
Acta Scientiarum 22(5):1249-1261, 2000. 
ISSN 1415-6814. 

Teaching the entropy concept by transforming Boltzmann’s 
conjectures into computer experiments 

Rosa Maria Sperandeo-Mineo 

Dipartimento di Scienze Fisiche ed Astronomiche - Università di Palermo-Via Archirafi 36-90123, Palermo, Italy. 

ABSTRACT. New methods for high school and college Physics instruction engage students 
in understanding the physical world by constructing and using scientific models to describe, 
explain, predict and control physical phenomena. Modelling many particle systems involves 
the need to introduce statistical approaches and to look at reality in a probabilistic way. This 
paper reports a teaching approach in which the history of Physics is used as a Case Study in 
order to allow students to assimilate a given sequence of thought long enough to feel that it 
has a context and a surrounding logic of inquiry and experience. This approach focuses on 
Boltzmann’s conjectures and reasoning aimed at introducing his stochastic models in a 
mechanist era. The kind of conjectures chosen are described and the structure of our 
teaching approach is outlined. It will also involve the pedagogical tools prepared in order to 
make workable the approach even for students not familiar with combinatorial and 
permutational calculus. Preliminary results of the first pilot test in two Courses for teacher 
training are also described. 
Key words: entropy, history, simulations. 

RESUMO. Ensinando o conceito de entropia através de conjecturas transformadas 
de Boltzmann em experimentos computacionais. Novos métodos para o Ensino 
Médio e de Graduação levam os estudantes a compreender o mundo físico pela construção 
e pela utilização de modelos para descrever, explicar, prever e controlar os fenômenos 
físicos. Modelar um sistema de muitas partículas envolve a necessidade de introduzir 
aproximações estatísticas e olhar a realidade de uma forma probabilística. O presente artigo 
expõe um modelo de ensino em que a história da física é utilizada como um “estudo de 
caso”, no sentido de permitir aos alunos conviver com uma seqüência de pensamentos, num 
contexto e numa lógica de interrogação e experiência. Este modelo focaliza as conjecturas de 
Boltzmann e o seu raciocínio baseado em modelos estocásticos em uma era mecanicista. São 
descritos estes tipos de conjecturas escolhidos e a estrutura de nosso modelo aproximativo e 
ensino é posta junto com ferramentas didáticas preparadas no sentido de familiarizar os 
estudantes com o cálculo combinatorial e permutacional. São apresentados os resultados 
preliminares do primeiro teste-piloto em dois cursos de preparação de professores. 
Palavras-chave: entropia, história da física, simulações. 

The use of history of Physics in high school and 
in undergraduate education has been widely 
discussed in papers and conferences: the relevance 
of the history of science for acquiring proper 
understanding of scientific concepts and theories, 
therefore, is beyond any question. Indeed, if we 
want to convey to students an adequate picture of 
what science is all about and how its concepts and 
theories apply to the real world, we must connect it 
to the historical experiences which constitute the 
indispensable background for our understanding 
(Matthews 1994).  

It has been pointed out that the history of 
physics can be used in different ways by Physics 
teaching (Bevilacqua and Kennedy 1983). Among 
these, we will point out two approaches that include 
a proper reflection on the historical evolution of 
Physics: the first focuses on the epistemological 
aspects and structure of the discipline in order to 
guide the students towards the understanding of the 
role of hypotheses and models, the self consistency 
of the principles and the growth mechanism of 
theories; in the second approach, history comes out 
through the study of paradigmatic cases and thus the 
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systematic teaching of Physics is enriched by 
knowledge of the emergence of important 
conceptual schemes, ideas, experiments, etc. In both 
cases the history of Physics is mainly used to 
improve knowledge in an internal sense and not 
merely to introduce students to the importance of 
science in the development of Western civilisation 
(Brush 1969): a valuable educational objective 
relating science with other subjects and/or teaching 
science from a more humanistic viewpoint. 
However, our main educational objective is a better 
understanding of physical theories as they are 
understood today, by integrating them within the 
knowledge of what is valid today, how it came 
about, what were the reasons of the discoveries, 
what are their conceptual tools, their frames of 
mind, and how and why all this has changed into the 
present-day form of knowledge.  

Many papers (Brush and King 1972, Bevilacqua 
and Kennedy 1983) have pointed out that, when 
history is used not for its own sake, but only as a 
means to a goal, it can be easily distorted and 
falsified into what Whittaker (1979) called “quasi-
history”. It has been stressed that there is a 
fundamental incompatibility between a logical 
development of Physics and a realistic, historical 
development. Very often the way things would 
logically have happened, was not unfortunately the 
way that things did happen. There is no doubt on 
the validity to point out this since the problems 
come out when we start to define the ways we can 
realise an historical approach to Physics, given all the 
constraints of the educational system.  

The realisation of an historical laboratory has 
been pointed out as a possible teaching strategy, 
useful to illustrate how, in the evolution of physics, 
the relationships between theoretical accounts and 
experimental activities have been developed. In this 
laboratory students should analyse some historical 
experiments relevant for the introduction of new 
ideas, for the success of theories or of new 
experimental procedures. In fact it is an important 
point to confront antagonist conceptions of a single 
group or groups of scientists1.  

This paper refers to a more limited case in which 
history is used as a Case Study in order to allow 
students to live with a given sequence of thought 
long enough to feel that it has a context and a 
surrounding logic of inquiry and experience. In our 
view this approach workable principally for new 

                                                        
1  A wide bibliography discusses the educational relevance of this 

approach, see for example: Conant and Nash 1957, Harvard 
Project Physics Course 1970, Brush and King 1972, Dhombres 
1980, Bevilacqua and Kennedy 1983. 

teaching approaches, at high school level, stressing 
pedagogical objectives related to processes of 
Physics. 

New approaches to Physics teaching focus on the 
process of constructing predictive conceptual 
models and identify model building as a 
superordinate process skill (Hestenes 1992, Gilbert 
1993). The introduction of modelling activities in 
Physics courses contributes towards a number of 
content areas and enables students to see similarities 
and differences between a wide range of 
phenomena. Scientific models are usually very 
different from students’ personal views of the world, 
the spontaneous models (Gentner and Stevens 
1983). In order to fill this gap appropriate 
approaches to scientific models are necessary to 
perform the “fitting”, or rather, to adapt gradually 
student conceptions to scientific models. 

Teaching approaches focusing on the Newtonian 
modelling of real world phenomena are widely 
employed. They use various specifically prepared 
educational tools, software and Microcomputer 
Based Laboratory (Thornton and Sokoloff 1990, 
Modeling Group 1999) and have shown their 
effectiveness for learning (Redish et al.1997, Hake 
1998). 

The modelling of thermal phenomena in 
introductory Physics courses shows many 
difficulties in learning when the empirical approach 
of thermodynamics and the structural approach of 
statistical mechanics are used. The primary 
distinction between the two descriptions is that, 
whereas thermodynamics deals with measurable 
parameters, such as pressure and temperature, 
characterising macroscopic quantities, statistical 
Physics attempts to go deeper into detail, by 
modelling the microscopic behaviour of a system. 
However, owing to the introduction of microscopic 
arguments the statistical approach deprives 
thermodynamics of its feature of general theory 
applicable to all systems and independent from their 
microscopic structure. On the other hand, 
thermodynamics shows in this generality the 
greatest element of difficulty.  

It has been pointed out (Alonso and Finn 1995) 
that many students usually encounter greater 
difficulties when entropy and the second law of 
thermodynamics are only presented in the context 
of a thermodynamic approach, as a state variable 
without any connection to the internal structure of 
the system or to what entropy really is. Many 
teachers and science education researchers think that 
the statistical approach can overcome some of these 
difficulties, since it correlates the properties of a 
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system both with the properties of its constituent 
units and with their interactions (Baierlein 1994). 
Moreover, whereas classical thermodynamics is 
practically restricted to systems in equilibrium or 
quasi-equilibrium, statistical mechanics does not 
need the limitation of slow changes in the system, 
that necessarily eliminates a broad class of important 
phenomena: the irreversible fast changes. This 
increased range of phenomena open to statistical 
physics is purchased at the expense of our needing 
to built a specific model. This involves many 
conceptual and mathematical difficulties especially 
in the case of classical statistics, where the 
mathematical arguments are particularly abstract. 
For this reason many textbooks introduce quantum 
statistics from the start where the less difficult 
statistical approach of counting states can be applied. 

A statistical approach to the entropy concept 
involves the introduction of mathematical concepts 
concerning probability and, mainly, the changing of 
views through which one looks at physical 
phenomena. Usually students start to study 
thermodynamics just after Newtonian dynamics, 
that is, just after having verified that causality and 
determinism are the categories explaining the 
observed physical phenomena. Moreover, through 
the study of the kinetic theory, which gives simple 
explanations of some thermal phenomena, they can 
easily be convinced of the possibility to interpret all 
natural phenomena in terms of motions of the small 
particles constituting matter, similarly to what 
Newton in his Principia and many physicist of the 
19th century did. The requirement to shift from 
deterministic to probabilistic models involves the 
ability to modify the way to look at reality and at the 
relationships among models, theories and empirical 
phenomena. Looking at the historical evolution of 
such ideas can be a useful and formative educational 
approach. 

So that such approach may be undertaken, we 
will focus on Boltzmann’s researches, chiefly on his 
conjectures and reasoning aimed at introducing his 
stochastic models in a mechanist era. In the next 
section we will describe the types of conjectures we 
have chosen for our didactic approach. Later, we will 
report the structure of our teaching approach and, as 
a sort of a conclusion, the methods we have 
followed in order to prepare teachers to put it into 
practice in the classrooms. 

Boltzmann’s conjectures for a teaching approach 

Boltzmann is the emblematic scientist 
representing a transition phase: his ideas about the 
role of models and theories are certainly more 

advanced than those of his time, although he was 
enable to overcome the mechanistic and 
reductionistic aspects of his research: 

In a very general way, I think that a direct description 
of many phenomena is not possible, but only a mental 
representation of them. For this reason, it is not correct 
to say, as Oswald: “you should not make a 
representation for yourself,” but only: “you must 
introduce in the representations as less arbitrariness as 
possible. 

I would even assert that the process of construction of a 
mental representation necessarily involves the 
introduction of some arbitrary characteristics and that 
each time we infer a new fact, through a deduction 
from a representation drawn from different 
experimental facts, we in a strict sense, transcend from 
experience. (Boltzmann 1905, p. 141 and p. 57) 

Certainly, therefore, Hertz is right when he says: 
“The rigour of science requires that we distinguish 
well the undraped figure of nature itself from the gay-
coloured vesture with which we clothe it at our 
pleasure.” But I think the predilection for nudity 
would be carried too far if we were to forgo every 
hypothesis. ... Every hypothesis must derive 
indubitable results from mechanically well-defined 
assumptions by mathematically correct methods. If the 
results agree with a large series of facts, we must be 
content, even if the true nature of facts is not revealed 
in every respect. No one hypothesis has hitherto 
attained this last end, the Theory of Gases not 
excepted. But this theory agrees in so many respects 
with the facts, that we can hardly doubt that in gases 
certain entities, the number and size of which can 
roughly be determined, fly about pell-mell. Can it be 
seriously expected that they will behave exactly as 
aggregates of Newtonian centres of force or as the rigid 
bodies of our Mechanics? And how awkward is the 
human mind in divining the nature of things, when 
forsaken by the analogy of what we see and touch 
directly? (Boltzmann 1895, p. 413) 

Boltzmann is the best messenger of the 
methodological renewal of theoretical physics that 
started in the middle of the last century with 
Maxwell’s work. His interest in epistemological 
considerations is strictly connected with research 
problems. He is fully aware of the role of hypotheses 
and models in the construction of a theory. His 
conception of this role implies in abandoning the 
attempt of knowing the real mechanism that 
regulates phenomena and to consider models as 
eloquent pictures and analogies able to evidence 
some aspects of nature, and that are susceptible of 
being improved in order to give a better description. 
On the basis of these ideas, he tried to overcome the 
difficulties concerning the problem of reversibility. 
He searched (Boltzmann 1905) for analogies among 
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different natural processes, transmission of heat, 
propagation of electricity in conductors and 
hydrodynamic processes in order to infer models 
able to illustrate the general functioning mechanism. 
He was conscious that 

[…] these kinds of mechanical models exist only in 
our spirit. 

[…] According to me, the aim of a theory is in the 
construction of a picture of the real world that only 
exists in our mind and must be the guide for all our 
thoughts and experiences. […] the main objective of 
the theory is to continuously improve this picture. 
Imagination has always been the cradle of theory, the 
spirit of observation its tutor. (Boltzmann 1905, p. 
76) 

Almost at the end of his research he was able to 
consider also the mechanical descriptions as a useful 
but not absolute image of nature:  

[…] No one, so to speak, considers force a reality, 
and thinks that it is possible to give proof providing 
that natural phenomena are susceptible of mechanical 
explanations. I myself have, sometimes, came to 
universal mechanism’s defence, only with the proposal 
of showing its immense superiority with respect to 
purely mythical explanations other times received. 
(Boltzmann 1905, p. 129) 

The introduction of the concept of probability 
modifies the nature of the physical quantities 
involved: 

[…] I have underlined that my H-theorem as well as 
the second law of thermodynamics are only theorems 
of probability. The second law of thermodynamics 
cannot be mathematically demonstrated only on the 
basis of dynamical equations […]. 

[…] Only on the basis of the equations of motion, it 
is not possible to demonstrate that the H-function has 
to decrease in a constant way. It is only deducible from 
the probability laws that, if the initial state is not 
specifically set out for a given objective, but chance 
reigns at discretion, the probability that H decreases is 
in all occasions greater than that with which it 
increases. (Boltzmann 1895, p. 414) 

These sentences empty the mechanistic 
paradigm of all meanings. However, he was unable 
to abandon completely his starting idea in search for 
a dynamical and evolutive description of the 
universe that explains each phenomenon on the 
basis of interactions among the particles that 
constitute matter.  

The kinetic theory of gases developed in the 19th 
century was very successful, but brought about 
many difficulties concerning its foundations and, in 

particular, the hypothesis of molecular chaos. All 
scientists studying this theory, including Boltzmann, 
started with a strictly mechanistic program: in his 
1866 paper Boltzmann wrote that his objective was 
to provide a general and purely analytical 
demonstration of the second law of thermodynamics 
and to find the corresponding mechanical theorem. 
When he started to consider the kinetic viewpoint, 
that is, the distribution function instead of the 
individual kinetic variables of the molecules, he 
found Boltzmann’s equation and the H-theorem 
that gave the first explanation of irreversibility of 
natural processes. However, in all his papers written 
before 1872, Boltzmann’s ideas were developed in a 
mechanistic context and he seemed firmly 
convinced that his results derived directly from the 
application of the mechanical laws. This approach 
resulted in many conceptual difficulties, leading to a 
wide dispute among physicists. Consequently 
Boltzmann began to re-analyse the foundations of 
his theory until he reached the fundamental 
conclusion that the nature of its theory is basically 
probabilistic: he introduces the concept of 
probability as a foundation of physical laws. 

Brush (1976) pointed out that Maxwell’s 1860 
arguments for the derivation of the velocity 
distribution of gases included probabilistic 
arguments for the first time, without any 
considerations on peculiar molecular processes. 
However, the viewpoint was considered inadequate 
at that time and it had to be justified by calculations 
based on special molecular models as in 
Boltzmann’s paper of 1872 having their acme in the 
H-theorem. In a few sentences Boltzmann’s 
transition from a stochastic past to a statistical 
approach is positioned:  

If one does not merely wish to guess a few occasional 
values of the quantities that occur in gas theory, but 
rather desires to work with an exact theory, then one 
must first of all determine the probabilities of the 
various states which a given molecule will have 
during a very long time or which different molecules 
will have at the same time. In other words, one must 
find the number of molecules out of the total number 
whose states lie between any given limits. 
(Boltzmann 1872, Brush 1966 p. 90)  

In all the paper, one can find sentences which 
almost postulate that molecular motions are at 
random and argue that irregular events, occurring in 
the same proportions, give the same average values 
and explain the “completely definite laws of 
behaviour of warm bodies” (Boltzmann 1872). 
However, in proceeding to mathematical 
derivations, he clearly refers to the distribution 
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function f as to the “number” of molecules having 
some specified velocity or other characteristic 
quantity. In this paper he gave the H-theorem using 
a functional called E, equivalent to the H-function, 
written in terms of energy x rather than velocity. 

{ } xE ∫
∞

ƒƒ=
0

d]xt)/(x,[ logt)(x,  

Boltzmann’s 1872 paper introduces too the 
descriptions of particle energies in discrete values: 

We wish to replace the continuous variable x by a 
series of discrete values ε, 2ε, 3ε,... pε. Hence we 
must assume that our molecules are not able to take 
up a continuous series of kinetic energy values, but 
rather only values that are multiples of a certain 
quantity ε. Otherwise we shall treat exactly the same 
problem as before. We have many gas molecules in a 
space R.. They are able to have only the following 
kinetic energies: 

ε, 2ε, 3ε,... pε. 

No molecule may have an intermediate or a greater 
kinetic energy. When two molecules collide, they can 
change their kinetic energies in many different ways. 
However, after the collision, the kinetic energy of each 
molecule must always be a multiple of ε. I certainly 
do not need to remark that for the moment we are not 
concerned with a real physical problem. It would be 
difficult to imagine an apparatus that could regulate 
the collision of two bodies in such a way that their 
kinetic energies after a collision are always multiples of 
ε. That is not the question here. In any case we are 
free to study the mathematical consequences of this 
assumption, which is nothing more than an artifice to 
help us to calculate physical processes. For at the end 
we shall make ε infinitely small and pε infinitely 
large, so that the series of kinetic energies will become 
a continuous one, and our mathematical fiction will 
be reduced to the physical problem treated earlier. 

We now assume that at time t there are wl molecules 
with kinetic energy ε, w2 with kinetic energy 2ε, ... 
and wp, with kinetic energy pε, in unit volume. 
(Boltzmann 1872, Brush 1966 p.119)  

In its paper of 1877, in order to answer to the 
reversibility paradox, Boltzmann argued that it is 
possible: 

to calculate, from the relative numbers of the different 
state distributions, their probabilities, which might 
lead to an interesting method for the calculation of 
thermal equilibrium. (Boltzmann 1877, Brush 
1976 p. 606) 

In this way he developed his statistical method 
for calculating equilibrium properties, based on the 
relation between entropy and probability and 
concluded that: 

if perhaps the reduction of the second law to the realm 
of probability makes its application to the entire 
universe dubious, yet the laws of probability theory 
are confirmed by all experiments carried out in the 
laboratory. (Boltzmann 1877, Brush 1976 p. 
607) 

He reached his conclusion by reasoning from 
what he calls “probability theory”, while assuming 
that exact deterministic laws still apply to molecular 
motion and collisions. 

The really new method for determining the state 
of thermal equilibrium of a system is described in 
his paper of 1877. The method is applicable to any 
system, not only to that of gases, and consists in 
enumerating all the ways in which a given total 
amount of energy can be distributed among a 
specified number of molecules, complexions, by 
assuming that the probability of a macroscopic state 
is proportional to the number of corresponding 
molecular complexions and that each complexion is 
assigned equal probability. He evaded the problem 
of counting a continuum of microstates by assuming 
the same discrete distribution of energy among the 
particles, described in the 1872 paper and, 
consequently, that each molecule can have only a 
finite value of energy values. 

To look at the ensemble of microscopic 
configurations compatible with a given macrostate 
of the system is a relevant change of point of view 
with respect to methods used until that time to 
study the gas laws (Cercignani 1998). The focus was 
a single system following the time evolution of its 
macroscopic state, without any direct interest in the 
actual microscopic configurations. In order to study 
the microscopic configurations in all, compatible 
with a given macroscopic state, in his 1877 paper 
Boltzmann considers not merely a single system, but 
a purely conceptual ensemble constituted by a great 
number of identical systems (intended as 
mathematical models and/or ideal copies), all in the 
same macroscopic state, but each one having a 
different microscopic configuration. Each 
microscopic configuration is then represented by an 
ideal copy of the given system and the macroscopic 
configuration is intended as the ensemble of its 
microscopic configuration.  

The modelling of a system through an ensemble 
of microstates is a consequence of the need to define 
the probability of a given macrostate. This important 
aspect of theoretical physics at the end of the 19th 
century pointed out the relationships between 
models and abstract theories. The scientists desire to 
abandon the need of a mechanistic description of 
reality: the concept of mean system property, 
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intended as an average over a large time of its 
evolution, is now replaced by the new concept of 
mean behaviour of an ensemble constituted by 
identical systems. The identity of the two definitions 
has been taken for granted (Cercignani 1998). This 
approach to the description of thermal properties of 
a physical system has also been used in an 
independent way by Maxwell. However, only 
through the Gibbs and Einstein’s work it had its 
definitive formulation in Statistical Mechanics.  

Boltzmann’s problem was to calculate the 
number of ways in which a macroscopic state can be 
realised: as a consequence, a state corresponding to a 
greater number of ways will be more probable. 
Thermodynamic evolution will bring the system in 
its more probable macrostate: since entropy has its 
maximum, a link must exist between entropy and 
probability of its macroscopic state. This is an 
important conjecture drawn from Boltzmann’s 
lectures on the Gas Theory of 1896 (translated in 
English in 1964): 

To begin, we will make some preliminary 
observations concerning the principles of the calculus of 
probability. From a vessel, where we have a large 
number of black spheres and an equal number of 
white spheres, for the rest identical, randomly pick 20 
spheres. The chance that we pick only black spheres is 
not at all less probable that the chance that the first 
sphere we pick is black, the second white, the third 
black, etc…. The fact that it is more probable to 
obtain 10 white spheres in 20 choices than 20 black 
spheres is due to the fact that the first event can be 
realised in much more ways than the second. The 
relative probability of the first event with respect to the 
second is the number 20!/(10! 10!) which indicates 
how many permutations can be made of the terms of 
the series of 10 white spheres and 10 black spheres, 
considering that the black spheres as well as the white 
spheres are identical. Each one of these permutations 
represents an event that has the same probability of the 
event of all black spheres. If in the vessel we have a 
great number of black spheres, a greater number of 
blue spheres, a great number of red spheres and so 
on… , the probability to choose a white spheres, b 
black, c blue, etc…. is: 

!...!!
...)!(

cba
cba +++  

times greater than the probability of having spheres of 
the same colour.  

As in this simple example, the event that all the 
molecules of a gas have exactly the same velocity in the 
same direction is not at all less probable of the event 
that each molecule has exactly the same velocity and 
motion direction that it actually has at a given instant. 
However, if we compare the first event with the event 

that in the gas the molecule velocities are in 
concordance with Maxwell’ distribution law, we find 
a much greater number of equi-probable 
configurations corresponding to the second event. 
(Boltzmann 1964, pp. 55 and 443) 

The focal point is in the consideration that all the 
microscopic configurations have the same 
probability, but the different macroscopic 
configurations can be realised in a different number 
of microscopic configurations.  

Boltzmann’s operation of considering discrete 
values of energy is equivalent to consider the portion 
of velocity and position space µ, limited by the 
dimension and the total energy of the system, 
divided into cells of equal volume δυµ=δrδv (a six-
dimensional space). If the number of particles ni 
occupying the cell i-th is assigned, the distribution 
functions ƒ(r,v,t) in this cell is defined as:  

ƒ(r,v,t) = ni δυµ  ΣK ni = N 
and the set of occupation number is called a 
partition {ni}. Each partition corresponds to a 
macroscopic state, since it defines the distribution 
function ƒ. 

Instead of white spheres we have a number n1 of 
molecules in the first cell, a number n2 of molecules in 
the second cell, and so on....... Consequently we have: 

W = N! ⁄(n1! n2!…. nK!) 

for the relative probability that n1 molecules occupy 
the first cell, and so on. 

(Boltzmann 1964, p. 56) 

Following Boltzmann’s reasoning we can define 
the quantity logW and, through simple calculations, 
show the following relation for Boltzmann’s H-
function: 

∫ +=ƒƒ= cost logW  - drdv logH  

Therefore, the H-value for a given macrostate, 
corresponding to a given distribution ƒ(r,v,t), is 
connected to the probability to realise the 
macrostate, i. e., to the number of different and 
equi-probable microstates.  

From the previous expression we can find the 
partition {ni} that corresponds to the maximum of 
probability and consequently to the equilibrium 
distribution ƒ(r,v,t), Maxwell’s distribution. 

The reported approach does not makes any 
reference to collisions or time evolution of a particle 
system, but the distribution function ƒ is analysed in 
terms of probability to find a given number of 
particles in a given volume of the space µ.  
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Teaching approach and computer simulations  

Boltzmann’s conjectures that we have considered 
relevant in helping students to understand some 
main points of Thermodynamics as well as of the 
Physics process of modelling involve: i) his ideas 
about physics models and their relationships with 
theories; ii) the probabilistic approach to model 
phenomena involving many particle systems. They 
resemble thought-experiments, that is, reasoning on 
quasi-empirical models, on analogies and/or 
similarities. It has been shown that thought-
experiments have been powerful means of tackling 
conceptual problems during the historical evolution 
of Physics (Kuhn 1962). Thought-experiments have 
also been considered as good educational tools for 
physics and mathematical education (Stinner 1990, 
Glas 1997). Results of thought-experiments may be 
achieved through logical deductions from starting 
hypotheses and mathematical calculations and both 
involve many difficulties for the students of 
introductory Physics courses.  

Many teaching approaches use computers for 
simulations, enabling students to analyse Physics 
models and overcoming many of the mathematical 
difficulties involved. In this paper we will focus on 
one aspect of simulations that we call 
“Experimenting with models”. We use a procedure 
very similar to that used in a laboratory experiment, 
wherein a conceptual model or idea is being tested 
within the framework of existing physical laws. The 
terminology “computer experiment” is intended to 
emphasise that this kind of simulation shares some 
of the features of ordinary experimental work, in 
that it is susceptible to statistical and systematic 
errors. 

The models of our simulations are 
representations of microscopic evolution of particle 
systems modelling matter. Their behaviour will be 
analysed and their validity verified by comparing 
simulation results with experimental results and/or 
with theoretical accounts.  

The conventional analytical treatment of 
microscopic models is not straightforward. The 
formalism of combinatorial and permutational 
calculus and the representational problems 
connected with the geometry of a discrete system 
make the analytical approach very difficult for many 
undergraduate students, even in the case of simple 
systems, such as dilute gases. In order to overcome 
mathematical difficulties, many computer 
simulations of models of dilute gases have been 
published for teaching purposes: some analyse 
particle systems evolving toward Maxwell-
Boltzmann velocity distribution (Sauer 1981, Eger 

and Kress 1982, Ftacnik et al 1983, Aiello-Nicosia 
and Sperandeo-Mineo 1985), others focus on the 
entropy definition (Black et al 1971, Bellomonte and 
Sperandeo-Mineo 1997) and calculations (Moore &. 
Schroeder 1997). All use a statistical approach based 
either on the Molecular Dynamics or on the Monte 
Carlo methods. In both methods the elementary 
physical events are well defined and easily 
comprehensible by students. Mathematical 
problems emerge when the synthesis of these 
elementary events is attempted. In a computer 
experiment synthesis is realised implicitly in the 
logical design of the fundamental, branching, 
computational flow sequence used to define the 
conceptual model being studied. Physical values are 
obtained by taking a simple average over the set of 
values occurring in each of a very large number of 
particular computational sequences. Consequently 
simulations can allow high school and 
undergraduate students to compare experimental 
data with theoretical curves in detail and gain an 
exhaustive view of the logical consequences evolving 
from the assumptions defining a physical model. 

Our educational approach uses simulations in 
order to visualise analogies, detect model behaviours 
and count the number of microstates associated with 
different macrostates of simple models. We have 
used two different computational environments: the 
spreadsheet Microsoft EXCEL and stand-alone 
programs written for the purpose2. Educational uses 
of the two environments are different: the first 
allows students an easy modification of model 
properties and, consequently, the evaluation of their 
influence; the second visualises possible model 
evolutions and the influence of some relevant 
parameters. The Appendix reports the results of 
some performed simulations and the concepts 
and/or process they are supposed to focus.  

The first simulation introduces the concept of 
equi-probable configurations: we simulate 
Boltzmann’s vessel containing a large number of 
little spheres all equal except for the colour (half of 
them are white and the other half black) and 
perform M random picks of N spheres. The 
program calculates the frequencies of different 
events {nb,nw} (nblack = 0…..N and nwhite = N…0, 
with nb+nw = N) and plots their distributions for 
various values of the number of picks M. The 
frequencies are also confronted with the 
probabilities of all the possible events {nb,nw}. 
Students initially use the simulation for small values 
of N and M, observing the different configurations 
                                                        
2 Programs are written in Visual Basic and their transformation in 

Activix for the Internet network is in progress.  
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displayed by the program, then analyse what 
happens for large values of N and/or M (see 
simulation n° 1 in the Appendix). 

The second simulation reports in how many 
different ways N spheres of different colour can be 
apportioned in two halves of a box (the position 
within each half box does not matter). The program 
performs M different apportionments of N spheres 
and calculates the occurrence of each apportionment 
{nl,nr} (nleft = 0…..N ; nright = N…0) plotting the 
frequency distribution. Analogously to first 
simulation, an analysis for low and high values of M 
and N is possible. Simulations in which the box is 
divided into parts of different volumes and, 
consequently, particles have different probabilities to 
occupy the various parts, can also be performed. 

On the basis of the two reported computer 
simulations, students are supposed to have gained a 
clear understanding of the concepts of random 
events, equi-probable events, distributions, 
macrostates and microstates.  

The third simulation introduces students to the 
concept of energy distribution and microstates 
associated to a given distribution. We use the term 
energy without any specification; later, we will 
specify if we intend kinetic energy of ideal gas 
molecules or energy of oscillators modelling the 
Einstein’s solid or other. 

By recalling Boltzmann’s idea, we consider N 
particles having discrete values of energy: 

0, ε, 2ε, 3ε,…... kε. 
We define a system macrostate by determining 

its partition {ni}, i. e. the numbers n0, n1, n2,…..nk of 
particles having the energies 0, ε, 2ε, 3ε,…..., kε , 
respectively. The values of ni are subjected to the 
two conditions: 

0n0+ 1n1ε + 2n2ε + 3 n3ε +... + k nkε = E 
n0 + n1 + n2 + n3 +……nk = N 

where N is the total number of particles and E the 
total energy of the system. 

The program visualises and calculates, for small 
values of N and E, the number of ways W we can 
put N distinguishable particles into k boxes 
(schematising the different energy values) so that 
there are n0, n1, n2 ,.... ,nk particles in each box: 
W = N! ⁄(n1! n2!…. nk!), 

This is the value of Boltzmann’s number of 
“complexions”, i.e. the number of microstates W 
associated with a given macrostate (defined by its 
partition {ni}) and, consequently, the relative 
probability of the macrostate. 

In order to find the equilibrium partition, 
Boltzmann calculates the maximum of the function 
ln W, obtaining Maxwell’s velocity distribution. 

Instead of using analytical arguments, we perform 
an experiment with our model in order to construct 
an ensemble of systems, all equally probable, 
representing the different microstates of our system. 
The model simulates those substances whose 
internal energy can be written as a sum of single-
particle energies. Einstein’s model of solid and a 
model of dilute gas are two examples: the first 
considers particles as oscillators, all fixed in place, 
storing energy in units of the same size; the second 
model assigns to particles discrete values of kinetic 
energy as follows: to all n0 particles having values of 
energy between 0 and ∆ε is assigned an energy equal 
to 0, to all n1 particles having values of energy 
between ∆ε and 2∆ε is assigned an energy equal to ε, 
and so on, until kε, assigned to the nk particles whose 
energies are between k∆ε and (k+1) ∆ε, under the 
condition that: 

n1ε + 2n2ε + 3 n3ε +... + k nkε = E 
The introduction of discrete values for the 

allowed particle energies can be considered, in line 
with student knowledge, as a natural assumption 
descending either from quantum mechanics or from 
a first approximation aimed to simplify calculations.  

The program uses the Monte Carlo random 
sampling method (Binder 1986, Whitney 1990): 
each microstate of the physical system under 
consideration is determined by chance. It allows us 
to look for small samples that are able to 
approximately represent the whole ensemble under 
consideration. As a consequence, if we can manage 
to construct a small sample representing adequately 
the ensemble of microstates of the analysed systems, 
then the conceptual difficulty of classical statistical 
mechanics will be reduced by a large extent.  

The program starts with an arbitrary energy 
distribution and generates successive microstates 
through a shuffling generator of energy exchanges 
simulating random binary interactions among 
particles, in which two identifiable particles 
exchange energy according to energy conservation 
law. Microstates successively generated are different 
only from the energies of the two interacting 
particles. A large number of repetitions of these 
procedures results in a large number of 
microscopically different configurations adopted by 
the system and the initial distribution will tend to 
the distribution having the maximum of 
multiplicity: the equilibrium distribution 
corresponding to the maximum of possible 
microstates.  

The analysis of the sequence of model macrostates 
is performed in terms of their relative probabilities W. 
Entropy S is calculated according to: 



The entropy concept 1257 

 

S ∝ log(W) 
The results show that the two analysed systems 

evolve towards states characterised by values of S 
which never decrease (except for fluctuations due to 
the low number of system particles) and equilibrium 
energy distributions are exponential for Einstein’s 
model and Maxwell’s distribution for the dilute gas 
model. 

While the operations of the energy shuffling 
generator give a concrete representation of the 
Boltzmann statistical ensemble associated with each 
macroscopic system, the method of counting system 
multiplicity gives an understandable description of 
the meaning of equilibrium. The logarithmic 
quantity called entropy has a perfectly clear meaning 
in terms of the fundamental notion of the 
‘multiplicity of a macrostate’. This notion can be 
easily related to the qualitative terms ‘order’ and 
‘disorder’ that are usually related in introductory 
textbooks to the entropy (entropy as ‘a measure of 
disorder’). The relationship with multiplicity 
becomes clear if we use the notion of ‘correlation’ as 
a conceptual intermediary (Baierlein 1994). In fact 
the notion of order implies that of strong correlation 
and consequently small multiplicity; that of disorder 
implies the notion of an absence of correlation and 
hence a large multiplicity. It follows that although 
the usual way of considering entropy as a measure of 
disorder is correct, this does not take one very far 
since a quantitative description of entropy from a 
statistical point of view can be gained only by 
connecting disorder with the ‘absence of correlation’ 
and then with multiplicity. 

Different simulated experiments can be 
performed using two systems A and B, having 
energies EA and EB and entropies SA and SB 
respectively, that are allowed to interact in different 
irreversible ways. The simulated experiments show 
that entropy is an extensive non-conserved quantity 
since the final entropy of system A+B is greater 
than the sum of initial entropies of the two systems 
A and B (for further details see Bellomonte and 
Sperandeo-Mineo 1997). Looking quantitatively to 
interactions of systems with different initial energies 
and analysing the direction of the energy flows, 
statistical entropy can be connected with 
temperature and with energy input by heating and, 
consequently, to its thermodynamical definition 
(Bairlein 1994, Moore and Schroeder 1997). 

Discussion and conclusion 

The described approach has been tried out in 
two university courses for teacher training: a pre-
service teacher training course and an in-service 

teacher training course. Approximately thirty people 
attended each course. They had graduated in 
mathematics and had already frequented two 
Physics courses. Their university curriculum only 
included a thermodynamic introduction of entropy 
concept.  

After a lecture recalling fundamental aspects of 
the thermodynamic definition of entropy, in both 
courses teachers (and future teachers) attended to a 
Seminar3 aimed to introduce the main aspects of 
Boltzmann’s work, including his role in the 
development of Physics. They investigated the 
subject by using some chapters of two books (Brush 
1976, Cercignani 1998) and some chosen pages of 
Boltzmann’s papers. Successively, they worked in 
small groups using the prepared software: 
simulations visualising system evolutions as well as 
spreadsheets (allowing easy modifications of model 
features). At the end of the course, they were 
requested to prepare a small project of 
experimentation aimed at the introduction of the 
subject in high school classrooms. The project was 
supposed to describe the chosen teaching approach 
and materials: conceptual maps of the subject, 
Students Sheets to guide students in using computer 
simulations and bibliographic references reporting 
the historical elements considered relevant for 
student understanding. 

Twenty teachers experimented the approach in 
their classrooms and evaluated learning and interest 
of their students. The analysis of the evaluation 
materials is in progress. Nevertheless, some 
preliminary results can be drawn: 

- The students’ interest for original historical 
materials was unfailing. Students evidenced 
that it was really stimulating to follow the 
conjectures of the scientist who discovered a 
fact and/or invented a model. They reported 
that “since Boltzmann’s paper was the first 
one describing the topic, inevitably it must 
contain the clearest explanation, since he had 
the privilege of convincing people to accept 
his ideas”. 

- Students have shown a clear understanding of 
the equilibrium concept as well as of the 
second law of Thermodynamics. The 
meaning of irreversibility and heat flow has 
been well understood. 

- Many students revealed a strong interest for 
paradoxes and scientific controversies and 
some teachers decided to amplify this aspect 
in successive classroom experimentation. 

                                                        
3 The seminar has been conducted by a professor of the History of 

Physics. 
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- Some students met with difficulties when 
statistical concepts were connected with 
thermodynamic concepts: qualitative 
relationships appeared easily understandable 
but quantitative correlations needed more 
accurate calculations. Further spreadsheet 
calculations are in preparations in order to 
clarify this aspect.  

Our experience shows that, even if the 
introduction of statistical analysis of thermal 
phenomena may appear a bit difficult and 
sophisticated to many experienced teachers, the use 
of appropriate educational methods and tools makes 
this workable. Students show a much better 
understanding of thermal phenomena than when 
they are exposed only to empirical Thermodynamics 
and computer experiments. Moreover, historical 
accounts have a significant role in helping 
understanding and in stimulating interest. 

Appendix 

Experiments with models 
1. Boltzmann’s vessel. A very large number4 of 
little spheres, all equal except for the colour, since 
half of them are white and the other half black, are 
contained in a big vessel. A player picks from vessel 
N spheres M times. The program enumerates the 
various events {nb,nw}, calculates their frequencies 
and compares these with their probabilities for 
different values of N and M (see Figure 1). 

2. Shuffling of energy among particles. We 
consider an isolated system of N particles having a 
total energy E = Σεi: where εi indicates the energy of 
particle i, εi = kε (with k an integer ranging 0 ÷ 
K=E/ε )and ε is an arbitrary energy unit.  

Assigned the initial energy values εoi (E = Σεoi ), 
different system microstates are generated by 
random exchanges of energy among particles. This 
shuffling procedure generates successive microstates 
according to the following rules of generalised 
binary interactions: 

a)  two identifiable, randomly selected particles i 
and j are chosen and are supposed to interact 
with each other; 

b)  the interaction produces a random change in 
particle energies from εi and εj to εi’ and εj’ 
subjected to energy conservation law: 

 
εi + εj = (ki+ kj) ε = kijε = (k’i+ k’j) ε  (1) 

                                                        
4 The number of balls contained in the box must be much greater 

than the number of the drawn balls in order to make all the 
drawings equivalent. 

Initial and final values of energies are related to 
each other by: 

 
ki’ = int(r kij ), kj

’ = kij - ki’     (2) 
 
where r is a random variable (in the range 0 ÷ 1), 
with a proper probability distribution, and ki’ and kj

’ 
are the numbers of energy units assigned to particles 
i, and j respectively, as a consequence of interaction. 
 

 

Figure 1a. Video-display of the vessel program: for low values of 
the number of spheres N and of picks M, the program displays 
the result of each pick and the event frequencies. The figure 
shows the result of 10 picks of 8 spheres 

In order to determine the variable r, we need 
more information about particles, in particular about 
their degrees of freedom. In this way the program 
differentiates Einstein’s solid model (I Case) and 
dilute gas model (II Case). 

I Case- modelling an Einstein’s solid. The first 
pioneering educational simulation of N Einstein’s 
oscillators has been performed in the Nuffield 
Project Unit “Change and Chance” (1972). Our 
simulation is in the same direction and shows that 
uniform random interchanges of energy among 
distinguishable elements give rise to an exponential 
distribution. The system starts with an arbitrary 
distribution of energy units and successive system 
microstates are generated according to equation (2), 
where r indicates a random number uniformly 
distributed in the range 0 ÷ 1.  
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Figure 1b. Plots of the frequencies of occurrence of the various 
events {nb,nw} (nblack = 0…..8; nwhite =8…0) and of their 
probabilities in 10,000 picks 

Figure 2 shows the mean energy distribution for 
a sample of 1,000 oscillators, after 10,000 
interactions. For each partition {ni}, the program 
calculates its multiplicity and the related entropy S 
according to: 

 
S ∝ log(W) = log[N!/( n1!n2!..... nk!)].   (3) 

 
The program allows a qualitative as well a 

quantitative analysis of the results and, in this last 
case, the system temperature can be calculated and 
related to system energy and entropy.  

 

 

Figure 2. Histogram of the mean energy distribution for a system 
of 1,000 Einstein oscillators: the mean energy per oscillator is 5 
(in arbitrary units). Averages are calculated upon 10,000 
partitions. The curve plots the theoretical exponential distribution 

II Case: modelling a diluted gas. A microstate of 
a system of N particles, simulating a diluted gas, is 
determined when the positions and velocities of all 
particles are known. Let us limit ourselves to kinetic 
energy. In order to visualise our discrete modelling 
of particle energies we divide the three-dimension 
velocity space into shells of thickness ∆v = √(∆vx

2 
+∆vy

2 +∆vz
2) in a such way that two adjacent shells 

include velocity vectors of particles whose energy 
values are different only for one energy unit ε : i. e., 
two particles (of unitary mass), whose velocity 
vectors are proper to two adjacent shells, have an 
energy difference given by: 

 
1/2 [(v+∆v)2-v2] = ε  v∆v = ε     (4) 
 
by disregarding the ∆v2 term. 

The volume of the kth shell is: 
 
∆V = 4π v2 ∆v = 4π √(2kε) ε = 4π ε √ (2k) (5) 
 
where v=√(2kε). 

According to basic assumption that equal a priori 
probabilities are assigned to equal volumes in 
velocity space5, each particle i has a probability of 
having an energy kε proportional to (√ k): 
 
P(kε) ∝ √ k           (6) 

 
The shuffling generator will assign to interacting 

particles i and j the new energies εi’= ki’ε and εj’ = 
kj’ε according to the composed probability: 
 
P(εi, εj ⇒ εi’εj’) ∝ √(εi’) √(εj’) = ε√( ki’(kij - ki’)) (7) 
 
where kij is the constant defined in (1). 

It turns out that, for each interaction, we have to 
generate a random number r in the interval 0÷kij 
with the probability distribution given by (7). We 
used the “rejection method” (Wong 1992). For 
further information see Bellomonte and Sperandeo-
Mineo (1997).  

Figure 3 reports the results obtained in the 
simulation of a system consisting of 1,000 particles. 
The initial conditions assign to all the particles the 
same energy ε0 = 15 (in arbitrary units). The 
calculated entropy values show that approximately 
after 1.5 ÷ 2 mean interactions per particle the 
system is already in equilibrium and ln(W) 
approaches its maximum value. It can be also 

                                                        
5 This assumption is easily understandable on the base of 

previous simulations analysing the diffusion of particles in boxes 
of different volumes. 
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observed that the energy distribution becomes 
almost constant, except for fluctuations due to the 
small number of particles. It is well fitted by 
Maxwell’s energy distribution. The plotting of 
velocity distribution is straightforward.  

 

 

Figure 3. Histogram of the mean energy distribution for a system 
of 1,000 particles modelling a diluted gas: the mean energy per 
oscillator is 15 (in arbitrary units). Averages are calculated upon 
10,000 partitions. The curve plots the theoretical Maxwell 
distribution 
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