
Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

Application of a subdivision algorithm for solving nonlinear Application of a subdivision algorithm for solving nonlinear Application of a subdivision algorithm for solving nonlinear Application of a subdivision algorithm for solving nonlinear

algebraic systemsalgebraic systemsalgebraic systemsalgebraic systems

Fernanda de Castilhos Corazza, José Vladimir de Oli veira and Marcos Lúcio Corazza *

Departamento de Engenharia de Alimentos, Universidade Regional Integrada, Av. Sete de Setembro, 1621, 99700-000,
Erechim, Rio Grande do Sul, Brazil. *Author for correspondence. E-mail: mlcorazza@uricer.edu.br

ABSTRACT. A subdivision algorithm is presented and applied to solving commonly
found chemical engineering problems described by nonlinear algebraic systems. For this
purpose, a web-based library available in the literature was used as the main source to select
a wide class of one- and multidimensional problems, comprising phase and chemical
equilibrium, conversion in tubular and continuous stirred tank reactors, material and
energy balances, etc. The problems are classified according to the literature as low,
intermediate and of high degree of numerical difficulty based on specific characteristics, like
discontinuities in the functions, multiple solutions with the occurrence of false and
unfeasible roots, and the presence of null derivative values. It is shown that the algorithm is
efficient and robust, even for multidimensional problems of high numerical difficulty,
allowing to find simultaneously all the feasible roots of nonlinear algebraic systems,
naturally excluding false and unfeasible solutions, with a relatively low CPU time. These
features make the algorithm an interesting alternative to deal with chemical engineering
problems in contrast to some methods currently in the literature.

Key words: numerical analysis, nonlinear equations, multiple solutions, subdivision algorithm,
simulation, chemical engineering processes.

RESUMO. Aplicação de um algoritmo de subdivisão para solução de sistemas de

equações algébricas não-lineares. Um algoritmo de subdivisão é apresentado e aplicado
à solução de problemas descritos por sistemas de equações algébricas não-lineares
comumente encontrados na engenharia química. Uma biblioteca disponível, na literatura,
foi utilizada como fonte principal para a seleção dos problemas a serem resolvidos com uma
ou várias dimensões, compreendendo problemas de equilíbrio químico e de fases, conversão
em reatores tubulares e contínuos, balanços material e energético, entre outros. Os
problemas foram classificados pela literatura com grau de dificuldade numérica baixa,
intermediária e alta, com base em características específicas como a existência de
descontinuidades nas funções, múltiplas soluções com raízes falsas. O algoritmo mostrou-se
eficiente e robusto, mesmo para problemas multidimensionais de alta dificuldade numérica,
permitindo encontrar simultaneamente todas as raízes corretas (fisicamente possíveis) dos
sistemas algébricos não-lineares, naturalmente excluindo soluções falsas com um tempo de
CPU relativamente baixo. Estas características fazem deste algoritmo uma alternativa
interessante para solucionar os problemas da engenharia química em contraste com alguns
métodos atualmente disponíveis na literatura.

Palavras-chave: análise numérica, equações não lineares, múltiplas soluções, algoritmo de
subdivisão, simulação, processos de engenharia química.

IntroductionIntroductionIntroductionIntroduction

The development of efficient iterative methods
and strategies for obtaining all solutions of complex
problems in chemical engineering processes is of
unquestionable relevance for both academia and
industry circles. In particular, chemical engineers are
often interested in solving systems of nonlinear
algebraic equations with high-dimensional order,
involving a variety of numerical difficulties existing
in this wide and fascinating (chemical engineering)

science field. Despite some significant advances
reached in the last years, there are still many
challenges to overcome, such as the development of
robust and easy-implementation algorithms able to
simultaneous find all solutions of nonlinear
algebraic systems. These remarkable challenges in
this area are still greater when transcendental terms
are encountered in these equations (Gritton et al.,
2001). The complex nonlinear nature of several
problems in chemical engineering is commonly

28 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

described by phenomenological or empirical models
represented by nonlinear algebraic equations.
Consequently, the development of methods for
solving this kind of mathematical problem is
fundamental towards running accessible chemical
engineering processes, and also for the proposition
and establishment of new technologies, mainly those
referring to process simulation, analysis, synthesis
and optimization (Gritton et al., 2001; Shacham et al.,
2002).

According to the literature, methods for
determining zeros of a single nonlinear equation f(x)
= 0 or of a system of nonlinear equations F(x) = 0,
can be classified into three classes:

i) local methods. These methods have as main
feature the need for an initial guess sufficiently close
to the intended root, which is in fact its major
limitation. The initial guess accuracy necessary for
successful implementation of these methods varies
with the function non-linearity degree (Shacham
et al., 2002). These methods nevertheless present the
excellent property of quadratic convergence. To find
all roots of nonlinear systems, several distinct initial
guesses are generally required, and to each initial
guess there is only one solution associated. The
Newton (or Newton-Raphson) and quasi-Newton
are the local methods most commonly employed
(Press et al., 1992; Pernice and Walker, 1998;
Kreyszig, 1999; Shacham et al., 2002).

ii) global methods. These methods are
characterized by offering assured convergence,
independently of how close the initial guesses are to
the roots. Besides, they can be adapted to search
multiple roots or solutions from a unique initial
guess (Shacham et al., 2002). Within the class of
global methods, one might call attention to the
Homotopy Continuation Method (Davidenko,
1953; Keller, 1978; Wayburn and Seader, 1987;
Kuno and Seader, 1988; Seader et al., 1990; Seider
et al., 1991) and the Improved Memory Method
(Shacham, 1989; 1990). In brief, the Homotopy
method is capable of finding the roots of a nonlinear
equation, or of a system of nonlinear algebraic
equations arising from combination of two
functions: a function for which a zero is known or
readily obtained, say G(x), and other functions
whose zeros (roots) are sought (F(x)). The roots of
the equation or system of equations are obtained by
tracking a path from known solutions of a given
simpler arbitrary equation (G(x)) until finding the
root of the F(x) equation. In this method, multiple
solutions can be found (Wayburn and Seader, 1987;
Kuno and Seader, 1988; Seader et al., 1990; Seider
et al., 1991; Gritton, 2001). The Improved Memory

Method (IMM), presented by Shacham (Shacham,
1989; 1990) can be extremely efficient and robust,
provided the user has a very good idea of the
approximate value of the solution. Compared with
the IMM, the Homotopy Continuation Method is
computationally hard; nevertheless a seeking interval
is not necessary.

iii) interval methods. These methods are able to
locate all roots from specified variable intervals.
However, their implementation is hard, needing
specific operators for any arithmetic operations,
which are known as interval operators (Kerfott and
Novoa, 1990; Kerfott et al., 1994; Hua et al., 1996;
1998; Gang Xu, 2001). Moreover, the analytic
Jacobian must be known and implemented, which
can be seen as an additional difficulty for its
utilization, since not always are the equations
differentiable or its derivation may be very onerous
(Kolev, 1998).

In a general sense, one can notice that the
alternatives mentioned above present numerical
limitations or implementation difficulties. These
facts have prompted permanent investigations
dedicated to the development of new robust
algorithms, and the improvements of existing ones.

Recently, Smiley and Chun (2001) presented a
subdivision algorithm that allows one to locate
simultaneously all roots of systems of nonlinear
algebraic equations, from a given interval for variables.
This characteristic allows classifying it as a global
method. Another significant characteristic of the
proposed method is that only conventional arithmetic
operations are needed, making its implementation and
application effortless. According to these authors, some
of main features of the algorithm are its simplicity,
robustness and reliability.

One of the first algorithms presented in the
literature that makes use of a schematic subdivision
was the Weyl algorithm (Weyl, 1921), which was
applied to determine the zero of a single polynomial
equation. The use of subdivision algorithms has
been reported in other contexts, such as the
generation of curves and surfaces in geometric
design problems (Gregory, 1991). According to
Smiley and Chun (2001), a subdivision algorithm
was also used by Dellnitz and Hohmann (1997) to
determine the attractor of a dynamic system. The
reader may be interested in reading the report of Pan
(1997), who presented a short history and recent
advances on solving polynomial equations.

To our knowledge, application of subdivision
algorithms in typical problems of chemical engineering
has not been found in the specific technical literature.
In this context, considering the potential of the method

A subdivision algorithm for solving nonlinear algebraic systems 29

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

and the need for reliable and robust mathematical tools
to solve nonlinear problems, the aim of this work is to
report the application of a subdivision algorithm to
some commonly found chemical engineering
problems, such as multiple steady state determination,
reactor conversion and chemical and phase equilibrium
calculations.

MMMMaterial and methodsaterial and methodsaterial and methodsaterial and methods

In general, a subdivision algorithm consists in
starting from given intervals for the system variables, to
apply a subdivision procedure for these intervals,
generating congruent subintervals, and follow an
evaluation test to check the existence of solutions in
these subintervals. If the subinterval succeeds in the
test, it is retained and continues in the procedure;
otherwise it is discarded. After a finite number of
subdivisions, a conventional method of local
convergence (e.g., Newton-Raphson) can be used to
find the roots. This may be done using the midpoint of
the final subintervals, kept as initial guess for the
conventional method of local convergence. In this way,
depending on the number of subdivisions applied, the
solution (or solutions) is confined in the retained
intervals, which generally provides assured and
efficient convergence of the local method employed.

According to Smiley and Chun (2001), the basic
idea of the subdivision algorithm is: given an
interval for each variable of the system (“rectangle”)

dR∈� , find all values of { : () 0}d= ∈ =x* x F x� ,
by successive subdivision in R; where d is the
dimension of the problem and F(x) is the system of
nonlinear algebraic equations.

In order to proceed with the subdivision of R, a
partition sequence is necessary. A simple procedure to
division of R to congruent sub-rectangles can be
obtained by dividing R into two equal parts in each

coordinate. Thus, for a rectangle set in
d

� there will be
2d new generated rectangles or sub-rectangles. One can
then name R of “parent” rectangle and the congruent
sub-rectangles (from the division of R) of “children”
rectangles. Then, for each “i” subdivision, Rij children
sub-rectangles are obtained, where “j” is the number of
generated sub-rectangles. For each Rij obtained sub-
rectangle, a test for verifying the existence of roots of
the system is applied. If the Rij sub-rectangle passes the
test, it is retained and will be a new parent rectangle,
which will be in turn subjected to a new subdivision at
i = i + 1.

A simple selection criterion for the sub-

rectangles retaining can be the use of the minimum

value of the Euclidean norm of F(x), ||F(x)||. For

each value of i ≥ 1 one can define:

if i

Rx
x −

∈
≤ 2)(min F , (1)

Rij is retained; otherwise it is discarded.
However, the requirement of finding the global

minimum of || F(x)|| for each tested rectangle may be
unviable, mainly for multidimensional systems.
Other selection criterion can then be defined as:

if () 2 i

ij j Lρ−≤ +F x (2)

Rij is retained; otherwise it is discarded.
Here, ρj is the half largest side of the rectangle

“j”, defined by
,

, 1,..,j k k j
a b k dρ

∞
= − = and

||F(xij)||. is the Euclidean norm of F(x) in the
midpoint (xij) set in Rij rectangle. This selection
criterion requires the knowledge of L, the
Lipschitz’s constant, which is defined for each tested
problem.

A third selection criterion can be thought as:

if () 2 i

ij ijτ−≤ +F x (3)

Rij is retained; otherwise it is discarded.

In this equation,

()
1 2

1
max

2 ij

d

ij k k
R

k k

b a
y

τ
∈=

 ∂
= −  ∂ 
∑

y

F y (4)

where y is a vector of random points in Rij, and ak and
bk are, respectively, the lower and upper bounds of the
Rij rectangle in the “k” dimension (or coordinate).

According to Smiley and Chun (2001) the

selection criterion of Equation (3) was the one that

presented the best results concerning the

acceleration of the rectangles exclusion process. For

this reason, this was the selection criterion adopted

throughout this work.
For obtaining the coordinates of each “child”

rectangle, the following scheme (or formulation) is
proposed in this work:

,
1,..., 2 ; 1,...,

k k m d k d

k k k

a A v
m k d

b a v

= +
= = = +

α
 (5)

and,

1

() 1,...,
2k k kv B A k d= − = (6)

where αm,d is a matrix of 0 (zero) and 1 (one) elements

30 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

combined in such way that, at each “m” iteration,
“children” rectangles coordinates are obtained by
Equation (5); Ak and Bk are, respectively, the lower and
upper bounds of the considered “parent” rectangles for
each “k” variable; vk is the midpoint coordinate of the
“parent” rectangle for “k” variable, ak and bk are the
lower and upper coordinates for the new “child”
rectangle in “k” variable.

Furthermore, the utilization of an appropriate
coverage strategy can be significant for accelerating
the rectangles’ exclusion, mainly for complex
problems. The coverage can be made after a finite
number of subdivisions; the retained rectangles are
revaluated and those not presenting common
coordinates are defined as new rectangles.

In the present work, only rectangles with one
adjacent side, e.g., rectangles that have the same
coordinates, in at least one dimension, are used to
define a new rectangle. After the coverage, the new
rectangles are tested employing the selection
criterion. In Figure 1, the coverage strategy is
illustrated. Figure 1(a) shows the retained rectangles
after the i-th subdivision, and Figure 1(b) depicts the
redefined rectangles after the coverage.

x
1

Figure 1. (a) Rectangle saved after “i” subdivisions; (b)
Rectangles presented in (a) after the coverage.

In the present work, a computational code of the
subdivision algorithm, with the denomination of
SubDivNL, was implemented in Fortran 90
language. The basic version of this code is described
in the algorithm presented in below. In this
algorithm, iRan is the sample number for each Rij
rectangle, iMax is the maximum number of
subdivisions, iCov is the maximum number of
coverage and M is the number of retained rectangles
for each subdivision “i”.

i) Given d, Ak e Bk (k=1,..,d), iRan, iMax, F(x),
iCov

ii) Set M = 1 (initialize with a “parent”
rectangle)

iii) For l=1,...,iCov do:
a. For i=1,...,iMax do:

b.i. Set m = 0
b.ii. For j=1,...,M*2d do:

1. Apply Eqs. (5) and (6) to obtain the
coordinate for each Rij “child”
rectangle

2. Get nRan random samples into Rij

3. Evaluate ()ijF x for each random

number into Rij

4. Evaluate ijτ (Eq. 4)

5. If () 2 i
ij ijτ−≤ +F x (criterion 3) then

a. Retain the Rij rectangle
b. Set m =m + 1

6. Else discard it
b.iii. Set M= m

b. Evaluate the adjacent rectangles (coverage)
c. Reset M (M = number of new rectangles)

iv) Use the Newton method to find

(){ }: 0d= ∈ =x* x F x� , applying the midpoint

of each Rij as initial guess
v) Check the solutions (roots) found
vi) Show all solutions (roots)
In order to illustrate the robustness and

reliability of the proposed algorithm in finding all
real solutions (roots) of nonlinear algebraic
equations, some case studies are presented. Initially,
with the aim to illustrate the procedure, a generic
problem is considered. Afterwards, authentic,
chemical engineering problems are investigated.

ResultsResultsResultsResults and discussion and discussion and discussion and discussion

For the solution of the following illustrative
problem and also for the subsequent applications, a
Personal Computer was used, with a Pentium IV
processor, 2.66 GHz and 512 MB of RAM memory.
For all of the considered problems, the midpoint of
each selected final rectangle was used as the initial
guess for Newton's method (subroutine mnewt
presented by Press et al., 1992). Besides, it may be
important to emphasize that throughout this work,
the adopted criterion for coverage was to add
rectangles with adjacent sides to form a new
rectangle. Also, a scheme for variable sampling as a
function of the number of subdivisions (i) is
proposed in the case of high (greater than two)
dimensional problems, resulting in significant
reduction in CPU time.

Illustrative problemIllustrative problemIllustrative problemIllustrative problem

Let us consider the following system of nonlinear
algebraic equations (two-dimensional problem):

()
()

2
1 1 2 1 2 1

2 1 2 2 1 2

, sin

, ln

f w w w w w

f w w w w w

= +

= +
 (7)

A subdivision algorithm for solving nonlinear algebraic systems 31

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

In order to locate the roots of this problem, the
following intervals for the variables w1 [-10.0, 10.0]
and variable w2 [1.0, 20.0] were taken. The
maximum number of subdivisions was iMax = 5,
and the coverage number iCov = 2.

From the retained rectangles after i = 5 for iCov
= 2, and using the midpoint in each final rectangle
as the initial guess, Newton’s method was then
employed to find the roots of the problem. The
distinct solutions found (roots), with four decimals
of significance are presented in Table 1 along with
the roots obtained with the application of software
Maple 9.5 (Waterloo Inc.). Notice that, for the
latter case different and multiple initial guesses were
needed to find the solutions of the problem.

Table 1. Roots of the illustrative problem applying the
SubDivNL algorithm and Maple 9.5 software.

SubDivNL algorithm Maple 9.5
Roots
Number Roots Values

(w1, w2)
 Initial Guess

(w1, w2)
Roots Values

(w1, w2)

Root 1 0.224811x10-11, 1.0000
 1. (1.0, 2.0)

2. (5.0, 20.0)
3. (10.0, 30.0)

0.0000, 1.0000

Root 2
-36.7786x10-2,
265.8089x10-2

 4. (-5.0, 2.0)
5. (10.0, -30.0)
6. (-10.0, -30.0)

-36.7786x10-2,
265.8089x10-2

From these results one can see that the
subdivision algorithm was efficient in finding
simultaneously all the roots (solutions) for the
problem considered. This is an important
characteristic of the method, an advantage relatively
to local convergence methods. The CPU processing
time for solving the illustrative problem with the
present algorithm using the PC configuration
described before was only 0.10 s.

Application to chemical engineering problemsApplication to chemical engineering problemsApplication to chemical engineering problemsApplication to chemical engineering problems

Shacham et al. (2002) has presented a pool of
systems of nonlinear algebraic equations, typical
problems of chemical engineering science, with
distinct degree of difficulty, from one to
multidimensional systems, which are quite useful to
test algorithm performance and numerical methods
intended to solve nonlinear algebraic equations. In
this work, the mentioned web-based library was
used as a reference to compare the results from the
application of the subdivision algorithm SubDivNL.
Details about the problems considered in this work
can be found in the original reference (Shacham
et al., 2002). In the present work, the variables units
and constants, as well as the whole nomenclature for
each problem were kept and used as presented in the
original reference.

OneOneOneOne----dimensional problemsdimensional problemsdimensional problemsdimensional problems

In this section, some one-dimensional problems
are solved. A brief description of each one, as well as
the parameters employed in the algorithm
SubDivNL are presented. The results found for the
one-dimensional problems obtained from this work
are shown in Table 2, along with a comparison with
literature. This table presents the roots found by the
SubDivNL algorithm and the roots values and
intervals used in the literature.

Table 2. Results for one-dimensional problems.

SubDivNL algorithm Literature (Shacham et al., 2002) Roots
Number Roots Values Interval Roots Values

P1 Problem: variable (P)

Root 1 25.7439 Xmin = 1.0 25.7440
Root 2 78.9054 Xmax= 100.0 78.9054

P2 Problem: variable (X)

Root 1 0.058654 Xmin = 0.0 0.058655
Root 2 0.600323 Xmax = 1.0 0.600323

P3 Problem: variable (X)

Root 1 0.999984 Xmin = 0.75
Xmax = 1.25

0.999252

P1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a convergingP1 Problem: pressure drop in a converging----diverging diverging diverging diverging

nozzlenozzlenozzlenozzle

The P1 problem deals with the pressure drop in a
converging-diverging nozzle. The model for this
problem comprises an implicit equation in pressure
(P). According to Shacham et al. (2002), this problem
presents a low degree of difficulty and a discontinuity
for negative values of P, resulting in a constraint to this
variable (P ≥ 0). Another feature of this function is the
existence of a stationary (maximum) point, i.e., null
derivative, hindering the convergence of any method
that uses derivative values. The following values were
used for the SubDivNL algorithm: the interval of the
unknown variable (P) was [0.0, 100.0], the subdivision
number i = 14, and the coverage was set equal to zero
(iCov = 0). The subdivision algorithm found the two
roots for this problem with a CPU time of 0.05 s.

P2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium IP2 Problem: chemical equilibrium I

Problem P2 refers to chemical equilibrium, with an
implicit equation in the conversion (X). Therefore, this
variable is restricted to [0.0, 1.0] interval. This is the
seek interval utilized in the SubDivNL algorithm. Also,
a subdivision number i = 14 without covering (iCov =
0) was adopted. This problem was classified by
Shacham et al. (2002) as of intermediate difficulty level.
The function is undefined for X = 0.26667, which
makes difficult the convergence of methods based on
derivative values. Again, as it can be verified in Table 2,
this kind of behavior did not obstruct the subdivision
algorithm to find all the roots with a low CPU time,
equal to 0.05 s.

32 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

P3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactorP3 Problem: equilibrium conversion in a tubular reactor

This problem consists in the conversion
evaluation in a tubular reactor. The interval used for
the conversion (X), which is the independent
variable, was [0.5, 1.5], together with i = 10 and
iCov = 3. The required CPU time for solving the
problem was 0.36 s. It may be pertinent to mention
that, for this problem, the function values are very
low (in the order of 10-8) in the investigated interval,
and there is a discontinuity point close to the root,
making its determination difficult. Nevertheless, the
SubDivNL algorithm did not encounter severe
difficulties in solving this problem and found its two
roots simultaneously, in spite of being classified with
high level of numerical difficulty by the literature

(Shacham et al., 2002). This fact may have been the
cause of the increase in the computational time in
relation to the problems presented previously.

For all one-dimensional problems considered in
this section, the SubDivNL algorithm showed to be
efficient in determining all the roots with low CPU
time, independent on the difficulty degree.

TwoTwoTwoTwo----dimensional problemsdimensional problemsdimensional problemsdimensional problems

Table 3 presents the results obtained in solving
three investigated two-dimensional problems.
Similarly to Table 2, results from the literature
(Shacham et al., 2002) and those obtained with the
application of the SubDivNL algorithm are
compared. It can be observed from this table that
literature points out the use of different initial
guesses to find the roots.

Table 3. Results for two-dimensional problems.

SubDivNL algorithm Literature (Shacham et al., 2002) Roots
Number Roots Values Initial Guess Roots Values

P4 Problem: variables (X1, X2)

Root 1 0.600323,
-3.5799

 1. (0.0, 1.0)
2. (0.5, 0.1)

a 0.600323,
-3.5799

Root 2 0.586546x10-1,
0.867438

 3. (0.0, 1.0)
4. (0.5, 0.1)

0.586546x10-1,
0.867438

P5 Problem: variables (X, T)

Root 1 0.963868,
346.1637

 1. (1.0, 400.0)
2. (0.0, 300.0)
3. (0.5, 320.0)
4. (0.0, 350.0)

0.963868,
346.1636

P6 Problem: variables (X1, X2)

Root 1 0.757396,
0.021302

 1. (0.9, 0.5)
2. (0.5, 0.5)
3. (0.4, 0.005)

0.757396,
0.021302

Root 2 - - 4. (0.6, 0.1) a 1.098984,
-0.149492

P7 Problem: variables (A, B)

Root 1 0.758077,
1.124904

 1. (0.5, 0.5)
2. (1.0, 1.0)
3. (5.0, 5.0)

0.758077,
1.124903

Root 2 - - 4. (8.0, 2.0) b -4.2476x10-7,
8.9296x10-7

aUnfeasible solution. For problem P6, most methods do not converge from the 1st
initial guess and will converge to the unfeasible solution after the 4th initial guess.
bFalse solution.

P4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium IIP4 Problem: chemical equilibrium II

The P4 problem is composed by two implicit
equations in X1 and X2, the conversions of components
1 and 2, respectively. In the determination of the roots
with the SubDivNL algorithm, 6 subdivisions were
used (i = 6) and just one coverage (iCov = 1). For the
purpose of illustration, we first assumed for the
SubDivNL the interval for both variables as [-4.0, 4.0].
The SubDivNL algorithm found the two roots starting
from this interval, with a low CPU time, equal to
0.21 s. Conversely, for the results obtained by the
literature, several initial estimates were necessary for
the determination of these two roots. According to
Shacham et al. (2002), this problem can be classified as
of intermediate level. Note that the first and second
initial guesses converge to the first root, and the third
and fourth guesses converge to the second root.

For this problem, since the variables are
constrained into [0.0, 1.0] interval, the first root
reported in the literature is in fact an unfeasible
solution. With the present algorithm (SubDivNL),
such root can be avoided by simply restricting the
interval of the variables (X1, X2) to [0.0, 1.0].
Starting from this interval, only the second (feasible)
root is found (X1 = 0.058655, X2 = 0.867438).

P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on P5 Problem: steady state material and energy balances on

a reactora reactora reactora reactor

The equations of the P5 problem refer to the
material and energy balances in a reactor in steady
state, resulting in two nonlinear equations in the
variables conversion (X) and temperature (T). For
this problem, only one root was found by the
SubDivNL algorithm, as can be verified in Table 3.
The subdivision algorithm used the seek intervals of
[0.0, 1.0], [100.0, 800.0], with no coverage
(iCov = 0) and ten subdivisions (i = 10). The CPU
time for the solution of this problem with the
SubDivNL algorithm was 0.40 s, which is low,
mainly considering the numerical difficulty for
convergence of the local method to the root.

The cited literature classifies this problem as of
high numerical difficulty level and the authors use
four initial guesses for the determination of the root.
In addition, these authors report that, due to the
occurrence of singular points, most of the numerical
methods available in the literature do not converge
starting from the second and third initial guesses.

P6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactorP6 Problem: conversion in a chemical reactor

Problem P6 deals with the conversion in a
reactor and is classified, according to the literature
(Shacham et al., 2002), as of high degree of
numerical difficulty. The problem is composed by

A subdivision algorithm for solving nonlinear algebraic systems 33

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

two nonlinear equations with variables X1 and X2,
which are constrained into [0.0, 1.0] interval. The
parameters used in the roots search (solutions) were:
subdivision number i = 5, coverage number iCov =
2 and variables intervals for X1 and X2 of [0.1, 0.9],
[0.001, 1.0], respectively. The results presented in
the literature for this case show the same root, but
with three different initial guesses. One should also
note from Table 3 that, the convergence from the
fourth guess leads to an unfeasible solution, not
found by the SubDivNL algorithm, since that value
is out of the interval used.

This example calls attention to an important
characteristic of the SubDivNL algorithm, i.e., the
method prevents convergence for solutions that are
out of the specified interval, which means to respect
the restrictions for the variables involved.

P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from P7 Problem: van Laar equation coefficients from

azeotropic data (ethanol + nazeotropic data (ethanol + nazeotropic data (ethanol + nazeotropic data (ethanol + n----heptane system)heptane system)heptane system)heptane system)

Problem P7 refers to the calculation of the
coefficients of van Laar's equation, parameters A and
B, from an experimental azeotropic point for the
system ethanol + n-heptane. The parameters used
in the SubDivNL algorithm were in the interval of
[0.0, 2.0] for both variables, number of subdivisions
i = 6 and number of coverage iCov = 1. With this
specification, the algorithm found only one root,
with a CPU time of 0.2 s.

According to the literature, this problem can be
classified as of high degree of numerical difficulty, as
it presents a discontinuity, the system of equations is
not defined at A=0 and B=0, and the solution is
restricted to A, B > 0. For this case, the literature
points out the determination of two roots, the first
one obtained from three different initial guesses
giving the same root found by the SubDivNL
algorithm (see Table 3). The other root reported in
the literature, not found by the SubDivNL
algorithm, is a false solution because it does not
obey the restriction of the variables. This problem
illustrates again the significant feature of the
SubDivNL algorithm in keeping the solutions inside
(restricted to) the specified interval.

For the two-dimensional problems presented,
the SubDivNL algorithm was able to find
simultaneously all the roots, from only one seek
interval, without presenting convergence problems.
This means that common difficulties arising from
the application of conventional algorithms reported
in the literature, such as the need for using several
initial guesses to find different roots and
convergence problems, are easily overcome by the
SubDivNL algorithm. Moreover, the algorithm did

not allow the convergence to unfeasible and false
solutions. This is a relevant feature of the
SubDivNL algorithm, particularly to chemical
engineering applications, where often not all the
roots of nonlinear algebraic systems are true
solutions of the engineering problem.

P8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquidP8 Problem: phase stability test applied to binary liquid----

liquid equilibriumliquid equilibriumliquid equilibriumliquid equilibrium

Liquid-liquid equilibrium calculations can be
considered a class of problems of high degree of
numerical difficulty because multiple solutions
(roots) can be generally found (Baker et al., 1982;
Corazza et al., 2004; Rangaiah, 2001; Gecegormez
and Demirel, 2005).

For the stability test, we have employed the
criterion of the Gibbs surface tangent plane distance
function (TDP):

{ }*() ln() ln()
nc

k k k k k
k

TPD y y z= −∑y γ γ (8)

where, γk and
*
kγ are the activity coefficients of

component “k” for new tried and tested phase,
respectively, yk and zk are the compositions of new
(tried) and tested phase, respectively, and nc stands for
number of components. As the solutions for Equation
(8) are stationary points, the system can be solved by
differentiating with respect to yk to obtain the following
system of non-linear algebraic equations:

{ } { }* *ln() ln() ln() ln() 0 ; k 1,..., 1

1

k k k k nc nc nc nc

nc

k
k

z y z nc

y

− − − = = −

=∑

γ γ γ γ γ (9)

In order to test the subdivision algorithm for

liquid-liquid phase stability analysis, the binary
system water(1)+butanenitrile(2) was selected from
the literature (Gecegormez and Demirel, 2005), and
the NRTL model was used to describe the real
liquid solution. The system was chosen due to its
non easy numerical solution. The parameters of the
NRTL model were taken from (Letcher and
Naicker, 2001). The SubDivNL algorithm was
employed using the interval of [0.0, 1.0], for
composition of tested liquid phases (y), with six
subdivisions (i = 6), and no coverage (iCov = 0).
Table 4 presents the stability test calculations at
some distinct global compositions specified, where
one can see that the same solutions (roots) were
found by the SubDivNL algorithm compared to the
interval analysis method, but with a notably faster
CPU (Computer Process Unit) time.

34 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

Table 4. Results for Problem P8: stability test analysis applied to liquid-liquid equilibrium of water(1)+butanenitrile(2) at 298.15 K.

SubDivNL IN/GB* (Gecegormez and Demirel, 2005) Input (z1, z2)
Roots (y1, y2) TPD (y) CPU (s) Roots (y1, y2) TPD (y) CPU (s)

(0.15, 0.85) (0.1500, 0.8500)
(0.5810, 0.4190)

(0.9980, 2.0467 × 10–3)

1.0000 × 10–9

4.2080 × 10–2
–0.2230 × 10–0

0.08 (0.1500, 0.8500)
(0.5810, 0.4190)

(0.9979, 2.0467 × 10–3)

0.0000 × 10–0

4.2080 × 10–2
–0.2230 × 10–0

26

(0.20, 0.80) (0.2000, 0.8000)
(0.4835, 0.5165)

(0.9981, 1.8634 × 10–3)

1.0000 × 10–8

1.0652 × 10–2

–0.2942 × 10–0

0.10 (0.2000, 0.8000)
(0.4835, 0.5165)

(0.9981, 1.8634 × 10–3)

0.0000 × 10–0

1.0652 × 10–2

–0.2942 × 10–0

24

(0.25, 0.75) (0.2500, 0.7500)
(0.4034, 0.5966)

(0.9982, 1.7843 × 10–3)

1.0000 × 10–9

1.6082 × 10–3
–0.3253 × 10–0

0.10 (0.2500, 0.7500)
(0.4034, 0.5966)

(0.9982, 1.7843 × 10–3)

0.0000 × 10–0

1.6082 × 10–3
–0.3253 × 10–0

25

(0.30, 0.70) (0.3000, 0.7000)
(0.3407, 0.6593)

(0.9982, 1.7564 × 10–3)

1.0000 × 10–9

2.9594 × 10–5
–0.3359 × 10–0

0.10 (0.3000, 0.7000)
(0.3407, 0.6593)

(0.9982, 1.7564 × 10–3)

0.0000 × 10–0

2.9584 × 10–5
–0.3359 × 10–0

27

(0.40, 0.60) (0.2524, 0.7476)
(0.4000, 0.6000)

(0.9982, 1.7820 × 10–3)

–1.4308 × 10–3
1.0000 × 10–8
–0.3276 × 10–0

0.09 (0.2524, 0.7476)
(0.4000, 0.6000)

(0.9982, 1.7821 × 10–3)

–1.4309 × 10–3
0.0000 × 10–0
–0.3276 × 10–0

26

(0.45, 0.55) (0.2195, 0.7805)
(0.4500, 0.5500)

(0.9982, 1.8241 × 10–3)

–5.5825 × 10–3
1.0000 × 10–8
–0.3153 × 10–0

0.09 (0.2195, 0.7805)
(0.4500, 0.5500)

(0.9982, 1.8242 × 10–3)

–5.5825 × 10–3
0.0000 × 10–0
–0.3153 × 10–0

25

(0.50, 0.50) (0.1909, 0.8091)
(0.5000, 0.5000)

(0.9981, 1.8865 × 10–3)

–1.4010 × 10–2
1.0000 × 10–9
–0.2991 × 10–0

0.09 (0.1909, 0.8091)
(0.5000, 0.5000)

(0.9981, 1.8865 × 10–3)

–1.4010 × 10–2
0.0000 × 10–0
–0.2991 × 10–0

25

* Interval Analysis Method.

ThreeThreeThreeThree----dimensional problemsdimensional problemsdimensional problemsdimensional problems

Table 5 presents the results obtained with
SubDivNL algorithm and those available in the
literature (Shacham et al., 2002) for the three-
dimensional problems considered here. As one could
expect, solution of these problems with the SubDivNL
algorithm required longer CPU time compared to
two-dimensional examples, due probably to the greater
dimension of the problems and the consequent greater
coverage number adopted to root seeking.

P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR P9 Problem: steady state operation of a CSTR reactorreactorreactorreactor

The equations of the first three-dimensional
problem describe the steady state operation of an
adiabatic CSTR. Problem P9 takes into account
three equations with concentrations of A (CA) and
B (CB), and the temperature (T) as variables. The
intervals used by the SubDivNL algorithm were
[0.0, 4.0], [0.0, 4.0], and [300.0, 800.0],
respectively. In addition, six subdivisions (i = 6)
and no coverage (iCov = 0) were adopted. The
algorithm spent 3.09 s for the determination of the
five roots, a more CPU time-consuming compared
to previous problems. This is a consequence of the
larger dimension of this problem, and also due to
the greater number of rectangles retained during
the execution of SubDivNL algorithm required to
assure simultaneous determination of the five
roots.

The CPU time can increase rapidly with the
increase of dimension of the problem as well as with
the number of roots. Nevertheless, as mentioned by
Smiley and Chun (2001), for small rectangles (after
some exclusion) a greater number of sampling can

be avoided. Then, in this work, we propose the
scheme shown in Figure 2 to sample the random
number in each children rectangle.

Table 5. Results for three-dimensional problems.

SubDivNL algorithm Literature
(Shacham et al., 2002)

Roots
Number

Roots Values Initial Guess Roots Values

P9 Problem: variables (CA, CB, T)

Root 1 2.7873,
0.212680,
310.2126

 (3.0, 0.0, 300) 2.7873,
0.212679,
310.2126

Root 2 2.3805,
0.619577,
333.4925

 (3.0, 0.0, 350) 2.3804,
0.619577,
333.4925

Root 3 0.126396,
2.8499,
462.5692

 (3.0, 0.0, 400) 0.126397,
2.8499,
462.5692

Root 4 0.380121x10-02,
1.7136,
594.0274

 (3.0, 0.0, 600) 0.380106x10-02,
1.7136,
594.0274

Root 5 0.379757x10-03,
0.688892,
691.6242

 (3.0, 0.0, 700) 0.379757x10-04,
0.688892,
691.6242

P10 Problem: variables (T, X, Tj)

Root 1 573.8548,
0.521391,
537.2534

 a - 537.8548,
0.521391,
537.2534

Root 2 590.3498,
0.330187,
585.7298

 a - 590.3498,
0.330187,
585.7298

Root 3 671.2278,
0.354669x10-01,

660.4162

 a - 671.2783,
0.0354195,
660.4629

P11 Problem: variables (x1, y1, α)

Root 1 0.226975x10-01,
0.977303,
0.532268

 (0.9, 0.4, 0.6)
(0.5,. 0.1, 0.9)

0.226975x10-01,
0.977303,
0.532268

Root 2 - - (0.5, 0.0, 1.0) b -7.979065x10-13,
2.545161x10-10,
-9.143888x1009

Root 3 - - (0.9, 0.5, 0.5) c 0.686757,
0.313243,
1.470821

aNot presented in the original reference.
bFalse solution. cUnfeasible solution.

A subdivision algorithm for solving nonlinear algebraic systems 35

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

After this modification (variable sampling as a

function of subdivision level i), the CPU time

required in Problem P9 was decreased to 1.98 s.

Thus, the variable sampling as proposed in Figure

2 can help reducing significantly the computational

time for more complex problems (higher

dimensional problems and greater number of

roots).

 For iRan = 5 do

If (d ≤ 2) then
 nRan = d x iRan

If (d > 2) then
 If (i ≤ 3) then
 nRan = d x iRan
 If (3 < i ≤ 5) then
 nRan = d – 1
 If (i > 5) then nRan = 1

Figure 2. Proposed scheme for sampling nRan random numbers

inside the rectangles.

The roots found by the literature and by the

SubDivNL algorithm are shown in Table 5, where

one should noted that for determining all the roots

it was necessary to run the algorithm five times

arriving from distinct initial guess, while the

SubDivNL algorithm found all the roots from only

one interval and just one execution.

P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled P10 Problem: multiple steady states in a cooled

exothermic CSTR reactorexothermic CSTR reactorexothermic CSTR reactorexothermic CSTR reactor

This problem considers the determination of

multiple steady state conditions in a cooled

exothermic CSTR reactor. The variables are

temperature of the reaction medium (T),

conversion (X) and temperature of the cooled

jacket (Tj). The SubDivNL algorithm was

employed using the intervals of [300.0, 700.0],

[0.0, 1.0], and [300.0, 700.0] for T, X and Tj,

respectively, with six subdivisions (i = 6), and no

coverage (iCov = 0). Three roots were found in

this work with a CPU time of 5.23 s. This

problem is classified by Shacham et al. (2002) as of

low difficulty degree. For this problem, the initial

guesses used by the literature are not provided in

the above-mentioned reference.

P11 Problem: twoP11 Problem: twoP11 Problem: twoP11 Problem: two----phase flash of a nonideal binary phase flash of a nonideal binary phase flash of a nonideal binary phase flash of a nonideal binary

mixture (isobutanolmixture (isobutanolmixture (isobutanolmixture (isobutanol----water)water)water)water)

This problem refers to a flash of a nonideal

binary mixture. The variables are the mole

fractions of one of the components in the vapor

(y1) and liquid (x1) phases and the fraction of one

of the phases (α); these variables are of course
constrained in the [0.0, 1.0] interval. The

parameters used in the SubDivNL algorithm

were: five subdivisions (i = 5), three coverage

(iCov = 3) and variables intervals of [0.1x10-05, 1],

[0.1x10-05, 1] and [0.0, 1.0], respectively, for y1, x1

and α. The SubDivNL algorithm found one root

with a CPU time of 2.77 s. In Table 5 the three

roots reported by the literature for this problem

are presented: one of them is the same

determined by the SubDivNL algorithm and the

other ones are false or unfeasible solutions.

P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary P12 Problem: phase stability test applied to ternary

liquidliquidliquidliquid----liquid equilibriumliquid equilibriumliquid equilibriumliquid equilibrium

The formulation of phase stability test for a

ternary liquid-liquid system is the same presented

previously. In order to test the subdivision

algorithm, the ternary system water(1)+critic

acid(2)+butan-2-ol(3) was chosen (Letcher and

Naicker, 2001; Gecegormez and Demirel, 2005),

with the NRTL parameters taken from Litomen

et al. (2001).

The SubDivNL algorithm was employed using

the interval of [0.0, 1.0], for composition of tested

liquid phases (y), with six subdivisions (i = 6),

and no coverage (iCov = 0). From Table 6, some

stability test calculations, at distinct global

compositions specified are presented.

From the results shown in Table 6, it can be

verified that the subdivision algorithm can be

used to perform liquid-liquid stability test

calculations, and it arises as an interesting

alternative for phase equilibrium calculations.

In general, one can see that the present algorithm

was able to find all the multiple solutions for the

tested three-dimensional problems without the need

for specifying initial guesses. In contrast to the

results available in the literature, unfeasible and false

solutions were avoided when the SubDivNL was

employed. Moreover, the SubDivNL algorithm was

capable of finding all of the feasible solutions with

only one execution, whereas the methods available

in the literature require in most cases several initial

guesses and executions for the determination of all

roots.

36 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

Table 6. Results for Problem P12: stability test analysis applied to liquid-liquid equilibrium of water(1) +critic acid(2)+butan-2-ol(3) at
298.15 K.

SubDivNL IN/GB# (Gecegormez and Demirel, 2005) Input (z1, z2, z3)
Roots (y1,y2, y3) TPD(y) CPU (s) Roots (y1,y2, y3) TPD(y)

(0.20, 0.05, 0.75) (0.1752, 2.7558×10–2, 0.7972)
(0.2000, 0.0500, 0.7500)
(0.2530, 0.1748, 0.5722)

–2.3698×10–4
1.0000×10–8
–5.9447×10–3

15.2 (0.1752, 2.7558 × 10–2, 0.7972)
(0.2000, 0.0500, 0.7500)
(0.2530, 0.1748, 0.5722)

–2.3699×10–4
0.0000 × 10–0
–5.9447×10–3

(0.15, 0.10, 0.75) (8.3523×10–2, 7.0909×10–3, 0.9094)
(0.1500, 0.1000, 0.7500)
(0.1544, 0.2908, 0.5548)

–2.1738× 10–2
1.0000×10–8
–1.7323×10–2

15.2 (8.3523×10–2, 7.0909×10–3, 0.9094)
(0.1500, 0.1000, 0.7500)
(0.1544, 0.2908, 0.5548)

–2.1739×10–2
0.0000 × 10–0
–1.7323×10–2

(0.20, 0.10, 0.70) (0.1257, 1.1877× 10–2, 0.8624)
(0.2000, 0.1000, 0.7000)
(0.2177, 0.1838, 0.5985)

–1.0321×10–2
1.0000×10–9
–1.8376×10–3

17.1 (0.1257, 1.1877×10–2, 0.8624)
(0.2000, 0.1000, 0.7000)
(0.2177, 0.1838, 0.5985)

–1.0321×10–2
0.0000 × 10–0
–1.8376×10–3

(0.05, 0.15, 0.80) (1.8972×10–2, 2.1628×10–3, 0.9789)
(3.6280×10–2, 0.3989, 0.5649)
(0.0500, 0.1500, 0.8000)

–9.0052×10–2
–3.6271×10–2
1.0000×10–9

18,0 (1.8972×10–2, 2.1628×10–3, 0.9789)
(3.6280×10–2, 0.3989, 0.5649)

(0.0500, 0.1500, 0.8000)

–9.0052×10–2
–3.6271×10–2
0.0000 × 10–0

(0.10, 0.20, 0.70) (4.1828×10–2, 2.8004×10–3, 09554)
(9.6537×10–2, 0.2567, 0.6467)

(0.1000, 0.2000, 0.7000)

–8.2501×10–2
–4.2772×10–4
1.0000×10–9

14,3 (4.1828×10–2, 2.8004×10–3, 0.9554)
(9.6537×10–2, 0.2567, 0.6467)

(0.1000, 0.2000, 0.7000)

–8.2501×10–2
–4.2773×10–4
0.0000 × 10–0

(0.20, 0.20, 0.60) (0.1095, 9.3104×10–3, 0.8812)
(0.1878, 0.1126, 0.6996)
(0.2000, 0.2000, 0.6000)

–1.4729×10–2
1.9549×10–3
1.0000×10–8

15,6 (0.1095, 9.3104×10–3, 0.8812)
(0.1878, 0.1126, 0.6996)
(0.2000, 0.2000, 0.6000)

–1.4729×10–2
1.9549×10–3
0.0000 × 10–0

#For this system the computational time is not presented in the literature.

FourFourFourFour----dimensional problemdimensional problemdimensional problemdimensional problem

A four dimensional problem was solved by
SubDivNL algorithm. These results obtained here
and those from the literature are presented in
Table 7.

Table 7. Results for the four-dimensional problem.

SubDivNL algorithm Literature
(Shacham et al., 2002)

Roots
Number

Roots Values Initial Guess Roots Values

P13 Problem: variables
(CA, CB, CC, T)

Root 1 2.3804,
0.619577,

0.164268x10-05,
333.4925

 (3.0, 0.0, 0.0, 350.0) 2.3804,
0.619577,

0.164268x10-05,
333.4925

Root 2 2.7873,
0.212680,

0.646861x10-07,
310.2126

 (3.0, 0.0, 0.0, 300.0) 2.787320,
0.212680,

0.646861x10-08,
310.2126

Root 3 0.1263970,
2.849909,

0.236946x10-01,
462.56916

 (3.0, 0.0, 0.0, 400.0) 0.126397,
2.849909,

0.236946x10-01,
462.5692

Root 4 0.380106x10-02,
1.7136,
1.2826,
594.0274

 (0.0, 2.0, 1.0, 600.0) 0.380106x10-02,
1.7136,
1.2826,
594.0274

Root 5 0.379754x10-03,
0.688892,
2.3107,
691.6242

 (3.0, 0.0, 0.0, 700.0) 0.379757x10-03,
0.688892,
2.3107,
691.6242

P13 Problem: stP13 Problem: stP13 Problem: stP13 Problem: steady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR eady state operation of an adiabatic CSTR

reactorreactorreactorreactor

The problem deals with the determination of
multiple steady state conditions of an adiabatic
CSTR reactor. The intervals for the independent
variables are [0.0, 3.0], [0.0, 3.0], [0.0, 3.0] and
[200.0, 700.0] for the concentration of components
A (CA), B (CB), and C (CC), and reactor temperature
(T), respectively. The parameters adopted for the

SubDivNL algorithm were two coverage (iCov = 2)
and three subdivisions (i = 3). The SubDivNL
algorithm found five solutions from the intervals
defined, spending 13.47s for the determination of all
roots. This is a relative difficult problem for
obtaining the roots due to the presence of
multiplicity. The literature also reports five
solutions for this problem, but requesting five
different initial guesses to accomplish it.

ConclusionConclusionConclusionConclusion

From the results obtained in this work, one can
see that the subdivision algorithm, as it was
implemented, showed to be robust and efficient in
the resolution of typical problems of chemical
engineering described by nonlinear algebraic
systems. In the investigated problems, all feasible
solutions could be found since false or unfeasible
solutions were naturally excluded through the
specification of the variables intervals. Another
important characteristic of the algorithm is that it
seems to be capable of finding all of the solutions for
problems that present strong discontinuities,
singular points and regions where the functions of
the system are undefined. The SubDivNL algorithm
presents characteristics that allow it to be classified
as a global method, since in all problems of this
study it did not present any convergence problems.
It may be convenient to emphasize its easy
implementation, without the necessity of specific
operators.

Additionally, the subdivision algorithm presented
an excellent performance with regard to CPU time
for multidimensional problems. The CPU time was
observed to increase with increasing dimension of

A subdivision algorithm for solving nonlinear algebraic systems 37

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

the problem, number of subdivisions and coverage.
The employed criterion of exclusion of sub-
rectangles showed to be efficient and viable in the
resolution of such problems. Investigation on how
the CPU time is affected by the criterion of
rectangles exclusion is not within the scope of this
work and is underway within our working group.

Considering that the present tool may be of
interest to researchers and to those committed to
chemical engineering education, a basic version of
the SubDivNL algorithm can be freely obtained
upon contacting the authors.

AcknowledgementAcknowledgementAcknowledgementAcknowledgementssss

The authors thank CAPES, CNPq and
FAPERGS for the financial support for this work.

ReferencesReferencesReferencesReferences

BAKER, L.E. et al. Gibbs energy analysis of phase
equilibria. Soc. Petrol. Engrs. J., Richardson, v. 22, p. 731-
742, 1982.

CORAZZA, M.L. et al. Robust strategy for SLV
equilibrium calculations at high pressures. Fluid Phase
Equilibr., Amsterdam, v. 221, p. 113-126, 2004.

DAVIDENKO, D. On a new method of numerically
integrating a system of nonlinear equations. Dokl. Akad.
Nauk, Moscow, v. 88, p. 601-602, 1953.

DELLNITZ, M.; HOHMANN, A. A subdivision
algorithm for the computation of unstable manifolds and
global attractors. Numer. Math., Amsterdam, v. 75, p. 293-
317, 1997

GANG XU, B.S. Reliable phase stability and equilibrium
calculation using interval analysis for equations of state models.
2001. Thesis (Ph.D in Chemical Engineering)-University
of Notre Dame, Notre Dame, 2001.

GECEGORMEZ, H.; DEMIREL, Y. Phase stability
analysis using interval newton method with NRTL
model. Fluid Phase Equilibr., Amsterdam, v. 237, p. 48-58,
2005.

GREGORY, J.A. An introduction to bivariate uniform
subdivision: numerical analysis. In: GRIFFITHS, D.F.;
WATSON, G.A. (Ed.). Pitman research notes in mathematics.
New York: Longman, 1991. p. 103-117.

GRITTON, K.S. et al. Global homotopy continuation
procedures for seeking all roots of a nonlinear equation.
Comput. Chem. Eng., Amsterdam, v. 25, p. 1003-1019,
2001.

HUA, J.Z. et al. Reliable prediction of phase stability using
an interval-Newton method. Fluid Phase Equilibr.,
Amsterdam, v. 116, p. 52-59, 1996.

HUA, J.Z. et al. Reliable computation of phase stability
using interval analysis: cubic equation of state models.
Comput. Chem. Eng., Amsterdam, v. 22, p. 1207-1214,
1998.

KELLER, H.B. Global homotopies and Newton methods.

In: BOOR, C. et al. Recent advances in numerical analysis.
New York: Academic Press, 1978.

KERFOTT, R.B. et al. Algorithm 737: Intlib, a portable
Fortran 77 interval standard function library. ACM
Trans. Math. Softw., New York, v. 20, p. 447-459, 1994.

KERFOTT, R.B.; NOVOA, M. Algorithm 681:
INTBIS, a portable interval Newton/bisection package.
ACM Trans. Math. Softw., New York, v. 16, p. 152-157,
1990.

KOLEV, L.V. A new method for global solution of
systems of non-linear equations. Reliable Comput., Berlin,
v. 45, p. 125-146, 1998.

KREYSZIG, E. Advanced engineering mathematics. 8th ed.
New York: John Wiley, 1999.

KUNO, M.; SEADER, J.D. Computing all real solutions
to systems of nonlinear equations with fixed-point
homotopy. Ind. Eng. Chem. Res., Washington, D.C., v. 27,
p. 1320-1329, 1998.

LETCHER, T.M.; NAICKER, P.K. Liquid-liquid
equilibria for mixtures of water + an Alkanol + a Nitrile
compound at 298.15 K. J. Chem. Eng. Data, Washington,
D.C., v. 46, p. 1436-1441, 2001.

LINTOMEN, L. et al. Liquid-liquid equilibrium of the
water + Citric Acid + short chain alcohol + tricaprylin
system at 298.15 K. J. Chem. Eng. Data, Washington, D.C.,
v. 46, p. 546–550, 2001.

PAN, V.Y. Solving a polynomial equation: some history
and recent progress. SIAM Rev., Philadelphia, v. 39,
p. 187-220, 1997.

PERNICE, M.; WALKER, H.F. Nitsol: a Newton
iterative solver for nonlinear systems. SIAM J. Sci.
Comput., Philadelphia, v. 19, p. 302-318, 1998.

PRESS, W.H. et al. Numerical recipes in Fortran: the art of
scientific computing. 2nd ed. Cambridge: Cambridge
University Press, 1992.

RANGAIAH¸ G.P. Evaluation of genetic algorithms and
simulated annealing for phase equilibrium and stability
problems. Fluid Phase Equilibr., Amsterdam, v. 187-188,
p. 83-109, 2001.

SEADER, J.D. et al. Mapped continuation methods for
computing all solutions to general systems of nonlinear
equations. Comput. Chem. Eng., Amsterdam, v. 14, p. 71-
85, 1990.

SEIDER, W.D. et al. Nonlinear analysis in process design.
AIChE J., New York, v. 37, p. 1-38, 1991.

SHACHAM, M. An improved memory method for the
solution of a nonlinear equation. Chem. Eng. Sci.,
Amsterdam, v. 44, p. 1495-1501, 1989.

SHACHAM, M. A variable order method for solution of a
nonlinear algebraic equation. Comput. Chem. Eng.,
Amsterdam, v. 14, p. 621-629, 1990.

SHACHAM, M. et al. A web-based library for testing
performance of numerical software for solving nonlinear
algebraic equations. Comput. Chem. Eng., Amsterdam,
v. 26, p. 547-554, 2002.

SMILEY, M.W.; CHUN, C. An algorithm for finding all
solutions of a nonlinear system. J. Comput. Appl. Math.,

38 Corazza et al.

Acta Sci. Technol. Maringá, v. 30, n. 1, p. 27-38, 2008

Amsterdam, v. 137, p. 293-315, 2001.

WAYBURN, T.L.; SEADER, J.D. Homotopy
continuation method for computer-aided process design.
Comput. Chem. Eng., Amsterdam, v. 11, p. 7-25, 1987.

WEYL, H. Randbermerkungen zu hauptproblemen der
mathematik, ii, fundamentalsatz der algebra and

grundlagen der matehmatik. Math. Z., Heidelberg, v. 20,
p. 131-151, 1921.

Received on August 26, 2006.
Accepted on August 28, 2007.

