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ABSTRACT. Numerical simulation of solute (sodium chloride) transfer process during 
salting through a three-dimensional matrix (cheese) was studied applying the finite element 
method. It was verified that both mesh refinement level and time step length were relevant 
to control oscillatory behaviors even when unconditional stability schemes as Crank-
Nicolson and modified Euler were used. A discussion of the combined influence of time 
and space adaptation in the context of diffusion problem is also presented, taking in 
consideration a lumped capacity matrix to overcome the difficulties and determine the 
minimum length of the time step. Differential mathematical modeling had as theoretical 
basis the Fick’s second law. The proposed model brought good estimation of salt gain in the 
soft cheese studied. Choosing the appropriate mesh and a convenient time step length we 
suggest Crank-Nicolson scheme for the simulation of diffusion during cheese brining. 

Key words: simulation, finite element, oscillatory behavior, cheese salting. 

RESUMO. Análise da difusão durante a salga de queijos por elementos finitos: 

influência combinada da discretização tempo-espacial. A simulação numérica da 
difusão do cloreto de sódio durante o processo de salga através de uma matriz 
tridimensional (queijo) foi estudada aplicando o método de elementos finitos. Foi 
verificado que o nível do refinamento da malha e o comprimento do passo de avanço no 
tempo são relevantes no controle do comportamento oscilatório mesmo quando se usa 
esquemas estáveis como os de Crank-Nicolson e de Euler-modificado. A influência 
combinada da adaptação tempo-espaço, no contexto da difusão, foi apresentada tomando-se 
em consideração a matriz de massa concentrada para reduzir as dificuldades na 
determinação do menor comprimento do passo de avanço no tempo. O modelo matemático 
diferencial teve como base teórica a segunda lei de Fick. O modelo proposto permitiu uma 
boa estimativa do ganho de sal no queijo estudado. Com a adequação da malha e da escolha 
conveniente do comprimento do passo de avanço no tempo pode-se recomendar a escolha 
do esquema de Crank-Nicolson na simulação da salga de queijos.  

Palavras-chave: simulação, elementos finitos, comportamento oscilatório, salga de queijos. 

The finite element method (FEM) is a numerical 
approach for solving initial and boundary value 
problems in engineering and mathematical physics 
(Chung, 1978). In this method, a continuum is 
partitioned into many small elements of convenient 
shapes that are associated to a finite set of nodal 
points. Interpolation functions describe the behavior 
of dependent variables, and sometimes they are 
applied to the independent variables too (Brebbia 
and Ferrante, 1975; Chung, 1978). 

Using a variational formulation or a weight 

residual procedure, a partial differential equation is 
turned into an integral equation, that is changed into 
a system of ordinary differential equations (when the 
problem is time dependent) or into algebraic 
equations, when the problem is not time dependent 
(Chung, 1978). The discrete system is formed 
having element by element through a superposition 
technique. Before solving it, boundary conditions 
are introduced. When the problem in analysis is 
time-dependence, it leads to a system of ordinary 
differential equations that may be solved by implicit 
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or explicit finite difference schemes (Chung, 1978, 
Bickford, 1990). The finite element method is a 
general method with respect to the geometry and 
material properties. More complex and irregular 
bodies composed by distinct materials may be 
considered, because of the flexibility to interpolate 
the geometry and the model parameters (Wilson and 
Nickel, 1966; Chung, 1978). 

One of the most important mass transfer 
problems under isothermal conditions, is the cheese 
brining process. The saline concentration and its 
distribution over the cheese mass are relevant 
parameters, responsible for quality and acceptance of 
the product (Furtado and Souza; 1981; Furtado, 
1990). 

Geurts et al. (1974, 1980) studied the Gouda 
cheese salt diffusion, during brining, considering it 
as a semi-infinite medium, assessing the diffusion 
coefficient. Guinee and Fox (1983) carried out a 
similar study, on the Romano cheese during salting 
with NaCl. Luna and Bressan (1986) investigated 
the sodium chloride diffusion in the Cuartirolo 
Argentine cheese, considering it as a finite slab, 
during brining. The same authors used the sodium 
chloride diffusion coefficient proposed by Geurts et 
al. (1974). Zorrilha and Rubiolo (1994) studied 
brining of the Fynbo cheese (semi-hard), modeling 
the NaCl and KCl movement, assuming Fick 
generalized equation. 

Analytic solutions tend to be rather complicated 
to obtain, when we analyse realistic situations. In this 
case, numerical methods are valid alternatives 
(Chung, 1978).  

This research paper concerns the influence of 
time step and mesh refinement to simulate sodium 
chloride diffusion, during the cheese brining by the 
finite element method. The results are compared 
with Luna and Bressan’s (1986).  

MethodologyMethodologyMethodologyMethodology    

For the mathematical modeling it was used Fick’s 
second law of diffusion that is valid for studying the 
salt distribution over the cheese (Luna and Bressan, 
1986; Zorrilha and Rubiolo, 1991; 1994). Brining is 
a three-dimensional diffusion process in a transient 
state with steady boundary (Guinee and Fox, 1987). 
Cheese is considered as a homogeneous, rigid and 
finite solid, assuming no chemical reaction and 
negligible convective flux. The process is done 
under approximately isothermal conditions (Guinee 
and Fox, 1987). It was suppose, too, that all the 
cheese faces were immersed in brine, without 
resistance between the brine liquid film and the 
cheese solid surface. Thus, the salt concentration on 

the surface would be equal to the salt concentration 
in the brine (Luna and Bressan, 1986).  

Let a cheese occupy a volume Ω ⊂ R3 defined by 

Ω  ≡ [-R1, R1 ]x[-R2, R2 ]x[-R3, R3 ], 

related with an x,y,z Cartesian coordinate system 
with origin located in the cheese geometric center.  

The concentration of NaCl, at a point P(x,y,z) ∈ 
Ω, in an instant t, C (x,y,z,t), is described by the 
partial differential equation (Crank, 1975) 

 ), (0, x at     ,CD
t

C 2* ∞Ω∇=
∂
∂

   (1) 

where D* is the effective diffusion coefficient, 
subsidized by the boundary condition that the solute 
concentration on cheese surface is equal to the 
concentration in the brine, 

C (x,y,z,t) = Cs , at (x,y,z,) ∈ ∂Ω, t > 0,   (2) 

where Cs, is the known concentration in the brine 
(NaCl), considered constant, and by the initial 
condition, 

C (x,y,z,0) = C0, (x,y,z) ∈ Ω,    (3) 

where C0 is the NaCl known initial concentration in 
the cheese. 

The variational formulation (Galerkin’s method) 
of the partial differential problem, described by the 
equations (1), (2) and (3), can be formally obtained 
as follows: 

i) the equation (1) is multiplied by a function v ∈ H, 
where H is a space of admissible functions, later on 

characterized, and both sides are integrated on the Ω 
domain, to have  

Ω∇∫=Ω∫ ∂
∂

ΩΩ
CdvDd

t

C
v 2* ;   (4) 

(ii) following, the right side of (4) is integrated by 
parts to obtain 

  (5)
 

where ∂/∂n, is the normal derivative operator; 
ds, is the measure of integration on the boundary; 

dΩ, is the measure of integration on the domain. 
Since the boundary condition (2) is Dirichlet type 

(Chung, 1978), to assure the existence and unicity of 
the variational problem it is necessary that v satisfies 

Ω∂= at   ,0v .       (6) 

Take the space of admissible functions, H, as 

being H = {v ∈ H1 (Ω) ; v = 0 at ∂Ω }, where H1 is 
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a Hilbert space of order one defined on Ω. 
So, the equation (5) becomes 

  (7)

 

Substituting (7) in (4) follows: 

∫ ∫ ∈∀Ω∇∇−=Ω
∂
∂

Ω Ω
H  v     ,Cd.vDd

t

C
v * . (8) 

The equation (8) serves as a basis to establish the 
finite element method. 

Therefore, it is considered a partition of Ω  in 

Ne subdomains Ωe , eNe1 ≤≤  , called finite 

elements, so that: 

Ω=Ω=

iN
1i
e

U ,       (9) 

Ωi I Ωj = φ , ∀ i ≠ j , 1 ≤i , j ≤ Ne .  

The concentration in each element, Ce (x,y,z,t), 
is approximated by means of the following 
expression: 

∑ φ=
=

n

1k

e
k

e )z,y,x()t(C)t,z,y,x(C ,  (10) 

where n, is the number of nodal points of the Ωe 
element; 

Ce
k (t), is the concentration at k-esimal node in 

the element e, at time t 

)z,y,x(e
kφ , is the interpolation function 

associated to the k node of the element.  

Taking, v = φi and substituting (10) in (8), it 
gives 

 (11)
 

where 1≤ i ≤ n.  
The sum sign in (11), must be understood as an 

assembling process over all elements. Thus, (11) can 
be rewritten in matrix form as 

    
(12)

 

where K e
, is the diffusivity matrix, whose 

elements are calculated by 

 (13)
 

M e is the distributed mass matrix whose 

elements are calculate by 

  (14)

 

e

C  = [ c1, c2, ............., cn ]
T, is the unknown vector 

concentration of the e element; 
•

Ce
 = [ c

   1

.

, c
   2

.

,..........., c
   n

.

 ]T , is the unknown 

derivative vector concentration, with respect to time. 
Before solving the set of ordinary differential 

equations (12) it is necessary to insert the boundary 
conditions. 

The Crank-Nicolson and the modified Euler 
methods were used to discretize on time (Cook, 
1981; Edakin, 1986; Bickford, 1990). These two 
schemes are unconditionally stable. In spite of this, 
they may show undesirable oscillatory behavior if 
the time step was not suitably chosen (Zienkiewicz 
and Morgan, 1983; Lyra, 1993). The oscillatory 
limit, for one-dimensional problem, may be 
expressed as (Zienkiewicz and Morgan, 1983)  

)1(D4

h
t

*

2

osc

θ−
<∆ ,     (15) 

where h, is the smallest dimension over all mesh 
elements (cm); 

D*, is the diffusion coefficient (cm2/hour), that 

substitutes the thermal diffusivity (α) in the original 
expression, maintaining the dimensionality; 

θ is equal ½ for the Crank-Nicolson method and 
θ is equal 1 for the modified Euler method. 

The spatial domain was represented by a set of 
serendipity hexahedral elements of C0 type. Each 
element has 20 nodes at the edges and vertices of its 
outer surface, and an overall of 20 degrees of 
freedom (Brebbia and Ferrante, 1975). 

Sodium chloride diffusion during salting of the 
Cuartirolo cheese (Luna and Bressan, 1986) was 
simulated using a mesh configuration described in 
Silva et al., (1998). 

Mean concentrations (g NaCl/100 g of dry basis 
cheese) were obtained through the average of the 
first five elements disposed along 1,5 cm of the x-
axis. They were compared with the data obtained by 
Luna and Bressan (1986). In each element the mean 
concentration was calculated as follows: 

dVC
V

1
)t(C

e

)z,y,x(
e

e

∫=
Ω

.    (16) 

For comparisons, the per cent deviation 
values were adopted as in Heldman, ( 1974). The 
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program used was the “SIMUL” developed in 
vectorial FORTRAN for the IBM 3090 computer 
(Silva et al., 1998). 

Results and discussionsResults and discussionsResults and discussionsResults and discussions    

Sodium chloride diffusion, in brining Cuartirolo 
Argentine cheese process, was simulated by using 
the mesh described in Silva, et al., (1998). The 
effective diffusion coefficient used was D* = 0,31 
cm2/day, obtained through the nomogram proposed 
by Geurts et al. (1974), taking 52% for the moisture 
content and 51,6 % (dry basis) for fat level as in Luna 
and Bressan (1986). The brine was maintained at the 
constant temperature of 7,5o C, during seven hours 
of brining and the sodium chloride concentration 
was Cs=20,5ºBe.(Luna and Bressan, 1986). 

The numerical solution by finite element 
method of parabolic problems, as the diffusion 
equation has high oscillatory components in the 
beginning of the evolution situation that they decay 
rapidly. Therefore, to attain computational efficiency 
and accuracy, in this class of problems, it is needed 
to combine spatial mesh refinement and time step 
length control (Lyra, 1993). 

When the boundary is steady and the diffusion 
coefficient (D* NaCl = 0,31 cm

2/day) is relatively 
small (Loncin and Merson, 1979), the characteristic 
spectra of the concentration frequencies may be 
wide (Lyra, 1993). In brining process, the brine 
concentration is high when compared to the NaCl 
initial concentration in the cheese (Geurts et al., 
1974; Guinee and Fox, 1987). In these conditions, 
the high frequencies rule the initial stage of the 
transient response. The usage of unconditionally 
stable finite difference schemes, may present 
oscillatory behavior, if it was not imposed 
restrictions in the time step length (Lyra, 1993). In 
the lack of information of three-dimensional 

problems, the oscillatory limit (∆tosc) can be 
expressed by the equation (15) that serves to the 
one-dimensional case of heat conduction 
(Zienkiewicz and Morgan, 1983). Taking hmin=0,3 
cm and D* = (0,0129) cm2 /hour, the Crank-

Nicolson scheme needs ∆tosc < 3,48 hours and the 
modified Euler method, ∆tosc < ∞ . 

When Crank-Nicolson scheme imposes a 

maximum ∆t of 3,5 hours, corresponding at about 
50 % of the real time of brining, it was chosen to 

work with 0,1 hour ≤ ∆t ≤ 1hour. This permits 
comparisons between the analytical and the 
experimental data obtained by (Luna and Bressan, 
1986) and the results here obtained by FEM. Shorter 
steps are convenient to account the stability and 
convergence. In practice, computational efficiency 

(the machine’s time costs) and reliable responses 
must be taken into account (Lyra, 1993). A too 
refined mesh and a higher number of short time 
steps are options to produce oscillation damping, and 
lead the numerical method to convergence. 
However, it may be expected as a consequence, an 
undesirable increasing of the computational time 
(Lyra, 1993). 

The Figures 1a and 1b show the high difference 
between the sodium chloride concentration in the 
brine (Cs) and the NaCl initial concentration in the 
cheese (C0). They also showed oscillations on the 
first stages and their damping as the cycle numbers 

with ∆t = 0,1 hour increase. The stability is reached, 
in Crank-Nicolson´s algorithm as well as in the 
Modified Euler in the three-dimensional problem, 
after the first ten cycles, in the first hour of the 

brining process. Then a time step, ∆t=1 hour, may 
be recommended under the conditions stated in this 
problem. 

Figure 1a - Crank-Nicolson
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Figure 1b -modified Euler

-5

0

5

10

15

20

25

0
0.

3
0.

5
0.

9
1.

2
1.

5

X-axis, cm

C
on

c.
 g

 o
f 

N
aC

l/1
00

 g
 d

ry
 

ba
si

s.

0,1 h
0,5 h

1,0 h

 
Figure 1. NaCl concentration profiles along x-axis during 

diffusion simulation in Cuartirolo Argentine brining with ∆t = 
0,1h and hmin = 0,3 cm for 0,1; 0,5 and 1,0h brining times 

Figure 2b - modified Euler
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Figure 2a -Crank-Nicolson
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Figure 2. NaCl concentration profile along x-axis during 

diffusion simulation in Cuartirolo Argentine brining with ∆t = 
1,0h and hmin = 1,0 cm 

Figures 2a and 2b show the saline concentration 
profile, in another space and time arrangement. In 
this simulation the elements used were with 

minimum dimension h= 1,0 cm and ∆t= 1,0 hour 
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for the brining times of 1,0; 2,0; 3,0; 5,0; 6,0 and 7,0 
hours. 

Figures 2a and 2b show the oscillation and the 
damping that appear when the element dimension is 

raised from 0,3 to 1,0 cm with ∆t = 1,0 hour. The 
oscillation occurs until the first hour of brining, and 
the deviation in percentage is too large as proved in 
Table 1. The step length proposed by Murti et al. 
(1989),  

αθ
γ≥∆
3

h
t

2

min        (17) 

is recommended for non-steady two-dimensional 

heat conduction problem. In the equation 17, γ is a 
correction factor (γ=2,0, is recommended to 
isoparametric elements in irregular mesh.). 

However, a simple substitution of α for D* 
keeping the dimensionality and supposing analogy 
among phenomena, produces unexpectable and 
overestimated results. This fact can be explained in 
part because normally, in solid foods (Loncin and 

Merson, 1979), the thermal diffusivity (α) is 
)10( 2Ο  of magnitude that is a factor of 103 times 

greater than the mass diffusion coefficient (D). The 

difficulties in finding a ∆tmin to have a better 
precision can be overcome by the employment of 
“lumped capacity matrix” (Lyra, 1993). In this case, 

no limit on the minimum length of the ∆t is 
imposed. Only accuracy or physical reasons will 
determine the time step length (Lyra, 1993). 
Therefore, it is suggested some procedures for 
making a decision: 

1.  establish a mesh refinement with hmin (0,3 
cm) so that the computational load is 
viable; 

2. choose ∆t on basis of the process just 
described. Cuartirolo cheese brining is not 

long (Luna and Bressan, 1986), therefore ∆t 
= 1 hour seems to be an initial reasonable 
choice. The experimental planning may be 

also a good indication. Finally, the ∆t choice 
would be a compromise between 
computational time and reliable responses. 

However, Lyra (1993) supports that the modified 
Euler scheme reduces substantially the oscillations 
that rule the transient responses in heat conduction 
problems. This fact was not observed in the 
diffusion simulation during Cuartirolo cheese 
brining, when it was examined by the two numerical 
schemes. In other words, it was verified the presence 
of small oscillations on the first stages (until 0,45 cm 
from cheese surface) regardless the employed 
scheme, when it was used 1,0t =∆  hour as time 

step length (Figures 1a and 1b). 
This observation added to the unsuccessful 

application of the equation 17, leads to an 
examination of these issues in the numerical analysis 
context. But this subject is beyond the scope of this 
paper. 

Figure 3a -Crank-Nicolson
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Figure 3b - modified Euler
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Figure 3. NaCl concentration profile along x-axis during 
diffusion simulation in Cuartirolo Argentine cheese brining with 

∆t=1,0 hour and hmin = 0,3 cm 

Figures 3a and 3b show the salt concentration 
profile, at distinct brining times, obtained by FEM, 
employing Crank-Nicolson (Figure 3a) and 
modified Euler (Figure 3b) schemes.  

It is observed oscillations only in the first hour of 
brining process when the Crank-Nicolson scheme 
was used (Figure 3a). But these oscillations were not 
observed with the modified Euler method (Figure 
3b). This indicates that with a suitable choice of the 
time step length and the employment of the 
modified Euler method the oscillations can be 
reduced (Lyra, 1993). 

Table 1. Mean concentration, along 1,5 cm x-axis, in g NaCl/100 g of dry basis cheese and deviation in the diffusion simulation during 
brining with elements of dimension hmin = 1,0 cm 

Duration of brining in hours  1,0 3,0 5,0 6,0 7,0 Deviation (%) * 

∆t  Computational time  Method  g NaCl / 100 g of dry basis cheese. E.V A.V. 

    Analytical **  
Experimental **  

2,30  
 2,23 

3,67  
 3,66 

4,61  
 4,48 

5,01  
 4,96 

5,37  
5,33 

 
 

 
 

1,0 h   14 minutes  Crank-Nicolson 
Modified Euler 

3,80 
 3,72 

4,40 
 4,35 

5,16 
 5,10 

5,42 
 5,38 

5,72 
5,70 

37,87 
35,81 

35,00  
33,02 

E.V. = experimental value. A.V. = analytic value. ∆t = time step size; *Heldman (1974). **Luna and Bressan (1986) 
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Table 2. Mean concentration, along 1,5 cm x-axis, in g NaCl/100 g of dry basis cheese and deviation in the diffusion simulation during 
brining with elements of less dimension hmin=0,3 cm 

Duration of brining in hours 1,0 3,0 5,0 6,0 7,0 Deviation (%)* 

∆t  Computational time Method g NaCl/100 g of dry basis cheese E.V. A.V. 

   Analytical**  
Experimental** 

2,30 
2,23 

3,67 
3,66 

4,61 
4,48 

5,01 
4,96 

5,37 
5,33 

  

1,0h 14 minutes Crank-Nicolson**  

Modified Euler** 
2,20 
1,86 

3,61 
3,43 

4,59 
4,47 

5,01 
4,89 

5,38 
5,28 

1,70 
 8,91 

2,33 
 10,33 

E.V. = experimental value. A.V.= analytic value. ∆t = time step size; *Heldman (1974). **Luna and Bressan (1986) 

Comparing Figures 1a and 3a (obtained with 

distinct time steps, ∆t) it was verified that as ∆t 
increases the amplitudes of the oscillations they 
increase too. This undesirable effect was not 
propagated along brining process and it did not 
damage the performance of Crank-Nicolson method 
because after the first hour of brining process the 
oscillation was not observed anymore (Figure 3a). 

The analysis of the results, in Table 2, gives 
evidence of the precision of Crank-Nicolson 
method, because the numerical results are similar to 
the analytical and experimental ones. The values 
obtained by the Crank-Nicolson method, have mean 
deviation with less than 5 % (Heldman, 1974). 

Regardless the results about the first brining 

hour, the mean deviation with ∆t= 1,0h, for the 
modified Euler algorithm, reduces from 8,91% to 
3,76% (numerical versus experimental method) and 
from 10,33% to 4,49% (numerical versus analytical). 
This is due to the oscillation on the first stages of the 
numerical solution. 

Mathematical modeling of the diffusion process, 
during cheese salting by means of the finite element 
method, allowed a good estimate of the cheese salt 
gain. To reduce the oscillation in the numerical 
results provided by FEM schemes, appropriated time 
step length, and mesh refinement were 
unconditionally used in the process. The 
computational approach developed here could be 
applied to diffusion simulation of other food 
products (solids), under similar process conditions. 
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