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ABSTRACT. Relying on the Constructal Design method, this paper introduces new periodic models for 
the thermal potential of Earth-Air Heat Exchangers (Eahe). As a case study, it analyses the best spacing for 
three ducts arranged triangularly in order to maximize the heat transfer between soil and air. More 
specifically, the ratio ݏ between the horizontal and vertical spaces among the ducts is set free to vary up to 
limiting global constraints. This paper aims to better understand how the variations in ݏ affect the thermal 
performance of Eahe. As an additional contribution, some relationships between ݏ  and the thermal 
potential of Eahe are mathematically and continuously stated. This allows establishing additional results for 
the efficiency and energetic performance of Eahe, as well as recommend arrangements in the shape of 
isosceles triangles with base and height unitary.  
Keywords: constructal design, Eahe, energy performance, numerical simulation. 

Determinando novos modelos constructais para o potencial térmico de trocadores de 
calor solo-ar 

RESUMO. Baseando-se no método Constructal Design, este artigo introduz novos modelos periódicos para 
o potencial térmico de trocadores de calor solo-ar (TCSA). Como estudo de caso, analisa-se o melhor 
espaçamento para três dutos visando maximizar a transferência de calor entre o solo e o ar. Mais 
especificamente, a razão ݏ entre os espaçamentos horizontais e verticais dos dutos é deixada livre para variar 
até atingir restrições globais limitantes. O objetivo deste trabalho é melhorar a compreensão de como as 
variações de ݏ  afetam o desempenho térmico de TCSA. A contribuição nova é o estabelecimento de 
modelos matemáticos contínuos para as relações entre ݏ e o potencial térmico de TCSA. Isto permite obter 
resultados e conclusões adicionais quanto à eficiência e ao desempenho energético de TCSA, bem como 
recomendar a adoção de dutos arranjados na forma de triângulos isósceles com base e altura unitárias. 
Palavras-chave: teoria constructal, TCSA, performance energética, simulação numérica. 

Introduction 

From the Constructal Law (Bejan & Zane, 
2012), the geometrical configuration of a finite-size 
flow system must evolve to ease the access of the 
currents that flow through it, otherwise, it will not 
persist in time. Following this principle, the design 
in engineering has to begin discovering the flow 
architecture that facilitates flow access between a 
point source and a volume, and vice versa. 
Observing the evolutionary designs which improve 
flow access in nature, they have turned to be 
dendritic. Bearing in mind that this is not result of 
chance, the so-called Constructal Design has been 
used to discover the best geometrical shapes for 
different applications in heat transfer (Biserni, 

Rocha, Stanescu, & Lorenzini, 2007; Lorenzini  
et al., 2013), fluid mechanics (Reis, 2006; Cetkin, 
Lorente, & Bejan, 2010) and convection heat 
transfer (Rocha, Lorente, & Bejan, 2009; Kim, 
Lorente, & Bejan, 2010), just to mention a few. 

Therefore, the Constructal Design can be very 
useful to help finding the optimal geometry 
arrangements which enhance the energy 
performance of Earth-Air Heat Exchangers (Eahe). 
Eahe are sets of fans and buried ducts that take 
advantage of the thermal inertia of the superficial 
layers of soil, since it presents lower temperatures 
than the external air during summer and vice versa 
in the winter. Hence, the fans blow the air inside the 
ducts (from the constructal point of view: the ‘point 
source’), where it exchanges heat with the 
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surrounding soil (the ‘volume source’), and comes 
out inside a building or house at a milder 
temperature, thus saving electrical energy for air 
conditioning (Brum, Rocha, Vaz, Santos, & Isoldi, 
2012; Vaz, Sattler, Brum, Santos, & Isoldi, 2014). 
That said, an important question to design better 
Eahe is posed in the Figure 1. How one should 
arrange the ducts to improve the Eahe performance? 
So far, related questions have been pursued in 
several works, e. g. (Rocha, Lorent, Bejan, & 
Anderson, 2012; Rodrigues et al., 2015).  

 

 
Figure 1. Design question for Eahe.  

This paper addresses some of these questions 
through the case study of Eahe composed by three 
ducts and using the method of constructal design, 
which consists of morphing freely the flow 
configuration towards the direction of the main 
currents that flow through it subjected to constraints 
(volumes). Here, the current is heat, and it flows 
between the ducts and the ground. As in (Rodrigues 
et al., 2015), the ducts assembly is assumed to 
occupy a constant volume VEAHE whose center is 
buried at a depth Dave inside a portion of soil with 
constant volume Vs. It is assumed that the Eahe 
volume takes the shape of a triangular prism while 
the soil is a parallelepiped. Two spacings among the 
ducts are considered: a horizontal Sh and a vertical 
one Sv, which are free to vary under constraints, 
such as a fixed volume fraction ߰, which is the ratio 
between VEAHE and Vs. Then, the general objective is 
to understand how the heat exchange varies (or is 
maximized) as the structure evolves assuming 
different values for the ratio s = Sh/Sv. 

As it is shown ahead, from the values of the 
temperature fields on the ducts inlets and outlets, 
averages of their differences, called thermal 
potentials of Eahe are computed. This work presents 
new models for the thermal potentials in function of 
the ratio ݏ . Among other results, this allows to 
establish important findings, from the constructal 
point of view, such as the best shape for the ducts 
assembly. 

Material and methods 

This study assesses the performance of many 
different geometrical arranges of three ducts buried 

in a three-dimensional portion of soil with height  
Hs = 15 m, width Ws = 10 m and length Ls = 26 m, 
as illustrated by Figure 2a. Each duct is a right 
circular cylinder with length l = 26, and diameter  
d = 0.127 m. Furthermore, their centers are placed 
at the corners of an isosceles triangle around a fixed 
center point (ݔ௖, (௖ݖ	 = (ௐೞଶ , (௔௩௘ܦ	 , as in the  
Figure 2b. Here, Dave = 3 m which is the depth 
recommended by previous researches (Brum  
et al., 2012) for Eahe with only one duct, 
considering experimental data obtained in the 
Brazilian city of Viamão (Vaz et al., 2014). From 
Figure 2b, one also notices that (xc, zc) is the center 
of a rectangle whose base and height measure, 
respectively, Sh and Sv. These numbers represent the 
horizontal and vertical spacings among the ducts. 

 

 
Figure 2. (a) Soil and ducts three-dimensional view; and  
(b) Cross section view. 

Basically, one objective here is to understand 
how the differences between the air temperatures on 
the outlet and inlet sides of the ducts are maximized 
as the triangular shape of the arrangements vary. 

How to arrange
the ducts?
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More specifically, the degree of freedom is the ratio 
between Sh and Sv, subject to fixed constraints: the 
volume occupied by the Eahe VEAHE and the volume 
of the soil considered Vs. The VEAHE constraint can 
be replaced by the volume fraction ߰, i.e., the ratio 
between VEAHE and Vs. Three-dimensionally 
speaking, the Eahe is assumed to be a triangular 
prism and the soil a parallelepiped, then ߰ is defined 
by Equation 1: 

 

߰ = ாܸ஺ுாௌܸ = ܵ௛ܵ௩2 ௦ܮ௦ܪ௦௦ܹܮ = ܵ௛ܵ௩2 ௦ܹܪ௦	 (1)

 
Since the ducts cannot intersect and they have to 

be inside the soil, it should be imposed further 
constraints, which are: Sh > d, Sv > d, Sh < Ws – 2 d, 
Sv < 2 Dave - 0.5. As it has been done in related 
studies (Rodrigues et al., 2015), this research 
considered many different ratios Sh/Sv for three 
different volume fractions, whose values are 
properly summarized in the next section. 

To simulate numerically the temperature fields, 
the computational domain was constructed and 
discretized using the Gambit software. The solution 
of governing equations and post-processing were 
done with the Fluent software which employs the 
finite volume method. All cases employed 
tetrahedral cells whose quantity varied around 33000 
and 720000 for the ducts and the soil regions, 
respectively. The mesh was more refined in the 
ducts to improve precision. In the soil, the cells 
could have a maximal interval size of 10d/3. These 
numbers came from mesh independence tests 
performed in previous research (Rodrigues  
et al., 2015). To avoid unnecessary complications, 
the ducts were simply assumed to be cylindrical 
perforations in the soil, i. e., their thickness and 
material properties were neglected. This 
simplification has already been adopted in many 
studies (Brum et al., 2012; Brum, Isoldi, Santos, 
Vaz, & Rocha, 2013a; Brum, Vaz, Rocha, Santos, & 
Isoldi, 2013b; Vaz et al., 2014; Rodrigues  
et al., 2015) since it was previously validated against 
experimental data. Regarding time discretization, all 
simulations used a time step of 3600 s, with a 
maximum of 200 interactions per time step, 
covering a total period of two years. 

This study also considered the experimental data 
from (Vaz et al., 2014) to represent the air and clay 
soil from the Brazilian city of Viamão, whose 
thermo-physical properties are assembled in  
Table 1. Furthermore, using the least squares 
method as in (Brum, Ramalho, Rocha, Isoldi, & 

Santos, 2015), the soil surface and air temperatures 
along one year in that city were modeled, 
respectively, by the Equation 2 and 3: 

Table 1. Thermo-physical properties of Air and Soil. 

Material 

Property 

Density 
(Kg m-3)

Thermal 
Conductivity 
(W m-1 K-1) 

Specific Heat 
(J Kg-1 K-1) 

Absolute 
Viscosity  

(kg m-1 s-1) 

Thermal 
Diffusivity  
(m2 day-1) 

Air 1.16 0.0242 1010 1.789x10-5 0.057 
Soil 1800 2.1 1780 - - 
 

௦ܶ(ݐ) = 18.70 + 6.28 sin		(0.0172	ݐ + 26.24) (2)௔ܶ(ݐ) = 23.03 + 6.92 sin ݐ	0.0172)	 + 26.42) (3)
 

where: 
The temperatures are in 0C and the time t in days. 
Hence, these equations were used, in this order, to 
impose boundary conditions for the temperature on 
the upper surface of the computational domain and 
at the inlet of each duct. Also at the inlet, it was 
imposed a velocity of 1.0 m s-1. At the outlet it was 
prescribed the atmospheric pressure. As for the 
other surfaces, they were considered thermally 
insulated. For the initial condition, the temperature 
in all domain is considered equal to the soil mean 
temperature, i. e., 18.700C. 

The simulations involved a very complete 
computational model for Eahe (Brum et al., 2012; 
Brum et al., 2013b; Vaz et al., 2014). Except for the 
soil, where the evaluation of the transient 
temperature field considers only the conservation 
equation of energy, inside the ducts the time-
averaged conservation equations of mass, 
momentum and energy (Wilcox, 2002; Versteeg & 
Malalasekera, 2007) were used to model a transient, 
incompressible, turbulent forced convective flow. 
The Reynolds Stress Model (RSM) was used to deal 
with the turbulence; for the treatment of transient 
pressure and velocity fields it was used the Coupled 
algorithm; to handle numerical instabilities from the 
advection terms of conservation equations of 
momentum and energy, as well as, for equations of 
the closure model, it was employed the upwind 
scheme. Finally, the results were considered 
converged when the residuals for mass, momentum, 
and energy between two consecutives iterations 
were lower than 10-3, 10-3 and 10-6, respectively.  

Results and discussion 

Modeling the instantaneous thermal potential 

Many studies (Brum et al., 2012; 2013a; 2013b; 
Vaz et al., 2014; Rodrigues et al., 2015) analyze Eahe 
by a performance criteria called thermal potential PT, 
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which is often defined simply by the time average of 
the differences between the air temperatures on the 
outlet and inlet sides of the ducts.  

This paper formally defines the PT further ahead 
after developing other important concepts. First, for 
Eahe with q ducts, let dk be the difference between 
the air temperatures on the outlet To,k and on the 
inlet Ti,k of the k-th duct in the time t, that is, by 
Equation 4: 

 ݀௞(ݐ) = ௢ܶ,௞(ݐ) − ௜ܶ,௞(ݐ),					݇ = 1,2, … , (4) ݍ
 
Thus, let the instantaneous thermal potential P 

be defined by the mean of the q temperature 
differences, which is in the Equation 5: 

(ݐ)ܲ  = ∑ ݀௞(ݐ)௤௞ୀଵݍ 	 (5)

 
Indeed, for Eahe arrangements similar to the one 

shown in Figure 2, P is a function of many variables 
besides time. However, from the perspective of the 
constructal design (Bejan & Lorente, 2008; 
Rodrigues et al, 2015) there is a particular interest to 
understand the relationship between the thermal 
potential and the geometrical degrees of freedom Sh 
and Sv, which represent, respectively, the horizontal 
and vertical spacings among the ducts.  

A major contribution of this paper is to find that 
P can be written in the form of Equation 6: 

,ݐ)ܲ  (ݏ = ݐܾ)	݊݅ݏ	(ݏ)ܽ + ܿ) + ݀	 (6)
 

where: 
s = Sh/Sv, b, c and d are real constants, a is a function 
of s, and t stands for time, as before. In physical 
terms, it is usual to say that: a represents the 
potential amplitude, b its angular frequency, c the 
phase, and d the mean value. As it is shown later, 
this means that the intensity of the thermal potential 
of Eahe is directly related to s. 

It has already been noticed in previous studies 
(Vaz et al., 2014; Brum et al., 2015) that the 
temperatures on the inlet and outlet of Eahe have a 
periodical behavior well captured by sine based 
functions. Even though works e. g. (Rodrigues  
et al., 2015) have studied some correspondence 
between ݏ and the thermal potential, they have not 
attempted to model their relationship. As shown in 
Figure 3, where there is a comparison of the 
instantaneous thermal potential P for three different 
values of s, under the same volume fraction ߰, the 
fraction s influences directly the amplitudes, hardly 
changing their frequency, phase, or mean value.  

 
Figure 3. Three cases of thermal instantaneous potentials along 
one year for ߰ = 0.01. 

To further verify this hypothesis, it was first 
considered individually m different cases of ratios  
s = Sh/Sv for the same volume fraction ߰. Then, the 
instantaneous thermal potentials were modeled in 
the form of Equation 7: 

 ௝ܲ(ݐ) = ௝ܽ ݊݅ݏ ൫ ௝ܾݐ + ௝ܿ൯ + ௝݀, 	݆ = 1,2, … ,݉,	 (7)
 

where: 
aj, bj, cj, and dj are real coefficients which are 
determined by the least squares method as in (Brum 
et al., 2015). 

The Table 2 presents the approximate values of ݏ 
for the corresponding volume fractions ߰  = 0.01, 
0.007 and 0.003. Hence, for each value of ߰ it was 
considered m = 14 different values of s. 

Table 2. Values of s = Sh/Sv for ߰ = 0.01, 0.007 and 0.003.  ߰ Ratios s 
0.01 0.12 0.14 0.16 0.19 0.23 0.28 0.34 0.44 0.58 0.69 0.80 0.92 1.05 1.17
0.007 0.09 0.11 0.13 0.15 0.18 0.23 0.29 0.39 0.53 0.66 0.78 0.94 1.10 1.26
0.003 0.05 0.06 0.08 0.09 0.11 0.15 0.19 0.27 0.39 0.50 0.63 0.81 1.01 1.18

 
Regarding the values of the coefficients aj, cj and, 

dj all of them are presented, approximately, in the 
Table 3, 4 and 5, considering the volume fractions  ߰ = 0.01, 0.007 and 0.003, respectively. Since the 
instantaneous thermal potential is periodic, and its 
period is one year, then bj should be equal to 2π/365 , because it represents the angular 
frequency, and the year was simulated with 365 
days. Thus, as expected, for all cases, the numerical 
results gave ௝ܾ ≅ 0.017. 

From the Table 3 to 5, the coefficients cj and dj 
relatively vary much less than aj with respect to the 
variable s. For example, taking ߰ = 0.007, the standard 
deviations (Bulmer, 1979) of aj, cj and, dj are 0.32, 0.03 
and 0.03, respectively. In all cases, the standard 
deviations for bj were negligible. Therefore, it is very 
reasonable to approximate the coefficients bj, cj and, dj 
by their respective mean values and only obtain a 
classical polynomial fitting, by least squares (Gerald & 
Wheatley, 2004), to the coefficient aj as a function of s. 
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Table 3. Values of the coefficients aj, cj and, dj for each s 
considering ߰ = 0.01. 

s 0.12 0.14 0.16 0.19 0.23 0.28 0.34 0.44 0.58 0.69 0.80 0.92 1.05 1.17
aj 5.36 5.52 5.62 5.79 5.92 6.03 6.12 6.21 6.27 6.27 6.33 6.30 6.32 6.18
cj -1.62 -1.61 -1.60 -1.60 -1.59 -1.59 -1.58 -1.58 -1.57 -1.57 -1.57 -1.57 -1.57 -1.56
dj -3.87 -3.89 -3.80 -3.87 -3.86 -3.85 -3.81 -3.83 -3.82 -3.80 -3.82 -3.80 -3.79 -3.82
 

Table 4. Values of the coefficients aj, cj and, dj for each ݏ 
considering ߰ = 0.007. 

s 0.09 0.11 0.13 0.15 0.18 0.23 0.29 0.39 0.53 0.66 0.78 0.94 1.10 1.26
aj 5.32 5.46 5.58 5.69 5.80 5.89 5.96 6.02 6.07 6.28 6.10 6.31 6.31 6.12
cj -1.63 -1.62 -1.61 -1.60 -1.59 -1.58 -1.57 -1.57 -1.56 -1.56 -1.55 -1.56 -1.56 -1.55
dj -3.84 -3.83 -3.82 -3.81 -3.81 -3.80 -3.79 -3.78 -3.78 -3.77 -3.77 -3.76 -3.76 -3.77
 

Table 5. Values of the coefficients aj, cj and, dj for each ݏ 
considering ߰ = 0.003. 

s 0.05 0.06 0.08 0.09 0.11 0.15 0.19 0.27 0.39 0.50 0.63 0.81 1.01 1.18
aj 5.38 5.51 5.62 5.73 5.82 5.89 5.96 6.00 6.03 6.26 6.05 6.27 6.27 6.05
cj -1.61 -1.60 -1.60 -1.59 -1.58 -1.57 -1.56 -1.56 -1.55 -1.55 -1.54 -1.55 -1.55 -1.53
dj -3.78 -3.78 -3.77 -3.76 -3.76 -3.75 -3.74 -3.73 -3.73 -3.71 -3.72 -3.70 -3.70 -3.71
 

All things considered, for the temperature fields 
obtained numerically, it is possible to develop the 
following three functions to model the 
instantaneous thermal potential. 

For ߰ = 0.01, Equation 8: 
,ݐ)ܲ  (ݏ = ݐ0.017)	݊݅ݏ	(ݏ)ܽ − 1.584) − 3.831 (8)
 

where, Equation 9: 
(ݏ)ܽ  = ସݏ	8.166− + ଷݏ	23.463 − 24.491 +ଶݏ ݏ	11.156 + 4.373	 (9)

 
For ߰ = 0.007, Equation 10: 
,ݐ)ܲ  (ݏ = ݐ0.017)	݊݅ݏ	(ݏ)ܽ − 1.578) − 3.792 (10)
 

where, Equation 11: 
(ݏ)ܽ  = ସݏ	6.476− + ଷݏ	18.449 − 18.596 +ଶݏ ݏ	8.158 + 4.780	 (11)

 
For ߰ = 0.003, Equation 12: 
,ݐ)ܲ  (ݏ = ݐ0.017)	݊݅ݏ	(ݏ)ܽ − 1.567) − 3.740 (12)
 

where, Equation 13: 
(ݏ)ܽ  = ସݏ	8.460− + ଷݏ	21.700 − 19.288 +ଶݏ ݏ	7.206 + 5.149	 (13)

 
In all these equations, the units for P and t are, 

respectively, 0C and days. The variable s is 
dimensionless. Here, it is important to highlight that 
the fourth degree polynomials were adopted to 

increase precision. The Figure 4 compares the 
graphics of the discrete results aj and its three fitting 
polynomials of degree 4, 3 and, 2 respectively 
named: a4(s), a3(s) and a2(s). As shown, a4(s) follows 
the data more closely. In fact, for this case, there is a 
Pearson’s R correlation coefficient (Bulmer, 1979) 
among a4 (sj) and aj of 0.997. 

 

 
Figure 4. Comparison between aj and its fitting polynomials an (s) 
of degree ݊ for ߰ = 0.01.  

For Eahe projects, a main objective is to 
maximize the differences (positive or negative) 
between the temperatures on the ducts outlet and 
inlet. Therefore, it is very important to compute the 
maximum and minimum of the instantaneous 
thermal potential functions. 

Hence, using these newly developed function, 
one first step is to find the maximum amplitude of 
the instantaneous potential which is given by the 
functions a(s). Since these functions are 
polynomials, their maximum values occur where 
their first derivatives are zero, or at the boundaries 
of the intervals considered for the variable s 
(Stewart, 2006). 

In the case of ߰ = 0.01, s varies in the interval 
[0.12, 1.17]. The derivative of a(s) is given by 
Equation 14: 

ݏ݀(ݏ)ܽ݀  = −32.671 ଷݏ + ଶݏ	70.406 − 48.992 s+ 11.156	 (14)

 
which is zero, approximately, at s = 1. Since  
a(0.12) = 5.40, a(1.00) = 6.34 and a(1.17) = 6.17, 
then it is possible to conclude that the maximal 
amplitude of the instantaneous thermal potential is 
approximately 6.340C which occurs for a relation ݏ = ܵ௛/ܵ௩ ≅ 1. 

Making similar computations for ߰ = 0.007 and ߰ = 0.003, the maximal amplitude also occurs when ݏ ≅ 1 , changing only its values for 6.310C and 
6.310C, respectively. Thus, from these comparisons, 
the volume fraction ߰ = 0.01 gives the best thermal 
performance for the cases considered in this paper. 
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Looking at these results from the geometrical 
aspect, they also represent a contribution to the 
Constructal Theory (Bejan, 1997; Bejan & Lorente, 
2008). An important question for the design of Eahe 
is how to find the flow architecture (ducts spacings 
and shapes of their arrangements) which increases 
the heat exchange with the soil. In this sense, it is 
possible to interpret the set of simulations presented 
here as an analysis of the evolution of Eahe 
(particularly, its instantaneous thermal potential P) 
under free changes in its flow configurations 
(horizontal and vertical spacings: s) up to limiting 
constraints. At the end, inside the variation of 
volume fractions (߰ ) studied, one finds out that 
robust arrangements for the ducts take the shape of 
isosceles triangles with unitary base and height. This 
goes along with the results of a related study (Rocha 
et al., 2012), where it is found that the best shapes 
for sets of four heat pumps tend to squares, for 
similar ranges of volume fractions also adopted in 
this paper. 

After computing the maximum value of the 
amplitude as a function of s, it is possible to find the 
maximum and minimum values of the 
instantaneous thermal potential relatively to the time 
t. In particular, it is convenient to focus the analysis, 
from here on, considering ߰  = 0.01 and the 
potential function defined by the Equation 8 and 9, 
since the higher amplitude was achieved for this 
volume fraction.  

Therefore, as the maximum and minimum 
values of the sine function are, respectively, 1 and -1 , they occur at the following days. Maximum: ݊݅ݏ	0.017)	ݐ௠௔௫ − 1.584) = 1	 → ௠௔௫ݐ	0.017	 −1.584 = గଶ 	→ ௠௔௫ݐ ≅ 186	days.  Minimum: ݊݅ݏ	0.017)	ݐ௠௜௡ − 1.584) = −1	 → ௠௜௡ݐ	0.017	 −1.584 = −గଶ 	→ ௠௜௡ݐ ≅ 1	day. 

As expected, these results agree with the graphics 
in Figure 3, where the maximum value of the 
instantaneous thermal potential occurs almost at the 
middle of the year (after 186  days, during the 
winter) while its minimum value occurs at the 
beginning of the year (in the summer). Based on 
these data, the maximum and minimum values for 
the instantaneous thermal potential, for all cases 
studied, are given by Equation 15 and 16: 

 ௠ܲ௔௫ = ܲ	(186, 1) ≅ 2.5௢ܥ	 (15)௠ܲ௜௡ = ܲ	(1, 1) ≅ −10. 2௢ܥ	 (16)
 

Thermal potential 

Given these results, it is all set to define the so-
called thermal potential PT used in many references 

(Brum et al., 2012; 2013a; 2013b; Vaz et al., 2014; 
Rodrigues et al., 2015) from the concept of the 
instantaneous thermal potential P, introduced in this 
paper. In general, the PT in these studies can be seen 
as monthly mean values of P. 

Considering the numerical simulations, adopting 
a fixed value for the ratio s, the months can be 
discretized in n + 1 times t0, t1, …, tn equaly 
separated by intervals of size ∆ݐ = ௧೙ି௧೚௡ . Thus, the 

monthly thermal potential can be computed by the 
Equation 17: 

 

்ܲ = ∑ ܲ ,௜ݐ) ௡௜ୀଵ(ݏ ݊ (17)

 
which is equivalent to Equation 18: 

 

்ܲ = ∑ ܲ ,௜ݐ) ௡௜ୀଵ(ݏ ݐ∆݊ݐ∆ = ∑ ,௜ݐ)	ܲ ௡௜ୀଵ(ݏ ௡ݐݐ∆ − ଴ݐ 	 (18)

 
Hence, continuously speaking, if ∆ݐ → 0 , the 

thermal potential can be formally defined by 
Equation 19: 

 

்ܲ = ׬ ܲ ,ݐ) (ݏ ௧೙௧బݐ݀ ௡ݐ − ଴ݐ (19)

 
for each fixed value of s. 

From these analyses, the highest thermal 
potential for cooling is achieved in January (from 
the day 0 to 31) for a ratio s = 1. Furthermore, it is 
given by Equation 20: 

 

்ܲ = ׬ ܲ ,ݐ) 1) ଷଵ଴ݐ݀ 31 − 0 ≅ −9.9୭C (20)

 
On the other hand, the highest thermal potential 

for heating occurs in July (among the days 181 to 
212) and it is given by Equation 21: 

 

்ܲ = ׬ ܲ ,ݐ) 1) ଶଵଶଵ଼ଵ212ݐ݀ − 181 ≅ 2.3୭C (21)

 

Eahe’s efficiency 

Although the thermal potential gives one way to 
compare different arrangements of Eahe, it is not a 
dimensionless quantity and it does not offer a clear 
measure of efficiency. In this regard, one can use the 
temperature ratio ߠ  (Pfafferott, 2003), defined by 
Equation 22: 
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ߠ = ௜ܶ − ௢ܶ௜ܶ − ௦ܶ௢௜௟	 (22)

 
where: 
Ti and To are the temperatures on the inlet and on 
the outlet of the ducts, respectively, while Tsoil is the 
soil temperature. 

In this study, it is computed an average of the 
temperature ratio along intervals of days [c, d], 
through the Equation 23: 

(ݏ)ߠ  = ׬ ,ݐ)	ܲ ׬ௗ௖ݐ݀	(ݏ 	ሾ ௠ܶ௦ − ௔ܶ(ݐ)ሿ	݀ݐௗ௖ 	 (23)

 
where: 
P(t, s) is the instantaneous thermal potential defined 
in Equation 8 and 9; Tms = 18.70C, which is the 
mean temperature of the soil at the center of the 
Eahe installations, i.e., at the point (x, z) =  
(Ws/2, Dave), relatively to Figure 2b; Ta(t) is the 
temperature of the air on the ducts inlet, which is 
given in Equation 3. 

Ideally, ߠ should be a scale unit because, at first 
sight, the absolute value of the differences between 
the temperatures on the outlet and inlet of Eahe 
should not be higher than the absolute value of the 
differences between the temperatures on the inlet 
and in the soil. Besides, if the heat exchange is 
perfect, the temperature on the outlet should be 
equal to the temperature in the soil. However, this is 
not true, particularly, in the spring and in the fall, 
when the air temperature can be equal to the soil 
temperature. 

Thence, it is convenient to compute the Eahe 
efficiency at the peak of the Brazilian summer, in 
January, and at the peak of winter, in July. The 
Table 6 presents some results of efficiency in these 
months. As expected, the Eahe are more efficient 
when ݏ ≅ 1. To raise or reduce ݏ around this value 
reduces the efficiency. Furthermore, the best 
performance for Eahe occurs in the winter, when 
they achieve 92.9% of efficiency. 

Table 6. Eahe efficiency (ݏ)ߠ (in %) in the months of January 
and July. s	  January 87.6 88.0 88.3 88.6 86.7 (ݏ)ߠ  0.4 0.6 0.8 1.0 1.2

83.9 92.9 91.2 90.0 88.0 July 
 

Energetic performance 

A final important concern regarding Eahe is to 
determine its heat transfer rate, or its monthly 

energy performance, which can be computed (for 
each duct) by the Equation 24 (Pfafferott, 2003): 

 ሶܳ ௔௜௥ = ሶ௔௜௥ݒ ௔௜௥ߩ ܿ௔௜௥ ஽ܣ ்ܲ	 (24)

 
where: ݒሶ௔௜௥  = 1 m s-1, ߩ௔௜௥  = 1.16 = Kg m-3 and  
cair = 1010J/(Kg K-1) represent, respectively, the 
average velocity, the density and the specific heat of 
the air in the ducts; AD = 0.0127 m2 is the cross 
section area of the ducts; PT is the thermal potential 
previously defined in Equation 19, computed over a 
month.  

Therefore, considering the peak months, the 
volume fraction ߰ = 0.01 and the ratio s = 1, in 
average, the Eahe have a cooling power of 440.7 W 
in January and a heating power of 103,4 W in July. 
In energetic therms, this means 327.9 KWh in 
January and 77.0 KWh in July. 

Conclusion 

With the constructal design method, one 
examines the evolution of the thermal potential as 
the geometry of flow configuration varies in the 
direction of greater flow access for its currents. In 
this study, the current is heat, and it flows from the 
ducts of Eahe to the soil or vice versa. The objective 
is to determine the shape and spacing among the 
ducts which increase the heat exchange. 

Based on constructal design, this paper 
introduces mathematical models to determine 
thermal potentials of Eahe composed by three ducts. 
Using the concept of instantaneous thermal 
potential P, which is an average of the differences 
between the air temperatures on the ducts outlets 
and inlets, this essay not only finds that P is periodic 
but also that its amplitude is affected directly by the 
ratio ݏ  between the ducts horizontal and vertical 
spacing.  

This leads to new models for P in function of ݏ 
and the time t. From these models, inside the range 
of simulations studied, this paper finds: the best 
volume fraction for Eahe (߰ = 0.01); the maximal 
amplitude of P (6.340C); the best spacing among the 
ducts (occurring for ݏ ≅ 1 ); the best shape (the 
results point that the ducts should be arranged 
forming an isosceles triangle with unitary base and 
height); the days and months with higher potentials 
and its values (occurring in January and July). It also 
allows computing the Eahe efficiency in the best 
months of winter (92.9%) and summer (88.6%), and 
the energetic performance, which achieves a 
maximum of 327.9 KWh in January. 
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As a final remark, the methodology employed for 
the first time in this paper, to model the 
instantaneous thermal potential, considered only 
three ducts as a case study. Its applicability to analyze 
other cases and geometries with only two ducts, or 
more than three, should be the subject of 
forthcoming works. 
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