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ABSTRACT. In this work, non-linear analyses of reinforced concrete plates are performed by 
using a BEM formulation, based on Kirchhoff’s theory, which has already proved to be a robust 
technique to deal with plate problems. The non-linear behavior of concrete is modeled by the 
Mazars model, which is based on continuum damage mechanics (CDM) and has an easy 
parametric identification, while the reinforcement is governed by the uniaxial elasto-plastic model 
with constant hardening. Initially, the different types of damage models and their parametric 
identification are discussed and the Mazars model is presented. Then the BEM formulation is 
discussed, which is based on the initial moment technique, where the remaining domain integrals 
are evaluated by approaching the initial moment field over internal cells. The stress distribution over 
the plate thickness is obtained by using a Gauss scheme in which the adopted criterion is verified in 
each Gauss point defined along the plate. Then, the internal values of moments are approached by 
numerical integrals along the plate thickness. Finally, some numerical examples of reinforced 
concrete plates are analyzed, where the potentiality of the Mazars model is verified despite the 
difficulties of the parametric identification. 

Key words: boundary elements, damage mechanics, plate bending. 

RESUMO. Análise não-linear de placas em concreto armado pelo método dos 

elementos de contorno e mecânica do dano contínuo. Nesse trabalho são feitas análises não-
lineares de placas de concreto armado,utilizando-se uma formulação do MEC (método dos 
elementos de contorno) baseada nas hipóteses de Kirchhoff. O modelo constitutivo adotado para o 
concreto é o modelo proposto por Mazars baseado na Mecânica do da Dano Contínuo (MDC), 
sendo o comportamento não-linear das armaduras governado pelo modelo elastoplástico com 
encruamento isótropo. Justifica-se a escolha de tal modelo numérico pela simplicidade paramétrica 
do modelo de dano e pela robustez do MEC, que já provou ser eficiente na análise de placas. 
Inicialmente, apresenta-se uma revisão dos tipos de modelos de dano e suas implicações na 
identificação paramétrica, discutindo-se em seguida o modelo de Mazars. Então, apresenta-se a 
formulação não-linear do MEC, que é obtida considerando-se que além do carregamento 
transversal, a placa possa estar sujeita também a um campo de momentos iniciais. Assim, surgem na 
formulação integrais de domínio envolvendo esses momentos iniciais as quais são calculadas 
numericamente pela discretização do domínio em células, nas quais os momentos iniciais são 
aproximados. A distribuição das tensões ao longo da espessura da placa é obtida utilizando-se um 
esquema gaussiano, no qual o critério deve ser verificado em cada ponto definido ao longo da altura. 
Então, os momentos internos são obtidos pelas integrações numéricas ao longo da espessura da 
placa. Por fim, exemplos de análise de placas em concreto armado são apresentados como aplicação 
modelo numérico proposto, constatando as potencialidades de seu emprego apesar das dificuldades 
de identificação paramétrica. 

Palavras-chave: elementos de contorno, mecânica do dano, flexão de placa. 

IntroductionIntroductionIntroductionIntroduction    

The boundary element method (BEM) is already a 
well-established numerical technique to deal with an 
enormous number of complex engineering problems. 
BEM is particularly suitable to evaluate effort 
concentrations due to point loads. Moreover, BEM is a 
far better numerical technique to evaluate shear efforts 
 

when compared with other methods. BEM has the 
advantage of dealing with deflections, slopes, moments 
and shear forces, approaching them using the same 
order polynomials. Plate bending BEM analysis has 
also been successfully extended to non-linear 
problems, for which explicit techniques usually based 
on initial moments or curvatures have been adopted. 
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The first works discussing the use of boundary 
element direct formulation, in conjunction with 
Kirchhoff's theory, are due to Bezine in 1978 and 
Tottenhan in 1979. Venturini and Paiva (1993) have 
shown several alternatives to define the algebraic 
system of equations by placing the collocations either 
along the boundary or at particular outside points. 

All the works reported above deal with the linear 
plate bending problem. For elasto-plastic plate 
bending analysis, assuming Kirchhoff's theory and 
using BEM, we have to mention Moshaiov and 
Vorus (1986), in which a particular incremental 
scheme has been proposed. Fernandes and Venturini 
(2002; 2007) have studied this problem as well, 
introducing approximated models to deal with 
concrete slabs. Non-linear boundary element 
models have been also developed in the context of 
moderately thick plates by taking Reissner’s theory 
into consideration, e.g. Karan and Telles (1992). 

In the present paper, new numerical examples 
using the non-linear BEM formulation to analyze 
reinforced concrete slabs proposed in Fernandes and 
Venturini (2002) are discussed. This work intends to 
show the potentialities of that numerical model 
(BEM and CDM) applied on new situations where 
the parametric identification of the damage model is 
discussed. Although the formulation can admit both 
the elasto-plastic and damage models for the 
concrete, in this work only the Mazars (PITUBA; 
PROENÇA, 2005) continuum damage model will 
be considered. For the steel bars used as the 
reinforcement, an elasto-plastic criterion with 
hardening has been assumed. Integral 
representations of displacements will be derived 
from Betti’s reciprocal work theorem, taking into 
account an initial moment field which will be 
assumed as the corrector vector of the non-linear 
incremental-iterative procedure. The actual internal 
forces are computed numerically by performing 
properly the integral over the plate thickness, using a 
convenient number of Gauss’ stations. The chosen 
criterion is verified at each Gauss’ point leading to 
the actual and initial distribution of stresses along 
the plate cross section. Finally, two numerical 
examples are taken to illustrate the accuracy and 
stability of the presented formulation. 

Material and methodsMaterial and methodsMaterial and methodsMaterial and methods    

Basic equationsBasic equationsBasic equationsBasic equations    

The equilibrium of an infinitesimal thin plate 
element, in absence of distributed external 
moments, gives the following differential equation 
written in terms of internal forces, 

0,m =− ijij q  (i,j = 1,2)                                          (1a)  
0, =+gq ii  (i = 1,2)                                               (1b) 

 
where: 

mij are bending and twisting moments; 
qi represents shear forces;  
g is distributed load acting in the direction 

perpendicular to plate middle surface. 
The plate domain, defined over the middle 

surface, is denoted by Ω , while its boundary is 
represented by Γ , along which the following 
generalized boundary conditions may be assumed: 

ii uu =  on 1Γ  and ii pp =  on 2Γ , where 
Γ=Γ∪Γ 21 . The generalized  displacements ui are 

deflections, w, and rotations, ∂w ∂n-1, while 
generalized tractions are given by normal bending 
moments, Mn, and effective boundary shear forces, 

Vn ( snsnn xmqV ∂∂ /+= ); (n, s) is the local co-ordinate 
system, being n and s then normal and tangential 
directions, respectively). 

For non-linear problems, the total strain 
components are divided into two parts. 

 
p

ij
e
ijij εεε +=                                                          (2) 

 
where: 

e
ijε
 and 

p
ijε

 are the elastic and plastic strain parts, 
respectively. 

From equation (2), one can bend the moments 

written into their elastic (
e
ijm ) and plastic (

p
ijm ) parts 

as well: 
 

p
ij

e
ijij mmm −=                                                            (3) 

 

or when replacing 
e
ijm  by curvatures, 

 

[ ] p
ijijijkkFij mwwDm −−+−= ,)1(, νδν                      (4) 

 

in which ijδ  is the Kronecker delta, υ is Poisson’s 
ratio and the classical plate stiffness DF is given by: 

[ ])1(12/ 23 ν−Et , with E being Young’s modulus. 
It is important to note that in the present work 

constitutive models for the concrete will not be 
considered elasto-plastic, but only a damage model. 

Although, in any case the plastic moments (
p
ijm ) 

represent, in fact, the corrector moments that must 
be considered in the incremental-iterative procedure 
in order to achieve plate equilibrium. 
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By differentiating equation (3) and then 
replacing it into equation (1a), one can write shear 
forces in terms of deflection derivatives, as 
follows: 

 

i
p
ijkkjFj mwDq ,, −−=                                                  (5) 

 
Replacing equation (1) into (1) and then using 

equation (4), one can achieve the equilibrium final 
expression, for plates with constant stiffness DF, 
written in terms of displacements: 

 

iijjw, ( ) Fij
p

ij Dmg /,−=                                               (6) 
 

where: 

ww iijj
2, ∇= , stands for the Laplacian operator 

here applied on deflections w. 

Integral representationsIntegral representationsIntegral representationsIntegral representations    

The integral representations will be derived from 
the reciprocity relation, which can be written in 
terms of moments and curvatures, as follow: 

 

∫∫
ΩΩ

Ω=Ω )(),()()()(,),( ** qdqswqmqdqwqsm ij
e
ijijij       (7) 

 

In equation (7) )(, qw ij  and )(qme
ij  represent, 

respectively, curvatures and elastic moments related 
to the actual plate bending problem valid over the 
domain Ω, while w*(s,q) is the well known 
fundamental solution, i.e., the deflection at the field 
point q due to a unit load applied at a source point s. 
Differentiating (7) twice by parts and considering 
(3) one can derive the following deflection integral 
representation: 
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where: 

S is the source point that can be placed 
anywhere, Ωg is the sub-region where the load g is 
applied; the free term C(S) is given by: C(S)=1 for 
an internal point, C(S)=0 for outside points and 
C(S)=βC/2π for boundary points, being βC the 
internal angle at S. 

In equation (8), w, ∂w/∂n, Mnn, Vn and RC are 
actual plate boundary values, deflections, rotations, 
normal bending moment, effective shear forces and 
corner reactions, respectively. The values indicated 
by * are the corresponding ones derived from the 
fundamental solution. To obtain the curvature 
integral representations, one has to differentiate 
twice equation (8). Then, bending and twisting 
moment integral representations are obtained by 
simply applying the definition given in equation (4), 
resulting into: 
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where: 

gijkl is a free term resulting of differentiating a 
singular integral term, being given by 

[ ]
llll kijikjjikijk sg δδνδδδδν )31())(1()( 8

1 +++−−= . 
The shear force integral representation can be 

obtained by differentiating once the curvature 
equation to apply the definition given in (5). 

Algebraic equationsAlgebraic equationsAlgebraic equationsAlgebraic equations    

To transform the integral representations (8), 
and (9) into algebraic expressions the plate boundary 
has been discretized into geometrically linear 
elements over which the boundary values have been 
approximated by quadratic shape functions. Besides, 

the plastic moments, )q(m p
ij , are approximated by 

adopting linear shape functions over domain 
triangular cells.  

After selecting an appropriate number of 
algebraic equations, one can assemble a convenient 
set of equations to solve the problem in terms of 
boundary values. As it has already been observed in 
previous study (FERNANDES; VENTURINI, 
2002), it is better to use only deflection 
representations to define the final set of equations, 
taking the collocation points either along the 
boundary or outside the body. We tested algebraic 
equations achieved by either selecting only outside 
points or outside and boundary points. Both 
schemes gave accurate results.  
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Writing equation (8) into its discretized form for 
a convenient number of collocation points, one 
finds the BEM classical matrix equation, 

 
pEMTGPHU ++=                                             (10) 

 
Vectors U and P, in equation (10), contain the 

generalized displacement and traction nodal values; 
vector T represents the loading, and Mp contains 
plastic (or corrector) moments at internal and 
boundary nodes. H and G are the standard square 
matrices achieved by integrating all boundary 
elements, while E is a matrix obtained by 
performing the integrals over all cells. 

The moment integral representation (9) can also 
be written into its algebraic form: 

 
pI)M-E(TPGUHM ′+′+′+′−=                        (11) 

 
with:  

I being the identity matrix. 
All matrices appearing in equation (11) are similar 

to the ones in equation (10), obtained by using the 
corresponding kernel exhibited in equation (9). 
Equations (10) and (11) can be conveniently arranged 
to express the solution in terms of boundary values, 
moments and shear forces, as follows: 

 
pRMLX +=                                                        (12a) 
pSMNM +=                                                       (12b) 
pMSNQ ′+′=                                                      (12c) 

 
In equations (12) L, N and N' give the elastic 

solution due to the prescribed loads acting along the 
boundary or over the domain, while Mp effects are 
represented by matrices R, S and S'.  

Stratified modelStratified modelStratified modelStratified model    

To capture different states of stresses that occur 
along the thickness, due to the different behavior of 
the concrete in tension and compression, the 
criterion is verified at particular points defined along 
the thickness. Then, at any cross section the actual 
moment increments will be computed by 
integrating the stress increment distribution along 
the thickness using a Gauss scheme as follow: 
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c
ijσ  is the concrete stress distribution along the 

thickness, 
sk
ijσ

 represents the steel stress of a layer 
placed at x3sk, while Ask represents the steel bar cross 
section, being Ns the reinforced layer number and δij 

the Kronecker delta, IGξ  is the Gauss point 
homogenous co-ordinate. 

Equation (13) is used to compute the internal 
moment tensor, for a specific plate cross section. 
This value is computed assuming the plate’s middle 
surface to define the neutral axis, therefore to deal 
with a symmetric stress distribution diagram. For 
concrete slabs, one must take into account that the 
material behaves differently when in tension or in 
compression. In addition, reinforcement is usually 
non-symmetrically distributed. Thus, the neutral 
axis is no longer defined by the middle surface. To 
continue the analysis in the context of simple 
bending, one needs to define the new position of the 
neutral axis enforcing the stress resultant to be zero 
(FERNANDES; VENTURINI, 2002). After that, 
by conveniently using equation (13) one can 
compute the actual and plastic moments or their 

increments, M∆  and pM∆ , to be adopted in the 
non-linear algorithm described in section 7. For 
damage analysis, the same procedure is followed, 
replacing plastic values by damaged values. 

Remarks about damage constitutive modelsRemarks about damage constitutive modelsRemarks about damage constitutive modelsRemarks about damage constitutive models    

The Continuum Damage Mechanics (CDM) is a 
tool for the simulation of the material deterioration 
in equivalent continuous media due exclusively to 
microcracking process. A material can be simulated 
as a continuous medium and the influence of the 
internal changes caused by the microcracks are 
considered through scalar or tensor damage 
variables, which implies in a reduction of several 
rigidity components, where the damaged material 
can keep its isotropic properties or to become 
anisotropic. In the isotropic models, the damage 
does not affect the number of either the symmetry 
directions and the initial symmetry planes of the 
material, i.e., if the medium is initially isotropic or 
anisotropic with some degrees, those characteristics 
are preserved during the damage process. 

On the other hand, the anisotropic models have 
the ability to change the number of both the 
symmetry directions and the initial symmetry planes 
of the material. In the last years, many constitutive 
models have been proposed in order to take into 
account anisotropic characteristic of the medium 
(BRÜNIG, 2004; PITUBA, 2007). 

In order to represent the mathematical 
formulation of media with anisotropy induced by 
damage, it is considered that the damaged rigidity 
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constitutive tensor can be composed by two additive 
parts: the first one represents the undamaged 
material and second one is dependent of the actual 
damage state. When that last part is written like a 
summation of the scalar valued functions of the 
damage scalar variables that multiplies the fourth-
order constitutive tensors, the resulting model is so-
called scalar damage model. For instance, simple 
additive forms can be expressed as follows: 

 

E = E0 + λ[D] M                                                  (14) 
 

where:  

M and M are fourth-order tensors and λ[D] is a 
scalar valued function of the damage scalar variables. 
For initially isotropic materials, it can preserve the 
isotopic characteristic or create an anisotropic effect 
on the constitutive tensors depending how the 

tensors M and M  were defined. 
In the other hand, the general forms to the 

fourth-order damage tensor D can be proposed in 
order to take into account the anisotropy induced by 
damage. In Pituba (2007) the definition of the 
damage tensor follows a so-called scalar form 
expressed as: D = fj(Di) Mj , where fj(Di) are scalar 
valued functions of the damage scalar variables Di 

and Mj are anisotropic tensors. 
Finally, constitutive models with orthotropy and 

bimodularity induced by damage can be proposed in 
order to evaluate the potentialities in the analysis of 
reinforced concrete structures. However, it must be 
observed that the parametric identification could 
become unfeasible at the practical point of view. 
The parametric identification is essential for using a 
constitutive model. The values to be determined can 
present reasonable sensibility mainly in the cases 
where the parameters number is reduced, which is 
the case of the proposed model. The adoption of a 
small number of parameters leads to an easier 
identification. However the capture of the 
characteristics of the stress-strain experimental curve 
of the material becomes more complicated. On the 
other hand, to get a correct identification and a good 
adjustment of the model is indispensable reliable 
experimental results. 

Therefore, in this work, one has chosen an 
isotropic damage model due to the formulation 
simplicity and its easy parametric identification. In 
this context, the damage constitutive model 
proposed by Mazars is a well-known model whose 
efficiency has been already tested in various 
situations. 

Constitutive modelsConstitutive modelsConstitutive modelsConstitutive models    

As already mentioned, for the reinforcement the 
steel behavior is governed by a uniaxial elasto-plastic 
curve exhibiting hardening effects. For the concrete 
we have considered the well-known damage model 
proposed by Mazars (PITUBA; PROENÇA, 2005). 
In this model, the damage is represented by the 
scalar variable D (with 0 ≤ D ≤ 1), whose evolution 
occurs when the equivalent extension deformation 
ε~  is bigger than a reference value. The plastic 
deformations evidenced experimentally are not 
considered. 

The equivalent extension deformation is given 
by: 

 
2

3

2

2

2

1
~

+++
++= εεεε                                      (15) 

 
where: 

iε  is a principal deformation component, being 

+
ε i  its positive part, i. e.: [ ]iii εεε +=

+ 2

1
. 

The damage activation occurs when =ε~ εd0, 
being εd0 the deformation referred to the maximum 
stress of a uniaxial tension test. Thus the criterion is 
given by: 

 
( ) ( ) 0~,~ ≤−= DSDf εε  with S(0) = εd0                           (16) 
 
Considering the principles of thermodynamics, 

the damage evolution can be expressed by: 
 

0=D&  if f < 0 or  f = 0 and f& < 0                     (17a) 

( )
+

= εε && ~~FD  if f = 0 and 0=f&                       (17b) 

 
where: 

dtdDD /=& , i. e., D time derivative; ( )ε~F  is 

written in terms of ε~  and defined continuous and 
positive. 

As the concrete behaves differently in tension 
and compression, the damage variable D is obtained 
by combining properly the variables DT and DC, 
related to tension and compression, respectively, as 
follows: 

 

CCTT DDD αα +=  being  1=+ CT αα                   (18) 
 
Now, it is necessary to identify the evolution 

laws for the scalar damage variables. In a general 
way, the evolution laws can be obtained by: 
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- direct identification from experimental tests 
obtained at laboratories; 

- definition of a dissipation potential written in 
terms of the associated variables, that includes states 
that can be achieved without any additional energy 
dissipation. In this case, the evolution laws are 
obtained from the variation of the dissipation 
potential. 

An inconvenience of the first strategy is its 
limited use. One can lead to evolution laws that have 
their application restricted to loading paths 
combinations similar to those of the experimental 
tests. The second strategy has a more theoretical 
stamp, though with some advantages such as: 
application to general situations of loading paths, 
constitutive models with formal structure similar to 
models derived from other theories, and the 
possibility of maintenance of the constitutive tensor 
symmetry. 

In this work, in order to consider a more 
practical employment of the numerical model, one 
has followed the first strategy. Therefore, the 
evolution laws proposed for the scalar damage 
variables are resulting from fittings on experimental 
results (PITUBA; PROENÇA, 2005): 

 
( )

( )[ ]0

0
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In equations (19) AT and BT are parameters 

related to uniaxial tension tests while AC and BC. are 
obtained from uniaxial compression tests. The 
parametric identification results of constitutive 
models obtained from experimental tests in the 
concrete specimens are presented in Pituba and 
Proença (2005). 

To compute the αT and αC values defined in 
(18), we have to obtain, initially, the deformations εT 
and εC associated, respectively, to tension and 
compression states as follows: 

 

I
EE i iT ++ ∑−+= **1 συσυε                            (20a) 

I
EE i iC −− ∑−+= **1 συσυε                           (20b) 

 
where: 

I is the identity tensor, E the elastic modulus of a 

non-damaged material, +

*σ  and −

*σ  are, 

respectively, positive and negative parts of the stress 

tensor *σ  obtained from the relation εσ 0
* D= , 

where 0D  is the elastic fourth order tensor of the 
non-damaged material. 

Thus the coefficients Tα  and Cα  are obtained 

by the following expression: 
 

+
+∑=

V

i Ti

T ε
ε
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i Ci

C ε
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where: 

+Tiε  and −Ciε  are, respectively, positive and 

negative parts of the deformations εT and εC defined 

in (20); 
+
Vε  is given by: ∑ ++

+ +=
i CiTiV εεε . 

Finally, the constitutive relation can be expressed 
in terms of the actual deformation tensor as follows: 

 
( ) εσ 01 DD−=                                                        (22) 

Solution techniqueSolution techniqueSolution techniqueSolution technique    

As the plate behavior was assumed to be non-
linear, an incremental-iterative procedure is 
required. Thus, for the iteration j of the load 

increment i, the elastic moment increments eM∆ , 
for all boundary and domain nodes, are given by: 

 

{ } { }N∆Me
i

1

i β=  if j = 0                                       (23a) 

 

{ } [ ]{ } 1j

i
Pj

i
e ∆MS∆M

−=  if j ≥ 1                                (23b) 

 
In equation (23), βi is the load factor, N and S are 

defined in (12) and ∆MP is the plastic moment 
increment computed during the previous iteration. 

To compute the actual moment field taking into 
account particular criteria for each concrete layer 
and for the reinforcement, we follow the scheme 
defined in section 5. Initially, using Hooke’s law, the 
corresponding curvature increment is evaluated 
from the elastic moment increment. Then, at each 
Gauss point and at the reinforcement positions, 
strain and stress elastic increments are computed. As 
superposition is admitted, those values can be 
accumulated at proper vectors. After verifying the 
adopted constitutive model for all Gauss points and 
reinforcements, we are able to compute the three in-
plane components Nx, Ny and Nxy. The actual strain 
and stress distribution along the plate thickness is 
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obtained by enforcing these components to be zero. 
Finally, the actual moment increment (∆M) vector is 
evaluated by using equation (13). The plastic (or 
corrector) moment increments are then computed 
at all boundary and internal nodes: 

 

{ } =∆
+1j

i
PM { }j

i
eM∆ -{ }j

iM∆                                      (24) 
 

The corrector value { } 1+
∆

j

i
PM  is then applied to 

the next iteration as elastic moment increments 
(equation 23b). The iterative procedure ends when 
the convergence criterion is satisfied according to a 
tolerance previously defined. At the increment end, 
boundary values and shear forces can be evaluated 
using expressions (12), for which MP represents the 
accumulated plastic moment vector. 

Results and discussionResults and discussionResults and discussionResults and discussion    

In this section, two numerical examples of 
concrete reinforced slabs were chosen to verify the 
accuracy of the BEM formulation prescribed 
previously. This model was implemented using the 
FORTRAN code as well as the  direct boundary 
element method based on collocation points. For 
both examples a conventional ultimate state, defined 

by ultimate strain values cuε = –0.35% and suε = 
1.0%, respectively for concrete and steel materials, 
was assumed to define the ultimate load.  

In the first example, the plate geometry and 
boundary conditions are particularly defined in 
order to simulate the behaviour of a 30 cm thick 
beam (t = 30 cm), as shown in Figure (1a).  
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Figure 1. a) Plate geometry and loading; b) Plate discretization. 

The single applied load taken to analyze this 
beam is given by the moment M = 500 kN cm, 
distributed along the simply supported sides of 
length 2b = 20 cm. The other two sides of length 
equal to 2a = 150 cm are free, with no prescribed 
displacement or rotation. The boundary was 
discretized into 8 quadratic elements, while 24 cells 

with the definition of 5 internal points were adopted 
to approximate initial moments over the plate 
domain, as shown in Figure (1b). The matrix H and 
G have been computed by defining boundary and 
outside collocation points, being the distance of the 
outside point to the boundary given by: d1 = 0.1l, 
where l is the element length. The elastic modulus 
Ec, for the concrete material, was assumed equal to 
3,000 kN cm-2, being its Poisson's ration ν = 0 and 
the concrete ultimate stress, fc = 3 kN cm-2. The 
reinforcement is constant and displayed only in the 
x1 direction The steel elastic modulus Es was 
assumed equal to 27,000 kN cm-2 with the yielding 
stress fy = 24 kN cm-2 and hardening modulus Ks = 
14,000 kN cm-2. The total steel cross section As=0.5 
cm2 cm-1 was considered for all bars that have been 
placed at x3 = 12 cm. The convergence was 
controlled by a tolerance of 0.0001%. To compute 
the stress distribution along the plate thickness 12 
Gauss points have been considered. 

The load was applied in 36 increments. Elastic 
responses were observed until the load factor β 
reached 0.1, when the concrete was damaged. Plastic 
strains appeared in the steel bars as well, but only for 
β equal to 0.60. The analysis stopped at β = 2.7  
(M = 1350 kN cm), when the assumed steel 
maximum strain of -0.01 was reached. Figure (2) 
shows the deflection at central point 23 through the 
incremental procedure.  
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Figure 2. Load factor-deflection curve at the node 23. 

Note that for all increments the computed values 
for moments were the following ones: M11 = 500 βkN 
cm, M12 = M22 = 0.0, as expected. It is interesting to 
note that this same example has been considered in 
Fernandes and Venturini (2002), adopting an elasto-
plastic model for the concrete. Although in Fernandes 
and Venturini (2002) we have also computed internal 
moments equal to M11 = 500 βkN cm, M12 = M22 = 0.0, 
the ultimate load was obtained for the applied moment 
M = 450 kN cm, when the steel bars has reached the 
maximum strain. One can observe that this ultimate 
moment is much lower than the one obtained in the 
present work. 
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The example was also analyzed adopting a finer 
mesh with 16 quadratic elements, giving practically 
the same results obtained with the first 
discretization.  

The second example consists of analyzing a 
square plate of side length a = 18in and thickness t 
= 1.75in supported only at the corners. A 
distributed load g = 200 psi has been applied over a 
small sub-region at the center of the plate (see 
Figure 3a), resulting into a total load P = 3.2 kpis.  

The matrix H and G have been computed by 
defining only outside collocation points, whose 
distance to the boundary are given by: d1 = 0.1l and 
d2 = 0.25l, respectively, being l the element length. 
The plate was uniformly discretized by adopting 32 
quadratic boundary elements and 512 triangular 
internal cells, giving 68 boundary nodes and 225 
internal points (Figure 3b). 
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Figure 3. a) Plate supported at corners with a central load; b) 
Plate discretization. 

The reinforcement is characterized by the steel 
elastic modulus Es = 29000000 psi and yielding 
strength fy = 50000 psi with no hardening. The bars 
cross sections in both directions are As = 
0,011135”²/” which are placed at x3 = 0,435”. The 
adopted concrete elastic modulus is Ec = 4150000 
psi , while its Poisson's ratio and ultimate strength 

are ν = 0.15 and fc = 5500 psi, respectively. The 
tolerance of 0.2% was assumed to govern the 
convergence criterion, while 12 Gauss' points were 
used to perform the integrals across the slab 
thickness.  

The load has been applied in 26 increments, 
starting by β = 0.1. The analysis has stopped for  
β = 0.79 (P = 2.53 Kpis), when the plate 
equilibrium has not be achieved. The concrete 
started to damage for P = 1.12 Kpis, while the steel 
bars had plastic deformations for P = 2.24 Kpis. In 
Figure 4 is displayed the load-deflection curve for 
the point 1 (Figure 3a), adopting different limits for 
the damage variable D. One can observe that the 
best results have been obtained for D = 0.7.  
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Figure 4. Load-deflection curve at the node 1. 

As there are not stress x deformation curves in 
tension and compression for the concrete, in order 
to identify the model parameters, one has adopted 
average values for these parameters and limited the 
damage variable value. Thus, this example intends to 
show the capacity of the numerical model (BEM 
and CDM) to simulate the behavior of reinforced 
concrete plates. 

ConclusionConclusionConclusionConclusion    

New examples using the BEM formulation 
proposed in Fernandes and Venturini (2002) to 
perform non-linear analysis of reinforced plates have 
been discussed. Once again the technique has 
proved to be efficient to model the concrete element 
stiffness deterioration using damage models, for 
which stability was always observed within the range 
of practical applications; for these situations, 
ultimate loads have been easily obtained without 
showing any kind of instabilities in the 
computations. These numerical instabilities can be 
observed in many situations even for intermediate 
levels of the damage processes leading to a 
deformation localization phenomenon. In these 
cases, it is necessary to use non-local versions of 
damage models. BEM has already proved to be a 



BEM formulation for concrete plates 33 

Acta Scientiarum. Technology Maringá, v. 31, n. 1, p. 25-33, 2009 

suitable numerical tool to deal with plate bending 
problems. The method is particularly recommended 
to evaluate concentrations of internal forces or 
deformations that very often appear in practical 
problems. Moreover, the same order of errors is 
expected when computing deflections, slopes, 
moments and shear forces. Shear forces, for 
instance, are much better evaluated when compared 
with other numerical methods. They are not 
obtained by differentiating approximation function 
as for other numerical techniques.  

The inclusion of a non-local version of a damage 
model in the numerical model presented here can be 
used in future works for the development of other 
numerical model depending of the involved 
phenomena. 

Finally, note that despite of having a limited 
parametric identification, because there was enough 
data about the concrete used in the structure, one 
can observe the potentialities of the damage 
constitutive model to simulate the concrete 
behavior. 
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