same as 
in H. Moreover, the definition of δ 
assures that H' contains at least one arc 
leaving T (which is in AB, AW or AR) 
according as δ is equal to δB, δW or δR). 
Consequently the set T' of vertices 
which can be reached by a directed path 
from b in H' properly includes T. (Note 
that, in this case the new auxiliary graph 
arises simply from the old one by 
joining some new arcs leaving T and 
deleting some old ones entering T. 
Thus, if δ<δe occurs (it went in this 
step from 2.2) we may use the labels 
calculated but not yet removed 
previously. If this path U exists then go 
to step 3. 

Step 2  (potential change). Let T be the set of 
labeled vertices. Calculate δ and let 
p(x):=p(x)+δ for x ∈ T. 
2.1 If δ=δe remove all labels and go to 1.2 
2.2 Go to 1.4. 

Step 3  (covering change) Let C be U+e, CB and 
CW be the set of blue and white arcs of C, 
respectively, and B: be B\CB∪CW*. Return 
to 1.1. 
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