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ABSTRACT. A subdivision algorithm is presented and applied to solving commonly 
found chemical engineering problems described by nonlinear algebraic systems. For this 
purpose, a web-based library available in the literature was used as the main source to select 
a wide class of one- and multidimensional problems, comprising phase and chemical 
equilibrium, conversion in tubular and continuous stirred tank reactors, material and 
energy balances, etc. The problems are classified according to the literature as low, 
intermediate and of high degree of numerical difficulty based on specific characteristics, like 
discontinuities in the functions, multiple solutions with the occurrence of false and 
unfeasible roots, and the presence of null derivative values. It is shown that the algorithm is 
efficient and robust, even for multidimensional problems of high numerical difficulty, 
allowing to find simultaneously all the feasible roots of nonlinear algebraic systems, 
naturally excluding false and unfeasible solutions, with a relatively low CPU time. These 
features make the algorithm an interesting alternative to deal with chemical engineering 
problems in contrast to some methods currently in the literature. 

Key words:  numerical analysis, nonlinear equations, multiple solutions, subdivision algorithm, 
simulation, chemical engineering processes. 

RESUMO. Aplicação de um algoritmo de subdivisão para solução de sistemas de 

equações algébricas não-lineares. Um algoritmo de subdivisão é apresentado e aplicado 
à solução de problemas descritos por sistemas de equações algébricas não-lineares 
comumente encontrados na engenharia química. Uma biblioteca disponível, na literatura, 
foi utilizada como fonte principal para a seleção dos problemas a serem resolvidos com uma 
ou várias dimensões, compreendendo problemas de equilíbrio químico e de fases, conversão 
em reatores tubulares e contínuos, balanços material e energético, entre outros. Os 
problemas foram classificados pela literatura com grau de dificuldade numérica baixa, 
intermediária e alta, com base em características específicas como a existência de 
descontinuidades nas funções, múltiplas soluções com raízes falsas. O algoritmo mostrou-se 
eficiente e robusto, mesmo para problemas multidimensionais de alta dificuldade numérica, 
permitindo encontrar simultaneamente todas as raízes corretas (fisicamente possíveis) dos 
sistemas algébricos não-lineares, naturalmente excluindo soluções falsas com um tempo de 
CPU relativamente baixo. Estas características fazem deste algoritmo uma alternativa 
interessante para solucionar os problemas da engenharia química em contraste com alguns 
métodos atualmente disponíveis na literatura. 

Palavras-chave:  análise numérica, equações não lineares, múltiplas soluções, algoritmo de 
subdivisão, simulação, processos de engenharia química. 

IntroductionIntroductionIntroductionIntroduction    

The development of efficient iterative methods 
and strategies for obtaining all solutions of complex 
problems in chemical engineering processes is of 
unquestionable relevance for both academia and 
industry circles. In particular, chemical engineers are 
often interested in solving systems of nonlinear 
algebraic equations with high-dimensional order, 
involving a variety of numerical difficulties existing 
in this wide and fascinating (chemical engineering) 
 

science field. Despite some significant advances 
reached in the last years, there are still many 
challenges to overcome, such as the development of 
robust and easy-implementation algorithms able to 
simultaneous find all solutions of nonlinear 
algebraic systems. These remarkable challenges in 
this area are still greater when transcendental terms 
are encountered in these equations (Gritton et al., 
2001). The complex nonlinear nature of several 
problems in chemical engineering is commonly 
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described by phenomenological or empirical models 
represented by nonlinear algebraic equations. 
Consequently, the development of methods for 
solving this kind of mathematical problem is 
fundamental towards running accessible chemical 
engineering processes, and also for the proposition 
and establishment of new technologies, mainly those 
referring to process simulation, analysis, synthesis 
and optimization (Gritton et al., 2001; Shacham et al., 
2002). 

According to the literature, methods for 
determining zeros of a single nonlinear equation f(x) 
= 0 or of a system of nonlinear equations F(x) = 0, 
can be classified into three classes: 

i) local methods. These methods have as main 
feature the need for an initial guess sufficiently close 
to the intended root, which is in fact its major 
limitation. The initial guess accuracy necessary for 
successful implementation of these methods varies 
with the function non-linearity degree (Shacham  
et al., 2002). These methods nevertheless present the 
excellent property of quadratic convergence. To find 
all roots of nonlinear systems, several distinct initial 
guesses are generally required, and to each initial 
guess there is only one solution associated. The 
Newton (or Newton-Raphson) and quasi-Newton 
are the local methods most commonly employed 
(Press et al., 1992; Pernice and Walker, 1998; 
Kreyszig, 1999; Shacham et al., 2002). 

ii) global methods. These methods are 
characterized by offering assured convergence, 
independently of how close the initial guesses are to 
the roots. Besides, they can be adapted to search 
multiple roots or solutions from a unique initial 
guess (Shacham et al., 2002). Within the class of 
global methods, one might call attention to the 
Homotopy Continuation Method (Davidenko, 
1953; Keller, 1978; Wayburn and Seader, 1987; 
Kuno and Seader, 1988; Seader et al., 1990; Seider  
et al., 1991) and the Improved Memory Method 
(Shacham, 1989; 1990). In brief, the Homotopy 
method is capable of finding the roots of a nonlinear 
equation, or of a system of nonlinear algebraic 
equations arising from combination of two 
functions: a function for which a zero is known or 
readily obtained, say G(x), and other functions 
whose zeros (roots) are sought (F(x)). The roots of 
the equation or system of equations are obtained by 
tracking a path from known solutions of a given 
simpler arbitrary equation (G(x)) until finding the 
root of the F(x) equation. In this method, multiple 
solutions can be found (Wayburn and Seader, 1987; 
Kuno and Seader, 1988; Seader et al., 1990; Seider  
et al., 1991; Gritton, 2001). The Improved Memory 

Method (IMM), presented by Shacham (Shacham, 
1989; 1990) can be extremely efficient and robust, 
provided the user has a very good idea of the 
approximate value of the solution. Compared with 
the IMM, the Homotopy Continuation Method is 
computationally hard; nevertheless a seeking interval 
is not necessary. 

iii) interval methods. These methods are able to 
locate all roots from specified variable intervals. 
However, their implementation is hard, needing 
specific operators for any arithmetic operations, 
which are known as interval operators (Kerfott and 
Novoa, 1990; Kerfott et al., 1994; Hua et al., 1996; 
1998; Gang Xu, 2001). Moreover, the analytic 
Jacobian must be known and implemented, which 
can be seen as an additional difficulty for its 
utilization, since not always are the equations 
differentiable or its derivation may be very onerous 
(Kolev, 1998). 

In a general sense, one can notice that the 
alternatives mentioned above present numerical 
limitations or implementation difficulties. These 
facts have prompted permanent investigations 
dedicated to the development of new robust 
algorithms, and the improvements of existing ones.  

Recently, Smiley and Chun (2001) presented a 
subdivision algorithm that allows one to locate 
simultaneously all roots of systems of nonlinear 
algebraic equations, from a given interval for variables. 
This characteristic allows classifying it as a global 
method. Another significant characteristic of the 
proposed method is that only conventional arithmetic 
operations are needed, making its implementation and 
application effortless. According to these authors, some 
of main features of the algorithm are its simplicity, 
robustness and reliability. 

One of the first algorithms presented in the 
literature that makes use of a schematic subdivision 
was the Weyl algorithm (Weyl, 1921), which was 
applied to determine the zero of a single polynomial 
equation. The use of subdivision algorithms has 
been reported in other contexts, such as the 
generation of curves and surfaces in geometric 
design problems (Gregory, 1991). According to 
Smiley and Chun (2001), a subdivision algorithm 
was also used by Dellnitz and Hohmann (1997) to 
determine the attractor of a dynamic system. The 
reader may be interested in reading the report of Pan 
(1997), who presented a short history and recent 
advances on solving polynomial equations. 

To our knowledge, application of subdivision 
algorithms in typical problems of chemical engineering 
has not been found in the specific technical literature. 
In this context, considering the potential of the method 
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and the need for reliable and robust mathematical tools 
to solve nonlinear problems, the aim of this work is to 
report the application of a subdivision algorithm to 
some commonly found chemical engineering 
problems, such as multiple steady state determination, 
reactor conversion and chemical and phase equilibrium 
calculations. 

MMMMaterial and methodsaterial and methodsaterial and methodsaterial and methods    

In general, a subdivision algorithm consists in 
starting from given intervals for the system variables, to 
apply a subdivision procedure for these intervals, 
generating congruent subintervals, and follow an 
evaluation test to check the existence of solutions in 
these subintervals. If the subinterval succeeds in the 
test, it is retained and continues in the procedure; 
otherwise it is discarded. After a finite number of 
subdivisions, a conventional method of local 
convergence (e.g., Newton-Raphson) can be used to 
find the roots. This may be done using the midpoint of 
the final subintervals, kept as initial guess for the 
conventional method of local convergence. In this way, 
depending on the number of subdivisions applied, the 
solution (or solutions) is confined in the retained 
intervals, which generally provides assured and 
efficient convergence of the local method employed. 

According to Smiley and Chun (2001), the basic 
idea of the subdivision algorithm is: given an 
interval for each variable of the system (“rectangle”) 

dR∈� , find all values of { : ( ) 0}d= ∈ =x* x F x� , 
by successive subdivision in R; where d is the 
dimension of the problem and F(x) is the system of 
nonlinear algebraic equations. 

In order to proceed with the subdivision of R, a 
partition sequence is necessary. A simple procedure to 
division of R to congruent sub-rectangles can be 
obtained by dividing R into two equal parts in each 

coordinate. Thus, for a rectangle set in 
d

�  there will be 
2d new generated rectangles or sub-rectangles. One can 
then name R of “parent” rectangle and the congruent 
sub-rectangles (from the division of R) of “children” 
rectangles. Then, for each “i” subdivision, Rij children 
sub-rectangles are obtained, where “j” is the number of 
generated sub-rectangles. For each Rij  obtained sub-
rectangle, a test for verifying the existence of roots of 
the system is applied. If the Rij sub-rectangle passes the 
test, it is retained and will be a new parent rectangle, 
which will be in turn subjected to a new subdivision at 
i = i + 1. 

A simple selection criterion for the sub-

rectangles retaining can be the use of the minimum 

value of the Euclidean norm of F(x), ||F(x)||. For 

each value of i ≥ 1 one can define: 

if i

Rx
x −

∈
≤ 2)(min F ,                                                      (1) 

 
Rij is retained; otherwise it is discarded. 
However, the requirement of finding the global 

minimum of || F(x)|| for each tested rectangle may be 
unviable, mainly for multidimensional systems. 
Other selection criterion can then be defined as: 
 
if ( ) 2 i

ij j Lρ−≤ +F x                                                 (2) 

 

Rij is retained; otherwise it is discarded. 
Here, ρj is the half largest side of the rectangle 

“j”, defined by 
,

,  1,..,j k k j
a b k dρ

∞
= − =  and 

||F(xij)||. is the Euclidean norm of F(x) in the 
midpoint (xij) set in Rij rectangle. This selection 
criterion requires the knowledge of L, the 
Lipschitz’s constant, which is defined for each tested 
problem. 

A third selection criterion can be thought as: 
 
if ( ) 2 i

ij ijτ−≤ +F x                                                     (3) 

 
Rij is retained; otherwise it is discarded. 

In this equation,  
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where y is a vector of random points in Rij, and ak and 
bk are, respectively, the lower and upper bounds of the 
Rij rectangle in the “k” dimension (or coordinate). 

According to Smiley and Chun (2001) the 

selection criterion of Equation (3) was the one that 

presented the best results concerning the 

acceleration of the rectangles exclusion process. For 

this reason, this was the selection criterion adopted 

throughout this work. 
For obtaining the coordinates of each “child” 

rectangle, the following scheme (or formulation) is 
proposed in this work: 

 

,
1,..., 2 ; 1,...,

            
k k m d k d

k k k

a A v
m k d

b a v
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             (5) 

 
and, 

 
1

( )                   1,...,
2k k kv B A k d= − =                       (6) 

 
where αm,d is a matrix of 0 (zero) and 1 (one) elements 
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combined in such way that, at each “m” iteration, 
“children” rectangles coordinates are obtained by 
Equation (5); Ak  and Bk are, respectively, the lower and 
upper bounds of the considered “parent” rectangles for 
each “k” variable; vk is the midpoint coordinate of the 
“parent” rectangle for “k” variable, ak and bk are the 
lower and upper coordinates for the new “child” 
rectangle in “k” variable. 

Furthermore, the utilization of an appropriate 
coverage strategy can be significant for accelerating 
the rectangles’ exclusion, mainly for complex 
problems. The coverage can be made after a finite 
number of subdivisions; the retained rectangles are 
revaluated and those not presenting common 
coordinates are defined as new rectangles. 

In the present work, only rectangles with one 
adjacent side, e.g., rectangles that have the same 
coordinates, in at least one dimension, are used to 
define a new rectangle. After the coverage, the new 
rectangles are tested employing the selection 
criterion. In Figure 1, the coverage strategy is 
illustrated. Figure 1(a) shows the retained rectangles 
after the i-th subdivision, and Figure 1(b) depicts the 
redefined rectangles after the coverage. 

 

x
1

 

Figure 1. (a) Rectangle saved after “i” subdivisions; (b) 
Rectangles presented in (a) after the coverage. 

In the present work, a computational code of the 
subdivision algorithm, with the denomination of 
SubDivNL, was implemented in Fortran 90 
language. The basic version of this code is described 
in the algorithm presented in below. In this 
algorithm, iRan is the sample number for each Rij 
rectangle, iMax is the maximum number of 
subdivisions, iCov is the maximum number of 
coverage and M is the number of retained rectangles 
for each subdivision “i”. 

i)  Given d, Ak e Bk (k=1,..,d), iRan, iMax, F(x), 
iCov 

ii)  Set M = 1 (initialize with a “parent” 
rectangle) 

iii)  For l=1,...,iCov do: 
a. For i=1,...,iMax do: 

b.i. Set m = 0 
b.ii. For j=1,...,M*2d do: 

1.  Apply Eqs. (5) and (6) to obtain the 
coordinate for each Rij “child” 
rectangle 

2.  Get nRan random samples into Rij  

3.   Evaluate ( )ijF x  for each random 

number into Rij 

4. Evaluate ijτ  (Eq. 4) 

5. If ( ) 2 i
ij ijτ−≤ +F x  (criterion 3)   then 

a. Retain the Rij rectangle  
b. Set m =m + 1 

6. Else discard it 
b.iii. Set M= m 

b. Evaluate the adjacent rectangles (coverage) 
c. Reset M (M = number of new rectangles) 

iv)  Use the Newton method to find 

( ){ }: 0d= ∈ =x* x F x� , applying the midpoint 

of each Rij as initial guess 
v)  Check the solutions (roots) found 
vi)  Show all solutions (roots) 
In order to illustrate the robustness and 

reliability of the proposed algorithm in finding all 
real solutions (roots) of nonlinear algebraic 
equations, some case studies are presented. Initially, 
with the aim to illustrate the procedure, a generic 
problem is considered. Afterwards, authentic, 
chemical engineering problems are investigated. 

ResultsResultsResultsResults and discussion and discussion and discussion and discussion    

For the solution of the following illustrative 
problem and also for the subsequent applications, a 
Personal Computer was used, with a Pentium IV 
processor, 2.66 GHz and 512 MB of RAM memory. 
For all of the considered problems, the midpoint of 
each selected final rectangle was used as the initial 
guess for Newton's method (subroutine mnewt 
presented by Press et al., 1992). Besides, it may be 
important to emphasize that throughout this work, 
the adopted criterion for coverage was to add 
rectangles with adjacent sides to form a new 
rectangle. Also, a scheme for variable sampling as a 
function of the number of subdivisions (i) is 
proposed in the case of high (greater than two) 
dimensional problems, resulting in significant 
reduction in CPU time. 

Illustrative problemIllustrative problemIllustrative problemIllustrative problem    

Let us consider the following system of nonlinear 
algebraic equations (two-dimensional problem): 

 

( )
( )

2
1 1 2 1 2 1

2 1 2 2 1 2

, sin

, ln

f w w w w w

f w w w w w

= +

= +
                                           (7) 
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In order to locate the roots of this problem, the 
following intervals for the variables w1 [-10.0, 10.0] 
and variable w2 [1.0, 20.0] were taken. The 
maximum number of subdivisions was iMax = 5, 
and the coverage number iCov = 2. 

From the retained rectangles after i = 5 for iCov 
= 2, and using the midpoint in each final rectangle 
as the initial guess, Newton’s method was then 
employed to find the roots of the problem. The 
distinct solutions found (roots), with four decimals 
of significance are presented in Table 1 along with 
the roots obtained with the application of software 
Maple 9.5 (Waterloo Inc.). Notice that, for the 
latter case different and multiple initial guesses were 
needed to find the solutions of the problem. 

Table 1. Roots of the illustrative problem applying the 
SubDivNL algorithm  and Maple 9.5 software. 

SubDivNL algorithm  Maple 9.5 
Roots 
Number Roots Values 

(w1, w2) 
 Initial Guess 

(w1, w2) 
Roots Values 

(w1, w2) 

Root 1 0.224811x10-11, 1.0000 
 1. (1.0,  2.0) 

2. (5.0,  20.0) 
3. (10.0,  30.0) 

0.0000,  1.0000 

     

Root 2 
-36.7786x10-2,  
265.8089x10-2 

 4. (-5.0,  2.0) 
5. (10.0, -30.0) 
6. (-10.0, -30.0) 

-36.7786x10-2,  
265.8089x10-2 

 

From these results one can see that the 
subdivision algorithm was efficient in finding 
simultaneously all the roots (solutions) for the 
problem considered. This is an important 
characteristic of the method, an advantage relatively 
to local convergence methods. The CPU processing 
time for solving the illustrative problem with the 
present algorithm using the PC configuration 
described before was only 0.10 s. 

Application to chemical engineering problemsApplication to chemical engineering problemsApplication to chemical engineering problemsApplication to chemical engineering problems    

Shacham et al. (2002) has presented a pool of 
systems of nonlinear algebraic equations, typical 
problems of chemical engineering science, with 
distinct degree of difficulty, from one to 
multidimensional systems, which are quite useful to 
test algorithm performance and numerical methods 
intended to solve nonlinear algebraic equations. In 
this work, the mentioned web-based library was 
used as a reference to compare the results from the 
application of the subdivision algorithm SubDivNL. 
Details about the problems considered in this work 
can be found in the original reference (Shacham  
et al., 2002). In the present work, the variables units 
and constants, as well as the whole nomenclature for 
each problem were kept and used as presented in the 
original reference. 

OneOneOneOne----dimensional problemsdimensional problemsdimensional problemsdimensional problems    

In this section, some one-dimensional problems 
are solved. A brief description of each one, as well as 
the parameters employed in the algorithm 
SubDivNL are presented. The results found for the 
one-dimensional problems obtained from this work 
are shown in Table 2, along with a comparison with 
literature. This table presents the roots found by the 
SubDivNL algorithm and the roots values and 
intervals used in the literature. 

Table 2. Results for one-dimensional problems. 

SubDivNL algorithm  Literature (Shacham et al., 2002) Roots 
Number Roots Values  Interval Roots Values 

P1 Problem: variable (P)   

Root 1 25.7439  Xmin = 1.0 25.7440 
Root 2 78.9054  Xmax= 100.0 78.9054 

P2 Problem: variable (X)   

Root 1 0.058654  Xmin = 0.0 0.058655 
Root 2 0.600323  Xmax = 1.0 0.600323 

P3 Problem: variable (X)   

Root 1 0.999984  Xmin = 0.75 
Xmax = 1.25 

0.999252 

 

P1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a converging----diverging diverging diverging diverging 

nozzlenozzlenozzlenozzle    

The P1 problem deals with the pressure drop in a 
converging-diverging nozzle. The model for this 
problem comprises an implicit equation in pressure 
(P). According to Shacham et al. (2002), this problem 
presents a low degree of difficulty and a discontinuity 
for negative values of P, resulting in a constraint to this 
variable (P ≥ 0). Another feature of this function is the 
existence of a stationary (maximum) point, i.e., null 
derivative, hindering the convergence of any method 
that uses derivative values. The following values were 
used for the SubDivNL algorithm: the interval of the 
unknown variable (P) was [0.0, 100.0], the subdivision 
number i = 14, and the coverage was set equal to zero 
(iCov = 0). The subdivision algorithm found the two 
roots for this problem with a CPU time of 0.05 s. 

P2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium I    

Problem P2 refers to chemical equilibrium, with an 
implicit equation in the conversion (X). Therefore, this 
variable is restricted to [0.0, 1.0] interval. This is the 
seek interval utilized in the SubDivNL algorithm. Also, 
a subdivision number i = 14 without covering (iCov = 
0) was adopted. This problem was classified by 
Shacham et al. (2002) as of intermediate difficulty level. 
The function is undefined for X = 0.26667, which 
makes difficult the convergence of methods based on 
derivative values. Again, as it can be verified in Table 2, 
this kind of behavior did not obstruct the subdivision 
algorithm to find all the roots with a low CPU time, 
equal to 0.05 s. 
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P3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactor    

This problem consists in the conversion 
evaluation in a tubular reactor. The interval used for 
the conversion (X), which is the independent 
variable, was [0.5, 1.5], together with i = 10 and 
iCov = 3. The required CPU time for solving the 
problem was 0.36 s. It may be pertinent to mention 
that, for this problem, the function values are very 
low (in the order of 10-8) in the investigated interval, 
and there is a discontinuity point close to the root, 
making its determination difficult. Nevertheless, the 
SubDivNL algorithm did not encounter severe 
difficulties in solving this problem and found its two 
roots simultaneously, in spite of being classified with 
high level of numerical difficulty by the literature 

(Shacham et al., 2002). This fact may have been the 
cause of the increase in the computational time in 
relation to the problems presented previously. 

For all one-dimensional problems considered in 
this section, the SubDivNL algorithm showed to be 
efficient in determining all the roots with low CPU 
time, independent on the difficulty degree. 

TwoTwoTwoTwo----dimensional problemsdimensional problemsdimensional problemsdimensional problems    

Table 3 presents the results obtained in solving 
three investigated two-dimensional problems. 
Similarly to Table 2, results from the literature 
(Shacham et al., 2002) and those obtained with the 
application of the SubDivNL algorithm are 
compared. It can be observed from this table that 
literature points out the use of different initial 
guesses to find the roots. 

Table 3. Results for two-dimensional problems. 

SubDivNL algorithm  Literature (Shacham et al., 2002) Roots 
Number Roots Values  Initial Guess Roots Values 

P4 Problem: variables (X1, X2)   

Root 1 0.600323,  
-3.5799 

 1. (0.0, 1.0) 
2. (0.5, 0.1) 

a 0.600323,  
-3.5799 

Root 2 0.586546x10-1, 
0.867438 

 3. (0.0, 1.0) 
4. (0.5, 0.1) 

0.586546x10-1, 
0.867438 

P5 Problem: variables (X, T)   

Root 1 0.963868,  
346.1637 

 1. (1.0, 400.0) 
2. (0.0, 300.0) 
3. (0.5, 320.0) 
4. (0.0, 350.0) 

0.963868,  
346.1636 

P6 Problem: variables (X1, X2)   

Root 1 0.757396,  
0.021302 

 1. (0.9, 0.5) 
2. (0.5, 0.5) 
3. (0.4, 0.005) 

0.757396,  
0.021302 

Root 2 - -  4. (0.6, 0.1) a 1.098984,   
-0.149492 

P7 Problem: variables (A, B)    

Root 1 0.758077,  
1.124904 

 1. (0.5, 0.5) 
2. (1.0, 1.0) 
3. (5.0, 5.0) 

0.758077,  
1.124903 

Root 2 - -  4. (8.0, 2.0) b -4.2476x10-7, 
8.9296x10-7 

aUnfeasible solution. For problem P6, most methods do not converge from the 1st 
initial guess and will converge to the unfeasible solution after the 4th initial guess.  
bFalse solution. 

P4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium II    

The P4 problem is composed by two implicit 
equations in X1 and X2, the conversions of components 
1 and 2, respectively. In the determination of the roots 
with the SubDivNL algorithm, 6 subdivisions were 
used (i = 6) and just one coverage (iCov = 1). For the 
purpose of illustration, we first assumed for the 
SubDivNL the interval for both variables as [-4.0, 4.0]. 
The SubDivNL algorithm found the two roots starting 
from this interval, with a low CPU time, equal to  
0.21 s. Conversely, for the results obtained by the 
literature, several initial estimates were necessary for 
the determination of these two roots. According to 
Shacham et al. (2002), this problem can be classified as 
of intermediate level. Note that the first and second 
initial guesses converge to the first root, and the third 
and fourth guesses converge to the second root. 

For this problem, since the variables are 
constrained into [0.0, 1.0] interval, the first root 
reported in the literature is in fact an unfeasible 
solution. With the present algorithm (SubDivNL), 
such root can be avoided by simply restricting the 
interval of the variables (X1, X2) to [0.0, 1.0]. 
Starting from this interval, only the second (feasible) 
root is found (X1 = 0.058655, X2 = 0.867438). 

P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on 

a reactora reactora reactora reactor    

The equations of the P5 problem refer to the 
material and energy balances in a reactor in steady 
state, resulting in two nonlinear equations in the 
variables conversion (X) and temperature (T). For 
this problem, only one root was found by the 
SubDivNL algorithm, as can be verified in Table 3. 
The subdivision algorithm used the seek intervals of 
[0.0, 1.0], [100.0, 800.0], with no coverage  
(iCov = 0) and ten subdivisions (i = 10). The CPU 
time for the solution of this problem with the 
SubDivNL algorithm was 0.40 s, which is low, 
mainly considering the numerical difficulty for 
convergence of the local method to the root. 

The cited literature classifies this problem as of 
high numerical difficulty level and the authors use 
four initial guesses for the determination of the root. 
In addition, these authors report that, due to the 
occurrence of singular points, most of the numerical 
methods available in the literature do not converge 
starting from the second and third initial guesses. 

P6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactor    

Problem P6 deals with the conversion in a 
reactor and is classified, according to the literature 
(Shacham et al., 2002), as of high degree of 
numerical difficulty. The problem is composed by 
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two nonlinear equations with variables X1 and X2, 
which are constrained into [0.0, 1.0] interval. The 
parameters used in the roots search (solutions) were: 
subdivision number i = 5, coverage number iCov = 
2 and variables intervals for X1 and X2 of [0.1, 0.9], 
[0.001, 1.0], respectively. The results presented in 
the literature for this case show the same root, but 
with three different initial guesses. One should also 
note from Table 3 that, the convergence from the 
fourth guess leads to an unfeasible solution, not 
found by the SubDivNL algorithm, since that value 
is out of the interval used.  

This example calls attention to an important 
characteristic of the SubDivNL algorithm, i.e., the 
method prevents convergence for solutions that are 
out of the specified interval, which means to respect 
the restrictions for the variables involved. 

P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from 

azeotropic data (ethanol + nazeotropic data (ethanol + nazeotropic data (ethanol + nazeotropic data (ethanol + n----heptane system)heptane system)heptane system)heptane system)    

Problem P7 refers to the calculation of the 
coefficients of van Laar's equation, parameters A and 
B, from an experimental azeotropic point for the 
system ethanol + n-heptane. The parameters used 
in the SubDivNL algorithm were in the interval of 
[0.0, 2.0] for both variables, number of subdivisions 
i = 6 and number of coverage iCov = 1. With this 
specification, the algorithm found only one root, 
with a CPU time of 0.2 s.  

According to the literature, this problem can be 
classified as of high degree of numerical difficulty, as 
it presents a discontinuity, the system of equations is 
not defined at A=0 and B=0, and the solution is 
restricted to A, B > 0. For this case, the literature 
points out the determination of two roots, the first 
one obtained from three different initial guesses 
giving the same root found by the SubDivNL 
algorithm (see Table 3). The other root reported in 
the literature, not found by the SubDivNL 
algorithm, is a false solution because it does not 
obey the restriction of the variables. This problem 
illustrates again the significant feature of the 
SubDivNL algorithm in keeping the solutions inside 
(restricted to) the specified interval.  

For the two-dimensional problems presented, 
the SubDivNL algorithm was able to find 
simultaneously all the roots, from only one seek 
interval, without presenting convergence problems. 
This means that common difficulties arising from 
the application of conventional algorithms reported 
in the literature, such as the need for using several 
initial guesses to find different roots and 
convergence problems, are easily overcome by the 
SubDivNL algorithm. Moreover, the algorithm did 

not allow the convergence to unfeasible and false 
solutions. This is a relevant feature of the 
SubDivNL algorithm, particularly to chemical 
engineering applications, where often not all the 
roots of nonlinear algebraic systems are true 
solutions of the engineering problem. 

P8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquid----

liquid equilibriumliquid equilibriumliquid equilibriumliquid equilibrium    

Liquid-liquid equilibrium calculations can be 
considered a class of problems of high degree of 
numerical difficulty because multiple solutions 
(roots) can be generally found (Baker et al., 1982; 
Corazza et al., 2004; Rangaiah, 2001; Gecegormez 
and Demirel, 2005). 

For the stability test, we have employed the 
criterion of the Gibbs surface tangent plane distance 
function (TDP): 

 

{ }*( ) ln( ) ln( )
nc

k k k k k
k

TPD y y z= −∑y γ γ                          (8) 

 

where, γk  and 
*
kγ are the activity coefficients of 

component “k” for new tried and tested phase, 
respectively, yk and zk are the compositions of new 
(tried) and tested phase, respectively, and nc stands for 
number of components. As the solutions for Equation 
(8) are stationary points, the system can be solved by 
differentiating with respect to yk to obtain the following 
system of non-linear algebraic equations: 

 

{ } { }* *ln( ) ln( ) ln( ) ln( ) 0 ;  k 1,..., 1

1

k k k k nc nc nc nc

nc

k
k

z y z nc

y

− − − = = −

=∑

γ γ γ γ γ  (9) 

 
In order to test the subdivision algorithm for 

liquid-liquid phase stability analysis, the binary 
system water(1)+butanenitrile(2) was selected from 
the literature (Gecegormez and Demirel, 2005), and 
the NRTL model was used to describe the real 
liquid solution. The system was chosen due to its 
non easy numerical solution. The parameters of the 
NRTL model were taken from (Letcher and 
Naicker, 2001). The SubDivNL algorithm was 
employed using the interval of [0.0, 1.0], for 
composition of tested liquid phases (y), with six 
subdivisions (i = 6), and no coverage (iCov = 0). 
Table 4 presents the stability test calculations at 
some distinct global compositions specified, where 
one can see that the same solutions (roots) were 
found by the SubDivNL algorithm compared to the 
interval analysis method, but with a notably faster 
CPU (Computer Process Unit) time. 
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Table 4. Results for Problem P8: stability test analysis applied to liquid-liquid equilibrium of water(1)+butanenitrile(2) at 298.15 K. 

SubDivNL IN/GB* (Gecegormez and Demirel, 2005) Input (z1, z2) 
Roots (y1, y2) TPD (y) CPU (s) Roots (y1, y2) TPD (y) CPU (s) 

(0.15, 0.85) (0.1500, 0.8500) 
(0.5810, 0.4190) 

(0.9980, 2.0467 × 10–3) 

1.0000 × 10–9 

4.2080 × 10–2 
–0.2230 × 10–0 

0.08 (0.1500, 0.8500) 
(0.5810, 0.4190) 

(0.9979, 2.0467 × 10–3) 

0.0000 × 10–0 

4.2080 × 10–2 
–0.2230 × 10–0 

26 

(0.20, 0.80) (0.2000, 0.8000) 
(0.4835, 0.5165) 

(0.9981, 1.8634 × 10–3) 

1.0000 × 10–8 

1.0652 × 10–2 

–0.2942 × 10–0 

0.10 (0.2000, 0.8000) 
(0.4835, 0.5165) 

(0.9981, 1.8634 × 10–3) 

0.0000 × 10–0 

1.0652 × 10–2 

–0.2942 × 10–0 

24 

(0.25, 0.75) (0.2500, 0.7500) 
(0.4034, 0.5966) 

(0.9982, 1.7843 × 10–3) 

1.0000 × 10–9 

1.6082 × 10–3 
–0.3253 × 10–0 

0.10 (0.2500, 0.7500) 
(0.4034, 0.5966) 

(0.9982, 1.7843 × 10–3) 

0.0000 × 10–0 

1.6082 × 10–3 
–0.3253 × 10–0 

25 

(0.30, 0.70) (0.3000, 0.7000) 
(0.3407, 0.6593) 

(0.9982, 1.7564 × 10–3) 

1.0000 × 10–9 

2.9594 × 10–5 
–0.3359 × 10–0 

0.10 (0.3000, 0.7000) 
(0.3407, 0.6593) 

(0.9982, 1.7564 × 10–3) 

0.0000 × 10–0 

2.9584 × 10–5 
–0.3359 × 10–0 

27 

(0.40, 0.60) (0.2524, 0.7476) 
(0.4000, 0.6000) 

(0.9982, 1.7820 × 10–3) 

–1.4308 × 10–3 
1.0000 × 10–8 
–0.3276 × 10–0 

0.09 (0.2524, 0.7476) 
(0.4000, 0.6000) 

(0.9982, 1.7821 × 10–3) 

–1.4309 × 10–3 
0.0000 × 10–0 
–0.3276 × 10–0 

26 

(0.45, 0.55) (0.2195, 0.7805) 
(0.4500, 0.5500) 

(0.9982, 1.8241 × 10–3) 

–5.5825 × 10–3 
1.0000 × 10–8 
–0.3153 × 10–0 

0.09 (0.2195, 0.7805) 
(0.4500, 0.5500) 

(0.9982, 1.8242 × 10–3) 

–5.5825 × 10–3 
0.0000 × 10–0 
–0.3153 × 10–0 

25 

(0.50, 0.50) (0.1909, 0.8091) 
(0.5000, 0.5000) 

(0.9981, 1.8865 × 10–3) 

–1.4010 × 10–2 
1.0000 × 10–9 
–0.2991 × 10–0 

0.09 (0.1909, 0.8091) 
(0.5000, 0.5000) 

(0.9981, 1.8865 × 10–3) 

–1.4010 × 10–2 
0.0000 × 10–0 
–0.2991 × 10–0 

25 

* Interval Analysis Method. 

ThreeThreeThreeThree----dimensional problemsdimensional problemsdimensional problemsdimensional problems    

Table 5 presents the results obtained with 
SubDivNL algorithm and those available in the 
literature (Shacham et al., 2002) for the three-
dimensional problems considered here. As one could 
expect, solution of these problems with the SubDivNL 
algorithm required longer CPU time compared to 
two-dimensional examples, due probably to the greater 
dimension of the problems and the consequent greater 
coverage number adopted to root seeking. 

P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR reactorreactorreactorreactor    

The equations of the first three-dimensional 
problem describe the steady state operation of an 
adiabatic CSTR. Problem P9 takes into account 
three equations with concentrations of A (CA) and 
B (CB), and the temperature (T) as variables. The 
intervals used by the SubDivNL algorithm were 
[0.0, 4.0], [0.0, 4.0], and [300.0, 800.0], 
respectively. In addition, six subdivisions (i = 6) 
and no coverage (iCov = 0) were adopted. The 
algorithm spent 3.09 s for the determination of the 
five roots, a more CPU time-consuming compared 
to previous problems. This is a consequence of the 
larger dimension of this problem, and also due to 
the greater number of rectangles retained during 
the execution of SubDivNL algorithm required to 
assure simultaneous determination of the five 
roots. 

The CPU time can increase rapidly with the 
increase of dimension of the problem as well as with 
the number of roots. Nevertheless, as mentioned by 
Smiley and Chun (2001), for small rectangles (after 
some exclusion) a greater number of sampling can 

be avoided. Then, in this work, we propose the 
scheme shown in Figure 2 to sample the random 
number in each children rectangle. 

Table 5. Results for three-dimensional problems. 

SubDivNL algorithm  Literature 
(Shacham et al., 2002) 

Roots 
Number 

Roots Values  Initial Guess Roots Values 

P9 Problem: variables (CA, CB, T)   

Root 1 2.7873, 
0.212680, 
310.2126 

 (3.0, 0.0, 300) 2.7873, 
0.212679, 
310.2126 

Root 2 2.3805, 
0.619577, 
333.4925 

 (3.0, 0.0, 350) 2.3804, 
0.619577, 
333.4925 

Root 3 0.126396, 
2.8499, 
462.5692 

 (3.0, 0.0, 400) 0.126397, 
2.8499, 
462.5692 

Root 4 0.380121x10-02, 
1.7136, 
594.0274 

 (3.0, 0.0, 600) 0.380106x10-02, 
1.7136, 
594.0274 

Root 5 0.379757x10-03, 
0.688892, 
691.6242 

 (3.0, 0.0, 700) 0.379757x10-04, 
0.688892, 
691.6242 

P10 Problem: variables (T, X, Tj)   

Root 1 573.8548, 
0.521391, 
537.2534 

 a - 537.8548, 
0.521391, 
537.2534 

Root 2 590.3498, 
0.330187, 
585.7298 

 a - 590.3498, 
0.330187, 
585.7298 

Root 3 671.2278, 
0.354669x10-01, 

660.4162 

 a - 671.2783, 
0.0354195, 
660.4629 

P11 Problem: variables (x1, y1, α)   

Root 1 0.226975x10-01, 
0.977303, 
0.532268 

 (0.9, 0.4, 0.6) 
(0.5,. 0.1, 0.9) 

0.226975x10-01, 
0.977303, 
0.532268 

Root 2 - - (0.5, 0.0, 1.0) b -7.979065x10-13, 
2.545161x10-10, 
-9.143888x1009 

Root 3 - - (0.9, 0.5, 0.5) c 0.686757, 
0.313243, 
1.470821 

aNot presented in the original reference. 
bFalse solution.  cUnfeasible solution. 
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After this modification (variable sampling as a 

function of subdivision level i), the CPU time 

required in Problem P9 was decreased to 1.98 s. 

Thus, the variable sampling as proposed in Figure 

2 can help reducing significantly the computational 

time for more complex problems (higher 

dimensional problems and greater number of 

roots). 

 
 For iRan = 5 do 

If (d ≤ 2) then 
  nRan =  d x iRan 

If (d > 2) then 
  If (i ≤ 3) then 
   nRan = d x iRan 
  If (3 < i ≤ 5) then  
   nRan = d – 1 
  If (i > 5) then   nRan = 1 

 

Figure 2. Proposed scheme for sampling nRan random numbers 

inside the rectangles. 

The roots found by the literature and by the 

SubDivNL algorithm are shown in Table 5, where 

one should noted that for determining all the roots 

it was necessary to run the algorithm five times 

arriving from distinct initial guess, while the 

SubDivNL algorithm found all the roots from only 

one interval and just one execution. 

P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled 

exothermic CSTR reactorexothermic CSTR reactorexothermic CSTR reactorexothermic CSTR reactor    

This problem considers the determination of 

multiple steady state conditions in a cooled 

exothermic CSTR reactor. The variables are 

temperature of the reaction medium (T), 

conversion (X) and temperature of the cooled 

jacket (Tj). The SubDivNL algorithm was 

employed using the intervals of [300.0, 700.0], 

[0.0, 1.0], and [300.0, 700.0] for T, X and Tj, 

respectively, with six subdivisions (i = 6), and no 

coverage (iCov = 0). Three roots were found in 

this work with a CPU time of 5.23 s. This 

problem is classified by Shacham et al. (2002) as of 

low difficulty degree. For this problem, the initial 

guesses used by the literature are not provided in 

the above-mentioned reference. 

P11 Problem: twoP11 Problem: twoP11 Problem: twoP11 Problem: two----phase flash of a nonideal binary phase flash of a nonideal binary phase flash of a nonideal binary phase flash of a nonideal binary 

mixture (isobutanolmixture (isobutanolmixture (isobutanolmixture (isobutanol----water)water)water)water)    

This problem refers to a flash of a nonideal 

binary mixture. The variables are the mole 

fractions of one of the components in the vapor 

(y1) and liquid (x1) phases and the fraction of one 

of the phases (α); these variables are of course 
constrained in the [0.0, 1.0] interval. The 

parameters used in the SubDivNL algorithm 

were: five subdivisions (i = 5), three coverage 

(iCov = 3) and variables intervals of [0.1x10-05, 1], 

[0.1x10-05, 1] and [0.0, 1.0], respectively, for y1, x1 

and α. The SubDivNL algorithm found one root 

with a CPU time of 2.77 s. In Table 5 the three 

roots reported by the literature for this problem 

are presented: one of them is the same 

determined by the SubDivNL algorithm and the 

other ones are false or unfeasible solutions. 

P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary 

liquidliquidliquidliquid----liquid equilibriumliquid equilibriumliquid equilibriumliquid equilibrium    

The formulation of phase stability test for a 

ternary liquid-liquid system is the same presented 

previously. In order to test the subdivision 

algorithm, the ternary system water(1)+critic 

acid(2)+butan-2-ol(3) was chosen (Letcher and 

Naicker, 2001; Gecegormez and Demirel, 2005), 

with the NRTL parameters taken from Litomen  

et al. (2001). 

The SubDivNL algorithm was employed using 

the interval of [0.0, 1.0], for composition of tested 

liquid phases (y), with six subdivisions (i = 6), 

and no coverage (iCov = 0). From Table 6, some 

stability test calculations, at distinct global 

compositions specified are presented. 

From the results shown in Table 6, it can be 

verified that the subdivision algorithm can be 

used to perform liquid-liquid stability test 

calculations, and it arises as an interesting 

alternative for phase equilibrium calculations. 

In general, one can see that the present algorithm 

was able to find all the multiple solutions for the 

tested three-dimensional problems without the need 

for specifying initial guesses. In contrast to the 

results available in the literature, unfeasible and false 

solutions were avoided when the SubDivNL was 

employed. Moreover, the SubDivNL algorithm was 

capable of finding all of the feasible solutions with 

only one execution, whereas the methods available 

in the literature require in most cases several initial 

guesses and executions for the determination of all 

roots.  
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Table 6. Results for Problem P12: stability test analysis applied to liquid-liquid equilibrium of water(1) +critic acid(2)+butan-2-ol(3) at 
298.15 K. 

SubDivNL IN/GB# (Gecegormez and Demirel, 2005) Input (z1, z2, z3) 
Roots (y1,y2, y3) TPD(y) CPU (s) Roots (y1,y2, y3) TPD(y) 

(0.20, 0.05, 0.75) (0.1752, 2.7558×10–2, 0.7972) 
(0.2000, 0.0500, 0.7500) 
(0.2530, 0.1748, 0.5722) 

–2.3698×10–4 
1.0000×10–8 
–5.9447×10–3 

15.2 (0.1752, 2.7558 × 10–2, 0.7972) 
(0.2000, 0.0500, 0.7500) 
(0.2530, 0.1748, 0.5722) 

–2.3699×10–4 
0.0000 × 10–0 
–5.9447×10–3 

(0.15, 0.10, 0.75) (8.3523×10–2, 7.0909×10–3, 0.9094) 
(0.1500, 0.1000, 0.7500) 
(0.1544, 0.2908, 0.5548) 

–2.1738× 10–2 
1.0000×10–8 
–1.7323×10–2 

15.2 (8.3523×10–2, 7.0909×10–3, 0.9094) 
(0.1500, 0.1000, 0.7500) 
(0.1544, 0.2908, 0.5548) 

–2.1739×10–2 
0.0000 × 10–0 
–1.7323×10–2 

(0.20, 0.10, 0.70) (0.1257, 1.1877× 10–2, 0.8624) 
(0.2000, 0.1000, 0.7000) 
(0.2177, 0.1838, 0.5985) 

–1.0321×10–2 
1.0000×10–9 
–1.8376×10–3 

17.1 (0.1257, 1.1877×10–2, 0.8624) 
(0.2000, 0.1000, 0.7000) 
(0.2177, 0.1838, 0.5985) 

–1.0321×10–2 
0.0000 × 10–0 
–1.8376×10–3 

(0.05, 0.15, 0.80) (1.8972×10–2, 2.1628×10–3, 0.9789) 
(3.6280×10–2, 0.3989, 0.5649) 
(0.0500, 0.1500, 0.8000) 

–9.0052×10–2 
–3.6271×10–2 
1.0000×10–9 

18,0 (1.8972×10–2, 2.1628×10–3, 0.9789) 
(3.6280×10–2, 0.3989, 0.5649) 

(0.0500, 0.1500, 0.8000) 

–9.0052×10–2 
–3.6271×10–2 
0.0000 × 10–0 

(0.10, 0.20, 0.70) (4.1828×10–2, 2.8004×10–3, 09554) 
(9.6537×10–2, 0.2567, 0.6467) 

(0.1000, 0.2000, 0.7000) 

–8.2501×10–2 
–4.2772×10–4 
1.0000×10–9 

14,3 (4.1828×10–2, 2.8004×10–3, 0.9554) 
(9.6537×10–2, 0.2567, 0.6467) 

(0.1000, 0.2000, 0.7000) 

–8.2501×10–2 
–4.2773×10–4 
0.0000 × 10–0 

(0.20, 0.20, 0.60) (0.1095, 9.3104×10–3, 0.8812) 
(0.1878, 0.1126, 0.6996) 
(0.2000, 0.2000, 0.6000) 

–1.4729×10–2 
1.9549×10–3 
1.0000×10–8 

15,6 (0.1095, 9.3104×10–3, 0.8812) 
(0.1878, 0.1126, 0.6996) 
(0.2000, 0.2000, 0.6000) 

–1.4729×10–2 
1.9549×10–3 
0.0000 × 10–0 

#For this system the computational time is not presented in the literature. 

FourFourFourFour----dimensional problemdimensional problemdimensional problemdimensional problem    

A four dimensional problem was solved by 
SubDivNL algorithm. These results obtained here 
and those from the literature are presented in  
Table 7. 

Table 7. Results for the four-dimensional problem. 

SubDivNL algorithm  Literature 
(Shacham et al., 2002) 

Roots  
Number 

Roots Values  Initial Guess Roots Values 

P13 Problem: variables  
(CA, CB, CC, T) 

  

Root 1 2.3804,  
0.619577, 

0.164268x10-05, 
333.4925 

 (3.0, 0.0, 0.0, 350.0) 2.3804, 
0.619577, 

0.164268x10-05, 
333.4925 

Root 2 2.7873, 
0.212680, 

0.646861x10-07, 
310.2126 

 (3.0, 0.0, 0.0, 300.0) 2.787320, 
0.212680, 

0.646861x10-08, 
310.2126 

Root 3 0.1263970, 
2.849909, 

0.236946x10-01, 
462.56916 

 (3.0, 0.0, 0.0, 400.0) 0.126397, 
2.849909, 

0.236946x10-01, 
462.5692 

Root 4 0.380106x10-02, 
1.7136, 
1.2826, 
594.0274 

 (0.0, 2.0, 1.0, 600.0) 0.380106x10-02, 
1.7136, 
1.2826, 
594.0274 

Root 5 0.379754x10-03, 
0.688892, 
2.3107, 
691.6242 

 (3.0, 0.0, 0.0, 700.0) 0.379757x10-03, 
0.688892, 
2.3107, 
691.6242 

 

P13 Problem: stP13 Problem: stP13 Problem: stP13 Problem: steady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR 

reactorreactorreactorreactor    

The problem deals with the determination of 
multiple steady state conditions of an adiabatic 
CSTR reactor. The intervals for the independent 
variables are [0.0, 3.0], [0.0, 3.0], [0.0, 3.0] and 
[200.0, 700.0] for the concentration of components 
A (CA), B (CB), and C (CC), and reactor temperature 
(T), respectively. The parameters adopted for the 

SubDivNL algorithm were two coverage (iCov = 2) 
and three subdivisions (i = 3). The SubDivNL 
algorithm found five solutions from the intervals 
defined, spending 13.47s for the determination of all 
roots. This is a relative difficult problem for 
obtaining the roots due to the presence of 
multiplicity. The literature also reports five 
solutions for this problem, but requesting five 
different initial guesses to accomplish it. 

ConclusionConclusionConclusionConclusion    

From the results obtained in this work, one can 
see that the subdivision algorithm, as it was 
implemented, showed to be robust and efficient in 
the resolution of typical problems of chemical 
engineering described by nonlinear algebraic 
systems. In the investigated problems, all feasible 
solutions could be found since false or unfeasible 
solutions were naturally excluded through the 
specification of the variables intervals. Another 
important characteristic of the algorithm is that it 
seems to be capable of finding all of the solutions for 
problems that present strong discontinuities, 
singular points and regions where the functions of 
the system are undefined. The SubDivNL algorithm 
presents characteristics that allow it to be classified 
as a global method, since in all problems of this 
study it did not present any convergence problems. 
It may be convenient to emphasize its easy 
implementation, without the necessity of specific 
operators.  

Additionally, the subdivision algorithm presented 
an excellent performance with regard to CPU time 
for multidimensional problems. The CPU time was 
observed to increase with increasing dimension of 
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the problem, number of subdivisions and coverage. 
The employed criterion of exclusion of sub-
rectangles showed to be efficient and viable in the 
resolution of such problems. Investigation on how 
the CPU time is affected by the criterion of 
rectangles exclusion is not within the scope of this 
work and is underway within our working group.  

Considering that the present tool may be of 
interest to researchers and to those committed to 
chemical engineering education, a basic version of 
the SubDivNL algorithm can be freely obtained 
upon contacting the authors. 
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