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ABSTRACT. In this paper, we introduce and study a new generalization of the extended exponential 
distribution, called the Ristić-Balakrishnan extended exponential distribution. The new model adds one 
parameter in the baseline model and its failure rate function can accommodate both inverted bathtub and 
bathtub shapes. Important distributions are obtained as a special case of our model, such as exponential and 
Lindley distributions. The main purpose is to define a new flexible distribution with great power 
adjustment to survival data sets. For this reason, we provide a comprehensive mathematical treatment of 
the new model. Furthermore, we use a real data set that proves empirically the power of adjustment of the 

new distribution compared to other competitive models in the literature.   
Keywords: generalized distribution; statistical properties; quantile function; maximum likelihood estimation; model fit. 

Distribuição Ristić-Balakrishnan exponencial estendida  

RESUMO. Neste artigo introduzimos e estudamos uma nova generalização da distribuição exponencial 
estendida, denominada Ristić-Balakrishnan exponencial estendida. O novo modelo adiciona um parâmetro 
a distribuição-base e sua função taxa de falha pode acomodar as formas de banheira e banheira invertida. 
Importantes distribuições são obtidas como caso especial de nosso modelo, tais como a Lindley e a 
exponencial. O principal objetivo é definir uma nova distribuição flexível com alto poder de ajuste a dados 
de sobrevivência. Por este motivo, estabelecemos um tratamento matemático abrangente ao novo modelo. 
Além disso, utilizamos um conjunto de dados reais que comprovam empiricamente o poder de ajuste da 
nova distribuição em comparação a outros modelos competitivos na literatura.   
Palavras-chave: distribuição generalizada; propriedades estatísticas; função quantílica; estimação por máxima 

verossimilhança; ajuste de modelos.  

Introduction 

It is hardly necessary to emphasize that a 
probabilistic model is commonly employed to attack 
practical situations in which a deterministic model is 
not feasible. This definition, albeit implicitly, had 
already been part of common sense since the 
Renaissance era, in which the notion of probability 
was unconsciously employed to propose solutions in 
games of chance (Bernstein, 1996). In fact, this 
intrinsic sense of probability lies at the heart of 
scientific methodology. Here it is worth quoting the 
classic book ‘The logic of scientific discovery’ by Sir 
Karl Popper: 

The most important application of the theory of 
probability is to what we may call chance-like or 
random events, or occurrences. These seem to be 
characterized by a peculiar kind of incalculability 
which makes one disposed to believe after many 
unsuccessful attempts that all known rational 
methods of prediction must fail in their case. We 

have, as it were, the feeling that not a scientist but 
only a prophet could predict them. And yet, it is just 
this incalculability that makes us conclude that the 
calculus of probability can be applied to these events 
(Popper, 1959, p. 167). 

Taking a leap forward in time, we see that 
probabilistic models still arouse the fascination of 
applied scholars and researchers. This interest 
materializes in the great amount of works that are 
dedicated to the proposal of new distributions. In 
particular, those dealing with distribution 
generators. Our research presented below is related 
to the generalization of probabilistic models through 
generators of distributions. In the generator 
approach, we refer to the following papers: Marshall 
and Olkin (1997) for the ‘Marshall-Olkin’ class; 
Eugene, Lee, and Famoye (2002) for the ‘beta’ class; 
Zografos and Balakrishnan (2009) for the ‘Gamma’ 
class; Cordeiro and Castro (2011) for the 
‘Kumaraswamy’ class and Cordeiro, Ortega, and 
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Cunha (2013) defined the ‘exponentiated 
generalized’ class of distributions. 

Recently, Gómez, Bolfarine, and Gómez (2014) 
introduced a new extended exponential (EE for short) 
distribution. For x > 0, its cumulative density 
function (cdf) and probability density function (pdf) 
are given by Equation 1 and 2: 
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where: 
α > 0 and β ≥ 0. Several mathematical properties of 
the EE distribution, including expectation, variance, 
moment generating function (mgf), asymmetry and 
kurtosis coefficients, among others, were studied by 
Gómez et al. (2014). In particular, they proved that 
the density of the EE model is a mixture of the 
exponential and gamma densities.  

We believe that the addition of parameters to the 
EE model may generate new distributions with great 
adjustment capability and, for this reason, we 
propose a generalization of it. On the other hand, 
Ristić and Balakrishnan (2012) defined the ‘Ristić-

Balakrishnan’ –G (RB –G for short) family for x ∈ ℝ 
and 0a >  having, respectively, pdf and cdf given by 

Equation 3 and 4:  
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where: g(x, ξ) = dG(x, ξ), with ξ a parametric 
vector, Γ(ܽ) = ׬ ௔ିଵஶ଴ݐ eି௧dݐ	  is the gamma 

function and ߛ(ܽ, (ݖ = ׬ ௔ିଵ௭଴ݐ eି௧dݐ   denotes the 
lower incomplete gamma function. The main 

motivation for this family is that, for a = n ∈ ℕ, 
Equation 3 is the pdf of the nth lower record value 
of a sequence independent and identically 
distributed variables from a population with density 
g(x, ξ).  

In this paper we propose a new lifetime model 
called ‘Ristić-Balakrishnan extended exponential’ 
(RBEE) distribution by taking Equation 1 in 4. As 
we will see later, the proposed model is quite 
flexible and its failure rate function can 
accommodate both inverted bathtub and bathtub 

shapes, which are important for reliability, life time, 
biological and medical sciences, among others. In 
addition, the new density may be expressed as a 
mixture of ‘Erlang’ densities. Thus, many properties 
can be derived using this simple representation. As 
will also be clear later, many important distributions 
are obtained as a special case of our model. Finally, 
we prove the new model is very superior in terms of 
adjustment to real data, when compared to the base 
model and other important models well established 
in the literature. 

Material and methods 

The RBEE distribution 

Let X be a random variable with support on the 
positive real line having the RBEE distribution, say 
X ~ RBEE(a, α, β). The cdf of X is defined by 
inserting Equation 1 in Equation 4, according 
Equation 5: 

 

[ ]{ }1( ) ( ; , , ) ( ) , ( )
( )

F x F x a a a x
a

α β γ ρ= = Γ −
Γ

 (5)

 
where: 
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The density of X, for x > 0, can be reduced to 
Equation 6: 
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We write F(x)=F(x; a, α, β) in order to eliminate 

the dependence on the model parameters. Clearly, 
the EE model is a special case of Equation 5 when  
a = 1. The exponential and Lindley distributions 
arise as special cases when β = 0 and β = 0, 
respectively, in addiction to a = 1. If β = 0, β = 1 and 
a ≠ 1, we obtain the RB-exponential and RB-Lindley 
respectively. 

Some plots of the pdf Equation 6 are displayed in 
Figure 1. These plots reveal that the RBEE pdf is 
quite flexible and can take various forms reinforcing 
the importance of the proposed model. 

The survival function is Equation 7: 
 

[ ], ( )
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The hazard rate function (hrf) and reversed 

hazard rate function (rhrf) of X are given by 
Equation 8 and 9: 
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respectively. Some plots of the hrf Equation 8 are 
displayed in Figure 2. Non-monotone forms such as 
bathtub and inverted bathtub are particularly important 
because of its great practical applicability. For example, 
the time of human life is one phenomena that the 
bathtub form is applicable.  

 

 
Figure 1. Plots of the R BEE density function for some 
parameter values. 

Asymptotic and shapes of the RBEE 

For a detailed mathematical approach for the 
RBEE model, we investigate the shapes of its pdf 
and hrf using their first and second derivatives. 

The first derivatives of log {f(x)} and log {h(x)} 
for the RBEE model are given by Equation 10  
and 11: 

 
2d log{ ( )} ( 1) (1 )e

d 1 ( ) ( )
 

xf x a x

x x x x

αβ α βα
β ϕ ρ

−− += − + −
+

(10)

1
2d log{ ( )} 1 ( )(1 )e

d 1 ( ) ( ) ( ) [ , ( )]

a
xh x a x

x
x x x x a x

αβ ρα α β
β ϕ ρ α β γ ρ

−
−  −= − + − + − + + 

with ( ) ( )e .xx x αϕ α β α β αβ −= + − + +  
(11)

 

 
Figure 2. Plots of the R BEEhazard function for some parameter 
values. 

Hence, the critical values of f(x) and h(x) are the 
roots of the Equation 12 and 13: 
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respectively. The values x0 and x’0 which solves the 
Equations 12 and 13 above can be a maximum, 
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minimum or inflection point. To  check  this,  we  
evaluate the signs of the second derivatives of  
log {f(x)} and log {h(x)}, respectively, at x = x0 and 
x = x’0. We have Equation 14 and 15: 
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It is common to obtain numerical solutions with 

high accuracy through optimization routines in 
most mathematical and statistical platforms.  

Quantile function 

For many practical purposes, it is important to 
make explicit the quantile function (qf) of X. The  
RBEE qf, say q(u) can be obtained by inverting 
Equation 5 (for 0<u<1) as Equation 16: 
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where: 

z = Q-1 is the inverse function of 
( , )( , ) 1
( )
a z

Q a z
a

γ= −
Γ

 and W(·) denotes the Lambert  

W-function. In a recent paper, Nadarajah, Bakouch, 
and Tahmasbi (2011) used the Lambert W-function 
to derive the qf of the exponentiated Lindley 
distribution. For any complex t, the Lambert W-
function is defined as the inverse of the function g(t) 
= tet. For more details, see http://mathworld. 
wolfram.com/LambertW-Function.html. An 
implementation in R software is available through 
the ‘LambertW’ package. See http://cran.r-
project.org/web/packages/LambertW/LambertW.pdf. 
In the ‘Mathematica platform’, the ‘LambertW’ is 
available through the function ‘ProducLog[z]’, 
which gives the principal solution for w  in z = wew. 
By using the Lagrange inversion theorem, we can 
write an expansion for the qf of X as follows 
Equation 17: 

 
1

1

1

1 1 ( 1) ( ) ( )( ) 1 ( ) {1 exp[ ( , )]} exp .
!

k k
k k

k
k

k k
q u Q a u

k

α βα β
β α β β

−∞
−

=

 − − − += − − + + − −  
 





 (17)

 
Note that the above equation can be easily 

implemented in computational platforms that have 
numerical elementary routines. 

The applications of qf are diverse and include: 
calculation of the moments, estimation of 

parameters, simulations, calculation of asymmetry 
and kurtosis measurements, among others. For 
illustration, we use the qf of X to determine the 
Bowley skewness (Kenney & Keeping, 1962) (B) 
and Moors kurtosis (Moors, 1988) (M). The 
Bowley skewness is based on quartiles B = 
[Q(3/4)-2Q(1/2)+Q(1/4)]/[Q(3/4)-Q(1/4)], 
whereas the Moors kurtosis is based on octiles M 
= [Q(7/8)-Q(5/8)-Q(3/8)+Q(1/8)]/[Q(6/8)-
Q(2/8]. These two measures are less sensitive to 
outliers and they exist even for distributions 
without moments. 

In Figure 3 and 4, we present 3D plots of B and 
M measures for several parameters values. These 
plots are obtained using the ‘Wolfram Mathematica’ 
software. Based on these plots, it is possible to 
conclude that changes in the additional parameter a 
have a considerable impact on the skewness and 
kurtosis of the RBEE distribution, thus showing its 
greater flexibility. 

 

 
Figure 3. Plots of the Bowley skewness for the RBEE 
distribution for some parameter values. 
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Figure 4. Plots of the Moors kurtosis for the R BEE distribution 
for some parameter values. 

Properties  

A useful representation 

We provide useful linear representations for 
Equation 5 and 6 based on the exponentiated class of 
distributions. Mathematical properties of the 
exponentiated distributions have been published by 
many authors in the 90s and more recently. See, for 
example, Gupta and Kundu (1999) for exponentiated 
exponential, Nadarajah et al. (2011) for exponentiated 
Lindley, Sarhan and Kundu (2009) for exponentiated 
linear failure rate and, more recently, Lemonte (2013) 
for the exponentiated Nadarajah-Haghighi 
distributions. For an arbitrary baseline cdf G(x) a 
random variable Ya has the exp-G class with power 
parameter a>0 say ~ exp- (a),aY G  if its cdf and pdf are 

given by Ha(x) = G(x)a and ha(x) = ag(x)G(x)a-1 
respectively. For a comprehensive discussion about the 
exponentiated class, see a recent paper by Tahir and 
Nadarajah (2015). 

By using results presented in Cordeiro and 
Bourguignon (2016) we can be expressed the pdf 
f(x) as Equation 18: 
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where: 
quantities di(a-1) (for i≥0) determined by 
d0(c)=c/2, d1(c)=c(3c+5)/24, d2(c)=c(c2+5c+6)/48, 
d3(c)=c(15c3+150c2+485c+502)/5760, etc. 

Note that, by integrating Equation 18, we can 
express F(x) as Equation 20: 
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where: 

Hj+1(x) denotes the exp-EE cumulative 
distribution with power parameter j+1. Here, hj+1(x) 
is the exp-EE density function with power 
parameter j+1, and is given by (for j≥0) 
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equation, where Equation 21: 
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and, after a simple algebraic manipulation, we 
obtain Equation 22 and 23: 
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where:  
π(x; i+1, (k+1)α) denotes the pdf of the Erlang 
distribution with parameters i+1 (for i≥0) and 
(k+1)α. If Z is an Erlang random variable with 
parameters s(=1, 2, 3,…) and λ>0, its pdf is given 

by π(z; s, λ)= λszs-1 e-λz/(s-1)!. Changing 
0 0

j

j k

∞

= =
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0k j k

∞∞

= =
 , the density function reduces to Equation 24: 
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where ߥ௞,௜ = ∑ ௝ାଵஶ௝ୀ௞ݓ ௞,௜(௝ାଵ)݌ . Equation 24 is the 
main result of this section. 
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Moments, incomplete moments and generating function  

Then, the nth moment of X and its incomplete 
moments, respectively, are given by Equation 25 
and 26: 
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where Γ(ܽ, (ݖ = ׬ ௔ିଵஶ௭ݐ eି௧dݐ  denotes the upper 
incomplete gamma function. 

The moment generating function (mgf) of X can 
be determined from Equation 24, according 
Equation 27: 
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Then, for all t<(k+1)α, we have Equation 28: 
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Order statistics 

By using results presented in Cordeiro and 
Bourguignon (2016) the density function fi:n(x) of 
the ith order statistic, say Xi:n, for i=1,…,n, from a 
random sample X1,...,Xn having the RBEE 
distribution, can be expressed as Equation 29: 
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where rw is defined by Equation 19, and 
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Reliability  

In reliability the stress-strength model describes 
the life of a component which has a random 
strength X1 that is subjected to a random stress X2. 
The component fails at the instant that the stress 
applied to it exceeds the strength, and  
the component will function satisfactorily  whenever  

X1 > X2. Hence, R=P(X2 < X1) is a measure of 
component reliability. When X1 and X2 have 
independent RBEE(a1, α, β) and RBEE(a2, α, β) 
models the reliability is defined by 	ܴ = ׬ ଵ݂(ݔ)ܨଶ(ݔ)dݔஶ଴ . The pdf of X1 and cdf of 2X  

are expressed from Equations 18 and 19 as  
Equation 31: 
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where (for s = j, k; p = i, n and q = 1, 2)  
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Thus, we have Equation 33: 
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where Ij,k=wj,i(a1)wk,n(a2). 

Hence, after a simple algebraic manipulation, the 
reliability of the RBEE distribution is given by 
Equation 34: 
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(34)

 

Entropy 

The Rényi entropy is defined (for δ > 0 and  
δ ≠ 0), according Equation 35: 

 

{ }0

1( ) log ( )d .
1R f x xδδ

δ
∞

=
− J  (35)

 
Let ( ) 1 ( )G x G x= −  be the baseline survival 

function. Following similar idea given in Nadarajah, 
Cordeiro, and Ortega (2015) (Section 10), we have 
Equation 36: 

 

{ }
,

[ ( 1) ]

0 0

( 1)
log[1 ( )] ( ) ( )

[ ( 1) ]

j k
j kka a k

k j

k
p

k a j
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δ δ

δ

+
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= =

 
−  − +   − − = −   − − 

 
 (36)

 
where: 

The constants pj,k can be calculated recursively by 
Equation 37: 

 

1
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1
[ ( 1)]j k m j k

k

m
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k m c pk jp −
−

=

−= +  (37)



Ristić-Balakrishnan extended exponential distribution  Page 7 of 9 

Acta Scientiarum. Technology, v. 40, e34963, 2018 

for k=1, 2,…, pj,0=1 and ck=(-1)k+1(k+1)-1. By using 
Equation 36 and generalized binomial expansion we 
obtain the Rényi entropy for the family as  
Equation 38 and 39: 

 

,

, 0 0

1 ( 1)( ) log
1 ( )

( 1)
( 1) ( 1)1 log I

1 [ ( 1) ]

R

i j k
j kk

i
i k j

a

a

k
p

k a k a j

k i a j

δ
δδ

δ

δ δ
δ δ

+ +
∞

= =

 −=  − Γ 
  

−  − − + −    +    − − −   
  

 

J

where,  

(38)

0
I ( ) ( )di
i G x g x xδ∞

=   (39)

 
comes from the baseline distribution. Based on the 
cdf Equation 1 and pdf Equation 2, we can express 
Equation 39 as Equation 40: 

 
( )2

1( 1) ( )I e ,
( )

ii i
i

i i

i
α δδ

β
δ

α α δβ δ
α β β

++
− +

+

 − += − +  
E (40)

 
where ॱ[݊, [ݖ = ׬ ௡ஶଵିݐ eି௭௧dݐ	  is ‘exponential 
integral function’.   

Estimation and inference 

The maximum likelihood method is the one that 
stands out most among the estimation methods 
admitting good asymptotic properties. The 
maximum likelihood estimators (MLEs) can be used 
when constructing confidence intervals and regions 
and also in test statistics. Let x1,…, xn be a random 
sample of size n from the RBEE (a, α, β) model. The 
log-likelihood function for the vector of parameters 
Θ = (a, α, β)T can be expressed from Equation 41: 

 
[ ]

2

1 1 1
( ) log log(1 ) ( 1) log ( )

( ) ( )
 

n n n

i i i
i i i

n x x a x
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α α β ρ
α β = = =

 
= − + + + − + Γ 

  Θ (41)

 
where: 

( ) log( ) log[ ( )e ].ix
i ix x αρ α β α β α β αβ −= + − + − + +  

The components of the score vector U(Θ) are 
given by Equation 42, 43 and 44: 
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where 
ψ(·) is the digamma function and 

( ) ( )e .ixi ix x αϕ α β α β αβ −= + − + +  

The information matrix is given by J(Θ)={-Urs} 
and its elements Urs(Θ)=∂2ℓ(Θ)/∂r∂s for r, s ∈{a, α, 
β} can be obtained from the authors upon request.   

Results and discussion  

Application  

We consider an uncensored data set from Murty, 
Xie and Jiang (2004) (page 180) used in the industry, 
representing the failure time (in weeks) of 50 
components put into use at time. The data are: 
0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 
0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 
2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 
5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 
7.087, 7.291, 7.787, 8.596, 9.388, 10.261, 10.713, 
11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 
19.418, 23.471, 24.777, 32.795, 48.105. Table 1 
provides some descriptive statistics. 

Table 1. Descriptive statistics for number of successive failure 
times of 50 components. 

Statistics 
n Mean Median Variance Minimum Maximum 
50 7.821 5.320 84.76 0.013 48.100 

 

For Murthy et al. (2004)'s data, we compared the 
RBEE model with the EE Gómez et al. (2014) and 
Lindley sub-models and other commonly used 
models in survival analysis, namely the log-logistic, 
Fréchet and Birnbaum-Saunders (BS) distributions. 
The densities of these models are given, for 
example, in the Wolfram alpha website 
(https://www.wolframalpha.com).  

Table 2 gives the MLEs of the fitted models to 
the current data with their corresponding standard 
errors, in addition to the AIC, BIC and CAIC 
statistics. Table 3 lists the values of the A* and W* 
statistics. In general, it is considered that lower 
values of these criteria fit better the data.  

Table 2. MLEs (and the corresponding standard errors in 
parentheses), AIC, BIC and CAIC statistics for number of 
successive failures for the air conditioning system. 

Distributions α̂  β̂  â   AIC BIC CAIC

RBEE 0.02792 0.4257 4.5200   306.0 311.7 306.5(0.02486) (0.6573) (2.2804) 

EE 0.1279  2.338E-7 1  309.7 313.5 309.9(0.0352) (0.0302) (----) 

Lindley 

0.2317 1 1  324.6 326.5 324.6(0.590) (----) (----) 

α̂  β̂       

Log-logistic 

4.0938 1.0834    316.0 319.8 316.3(0.9218) (0.1304) 

σ̂   λ̂        

Fréchet 

1.2802 0.4791   341.3 345.1 341.5(0.4028) (0.04541) 

α̂  β̂       

BS 2.7621 1.2576   327.4 331.2 327.7(0.2973) (0.2721) 
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Table 3. Mean, Variance, Skewness and Kurtosis for the three 
main distributions.  

Distributions Mean Variance Skewness kurtosis 
R BEE 7.82154 82.7757 -0.23734 1.18290 
EE(a=1)

  
7.81862 61.1309 ---- ---- 

Lindley 7.81997 36.5953 0.17305 1.13473 
 

Additionally, we took into consideration the 
Anderson-Darling (A*) and Cramér-von Mises 
(W*) statistics (Chen & Balakrishnan, 1995). Chen 
and Balakrishnan (1995) proposed a general 
approximate goodness-of-fit test for the hypothesis 
H0: X1,…,Xn with Xi following F(x; θ), where the 
form of F is known but the p-vector θ is unknown. 
To obtain the statistics A* and W*, we can proceed 
as follows: (1) compute ri = F(xi; θ), where xi’s are 
in ascending order, and then yi = ϕ-1(ri), where ϕ( )  
is the standard normal cumulative distribution; (2) 

compute ݑ௜ = ߮ ቀ௬೔ି௬ത௦ ቁ,  where ݕത 	= 	 (1/݊)	∑ ଵ		ୀ		௜௡௜ݕ	  and ݏଶ 	= 	 (݊ − 1)ିଵ ∑ ௜ݕ)	 − ଵ	ୀ	ത)ଶ௡௜ݕ ; 
(3) calculate ܣଶ 	= 	−݊	 −	(1/݊)∑ 	[(2݅ −௡௜	ୀ	ଵ1) log(ݑ௜) + (2݊ + 1 − 2݅)	log(1 − [(௜ݑ  and 	ܹଶ 	= 	∑ ௜ݑ] − (2݅ − 1)/(2݊)]ଶ௡	௜ 	+ 	1/(12݊)  and 
then ܣ∗ 	= 	ଶ(1ܣ	 + 	0.75/݊	 + 	2.25/݊ଶ)  and ܹ∗ 	= 	ܹଶ(1 + 0.5/݊). Table 3 lists the values of 
the A* and W* statistics. In general, it is considered 
that lower values of these criteria fit the data better.	

Table 3 presents the mean, variance, asymmetry 
and kurtosis for the RBEE, EE and Lindley adjusted 
models. As we can see, the empirical and estimated 
means and variances do not differ considerably. This 
shows that the models are adequate to explain this 
data.      

The figures in Table 2 and 4 reveals that the R 
BEE model has the lowest AIC, BIC, CAIC, A* and 
W* values among all fitted models. Thus, the 
proposed RBEE distribution is the best model to 
explain these data. Finally, Figure 5 displays the 
histogram of the data and the estimated pdf and cdf 
of the R BEE model. These plots reveal that the 
proposed model is quite suitable for these data. 

Table 4. Goodness-of-fit tests. 

Models 
Statistics 

W* A* 
RBEE 0.0539 0.2709 
EE 0.0658 0.3295 
Lindley 0.0657 0.3284 
Log-logistic 0.2572 1.3816 
Fréchet 0.6097 3.3138 
BS 0.2794 1.5364 
 

Conclusion 

In this article, we introduce and study a new 
model of lifetime, called the ‘Ristić-Balakrishnan 
extended   exponential’  distribution.  The  proposed  

model has three parameters and generalizes 
important distributions. We provide a 
comprehensive study of the mathematical and 
statistical properties of the new model. In addition, 
the practical utility of the new model was 
empirically demonstrated. We hope that the RBEE 
model can be useful for applied statisticians and 
other researches who refer to a model with few 
parameters but flexible to accommodate supported 
data in real positives.  
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