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ABSTRACT.In this work, we firstly describe conditions for being elastica in Minkowski space E4
1. Then 

we investigate the energy of the elastic curves and exploit its relationship with the energy of Bishop vectors 
belong to that elastic curves E4

1. Finally, we characterize non-elastic curves in E4
1 and compute their 

energy to see the distinction between energies for the curves of elastic and non-elastic case in Minkowski 
space E4

1.Mathematics Subject Classifications: 53C41, 53A10. 
Keywords: energy; Minkowski space; elastic curves; parallel vector fields. 

Sobre a nova abordagem para a energıa da elástıca 

RESUMO. Neste trabalho, descrevemos em primeiro lugar as condições de elástica no espaço de 
Minkowski E4

1. Em seguida, investigamos a energia das curvas elásticas e exploramos sua relação com a 
energia do Triedo de Bishop pertencendo a essas curvas elásticas E4

1. Finalmente, caracterizamos curvas 
não elásticas em E4

1 e calculamos sua energia para ver a disticção entre as energias para as curvas do caso 
elástico e não elastico no espaço de Minkowski E4

1. 
Palavras-chave: energia; espaço de Minkowski; curvas elásticas; campos vetoriais paralelos. 

Introduction 

Materials having the feature of a deformable 
structure such as cloth, flexible metals, rubber, paper 
are the main subject and research field for the 
elasticity theory. However, elastica can be 
considered from a variety of the different 
perspective that enlights a broad range of physical 
and mathematical studies. Studies concerned about 
the elastica firstly focus on the research of 
mechanical equilibrium, the study of variational 
problems, and the solution of the elliptic integral. 

One of the earliest approach on elastica yields 
prolific consequences on the equilibrium of 
moments which constitute elementary principle of 
statics. Further, it is seen that elastica gives a natural 
solution for the variational problem which deals 
with the minimizing of bending energy of the elastic 
curve. Later, the equivalence between the motion of 
the simple pendulum and elastica's fundamental 
differential equation was investigated. Recently, 
numerical computation implemented on the elastica 
used to develop mathematical spline theory (Love, 
2013). 

Potential elastic energy takes place when 
materials are stretched, compressed or deformed in 
any way. That is, these deformed bodies store 
potential energy when there exists a force on them. 

This potential energy is exerted to bring the 
deformed body back to its neutral position prior to 
deformation (Terzopoulost, Platt, Barr, & 
Fleischert, 1987). We carry studies on the potential 
energy of elastic curves into a Minkowski space 4

1E . 
Minkowski spacetime or Minkowski space can 

be thought a combination of time dimension and 
Euclidean space into a four-dimensional manifold. 
This added time dimension makes a significant 
difference between Minkowski and Euclidean space, 
namely, we do not have coordinate dependence in 
Minkowski space as opposed to Euclidean space. 
This new space structure helps to understand better 
ofsome mathematical and also physical phenomena. 

In this space, mass-energy equivalence states 
relationship between mass and energy. Special 
relativity attempts to estimate this equivalence by the 
formula E = mc2, where c is the light's speed in a 
vacuum (Einstein, 1905). Thus we may have abetter 
understanding of mass-energy and motion-energy 
concepts if we compute the energy of particles in 
that space. For this purpose, (Körpinar & Demirkol, 
2017) characterized the energy of a particle in 
Minkowski space E4

1 for alternative parallel frame 
created firstly by R. L. Bishop (Bishop, 1975). The 
advantage and necessity of this frame is that it has no 
vanishing curvature, which solves a serious problem 
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working on usual Bishop frame since zero curvature 
prevents to define normal and binormal vectors. 
(Altin, 2011) computed energy of Frenet vector 
fields for given non-lightlike curves.  (Körpinar, 
2014) discussed timelike biharmonic particle's 
energy in Heisenberg spacetime. 

The manuscript of the paper as the following: 
In this study, we approach the concept of the 

potential energy of the elastic materials from a 
different point of view. We firstly determine 
differential equations satisfied by non-rigid 
deformable curves in order to model the behaviorof 
elastic curves in 4-dimensional Minkowski space 4

1E . 

Then, we compute the energy of the elastic curves 
using a variational method in Bishop vectors 
according to different cases in E4

1. The method we 
use for computing the energy of Bishop vector fields 
in this study is that considering a vector field as a 
map from manifold M to the Riemannian manifold 
(TM, ps), where TM is tangent bundle of a 
Riemannian manifold and ps is a Sasaki metric 
induced from TM naturally. Then, we construct a 
new equivalence including theenergy of elastic 
curves, theenergy of Bishop vectors and well-
established formula known as bending energy 
functional fordifferent type of curves in E4

1. Finally, 
we define non-elastic curves to characterize their 
structure which makes them different from elastic 
curves. Then, we discover a connection between the 
energies of elastic and non-elastic curves from point 
of geometrical view in E4

1. 

Material and methods 

Minkowski space 4
1E  

corresponds to four 

dimensional Euclidean space with the induced 
Lorentzian metric defined as Equation 1: 

 

2,3,4=11 |=, iiiupupup +−  (1)
 

where: p,u ∈ R4 For an arbitrary curve α: I ⊂ R → 
E4

1  α ∈ E4
1 is called a lightlike, timelike or spacelike 

curve if velocity vector of the curve satisfies
( ) ( ) 0,=, tt '' αα ( ) ( ) ( ) ( ), < 0, , > 0' ' ' 't t t tα α α α  

for each  ,It∈ respectively . Furthermore α  is 
named unit speed curve if ( ) 1.=t'α In this study, 

we only consider non-lightlike unit speed curves 
and use a pseudo orthonormal frame {T, E1, E2, E3} 
which is attained by Lorentzian rotation on Bishop 
frame. 

Case 1: If 4
1: I R E⊂ →α  unit speed curve is 

timelike then T is timelike and parallel frame 

vectors E1, E2, E3 are spacelike. Thus, we have 
Equation 2: 

 
,= 332211 EEETT kkk ++∇

T,ET 11 = k∇  
T,ET 22 = k∇  

3 3= ,k∇TE T  

(2)

 
where 2

3
2
2

2
1= kkk ++κ  is defined as curvature and 

k1, k2 and k3 denote principal curvatures of the curve 
α  according to parallel frame (Erdoğdu, 2015). 

If 4
1: I R E⊂ →α  unit speed curve is spacelike, 

then T is spacelike. Therefore we have following 
Bishop equations with respect to the parallel frame 
vectors E1, E2, E3. 

Case2: LetT, E2, E3 are spacelike and E1 is a 
timelike for a unit speed curve α . Then we have 
Equation 3: 

 
,= 332211 EEETT kkk ++∇

T,ET 11 = k∇  
T,ET 22 = k−∇  

3 3= ,k∇ −TE T  

(3)

 

where 2
3

2
2

2
1= kkk ++−κ  is defined as curvature 

and k1, k2 and k3 denote principal curvatures of the 
curve α  according to parallel frame (Erdoğdu, 
2015). 

Case 3: Let T, E1, E3 are spacelike and E2is a 
timelike for a unit speed curveα . Then we have 
Equation 4: 

 
,= 332211 EEETT kkk ++∇  

T,ET 11 = k−∇  

T,ET 22 = k∇  

3 3= ,k∇ −TE T  

(4)

 
where 2

3
2
2

2
1= kkk +−κ  is defined as curvature and 

k1, k2 and k3 denote principal curvatures of the curve 
α  according to parallel frame (Erdoğdu, 2015). 

Case 4: Let T, E1, E2 are spacelike and E3 is a 
timelike for a unit speed curveα . Then we have 
Equation 5: 

 
,= 332211 EEETT kkk ++∇

T,ET 11 = k−∇  
T,ET 22 = k−∇  

3 3= ,k∇TE T  

(5)
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where 2
3

2
2

2
1= kkk −+κ  is defined as curvature and 

k1, k2 and k3 denote principal curvatures of the curve 
α  according to parallel frame (Erdoğdu, 2015). 

Results and discussion 

Energy on the Bishop vector field 

We first give the fundamental definitions and 
propositions which are used to compute the energy 
of the vector field. 

Definition3.1: For two Riemannian manifolds 
(M, p) and ( )hN

~, the energy of a differentiable map

( ) ( )hNMf
~,,: →ρ can be defined as: 

 

( ) ( ) ( )( ) ,,~
2
1=

1=
vedfedfhfnergy aa

n

a
Mε  (6)

 
where {ea} is a local basis of the tangent space andv 
is the canonical volume form in M (Wood, 1997). 

Definition 3.2: Let ( ) MTMTTQ 11: →  be the 

connection map. Then following two conditions 
hold:i) ωωω dQ  = and ,~= ωωω Q where

( ) MTMTT 11:~ →ω is the tangent bundle 
projection;ii)for ∈ρ  TxM and a section

MTM 1: →ξ ; we have: 
 

( )( ) ,= ξρξ ρ∇dQ  (7)
 

where ∇  is the Levi-Civita covariant derivative 
(Wood, 1997). 

Definition 3.3: For ( ),, 1
21 MTTξςς ∈  we define: 

 
( ) ( ) ( )( ) ( ) ( )( ).,,=, 212121 ςςρςωςωρςςρ QQddS + (8)
 
This yields a Riemannian metric on TM. As 

known 
Sρ  is called the Sasaki metric that also makes 

the projection :ω MMT →1  a Riemannian 
submersion (Wood, 1997). 

Energy on the elastic curves 

The research on the curvature-based energy for 
space curves began with Bernoulli and Euler's 
studies on elastic thin beams and rods. This type of 
energy is both essential in the mechanical context 
and also significant in computer vision, image 
processing and computer vision besides 
mathematical and physical importance. 

Let ∈α 4
1E  be a regular curve defined on any fixed 

interval [y1, y2]so thatwe have Equation 9: 

[ ] ( ) 0.==, 4
121 ≠→

dt

ds
tvyy 'α:α E  (9)

 
As an advantage of studying Minkowski space 

with parallel frame vectors, curvature of the curve α  
is not vanish. Thus, elastica is defined for the curve 
α  in 4

1E  over the each point on a fixed interval [y1, 

y2]as a minimizer of the bending energy as in the 
Equation 10: 

 
22

1

1
2

y ''

y
G dt=  α  (10)

 
with some boundary conditions (Guven, Valencia, 
&Vazquez-Montejo, 2014). 

For any two points 4
1 2,p p R∈  and any two non-

zero vectors p1, p2space of smooth curves is defined 
as Equation 11: 

 
( ) ( ){ }.=,== '

ii
'

ii pypy αα:αϕ  (11)
 
It is also defined the smooth curves of unit speed 

as a subspace of ϕ  as the following way in the 

Equation 12: 
 

{ }1=:= '
a αα ϕϕ ∈  (12)

 
Then :G Rπ φ →  can be defined by Equation 13: 
 

( ) ( )( )2 21= 1 ,
2

'' 'G t dtπ + Γ −αα α α  (13)

 
where ( )tΓ  is a pointwise multiplier. A stationary 
point of G π  is the minimum of G  on 

aϕ  for some 
( )tΓ  according to multiplier principle of Lagrange. 

Let α  be an extremum of G π  and V be a vector 
field along α , which is a curve's infinitesimal 
variation, then we get Equation 14 (Singer, 2007). 

 

( ) ( ) =0= | = 0.G V G Vπ π
ϒ

∂∂ + ϒ
∂ϒ

α  (14)

 
We obtain significant differences both on the 

conditions that have to be satisfied by elastica and on 
the energy of elastic curves by using Lorentzian 
metric for different type of curves in 4

1 .E  

Case 1: Let ∈α 4
1E  be a unit speed timelike curve 

defined on any fixed interval [y1, y2]so that: 
 

[ ] ( )4
1 2 1, = = 0.' ds
y y E v t

dt
→ ≠α : α  (15)
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By using the pseudo orthonormal frame given by 
(Equation 2) we already computed the energy of 
tangent vector T and parallel frame vectors E1, E2, 
E3 for timelike curve ∈α 4

1E , (Körpinar & Demirkol, 

2017). This study is helpful to see a relation between 
the energy of Bishop vectors and bending energy 
functional which is defined in theEquation 16: 

 
2 21 1= ,

2 2
G ds dsκ= ∇ Tα α

T  (16)

 
where 2

3
2
2

2
1= kkk ++κ  is defined as curvature and 

k1, k2 and k3 denote principal curvatures of the curve 
α  according to parallel frame. 

Let V be a vector field along αsuch that it is a 
curve's infinitesimal variation. By using equations 
(Equation 13) and (Equation 14) we get Equation 17 
and 18: 

 

( ) ( ) dtVV '''y

y





 −ϒ+Γ+ϒ+

ϒ∂
∂
 1

2
1=0

222

1
αα (17)

.,,= 2

1

2

1
dtVdtV ''y

y

''''y

y
αα Γ− 

 
(18)

 
Applying integration by parts, we obtain 

Equation 19: 
 

( )2

1
0 = , , , ,

y'' ' ' '''

y
V V V E dt− Γ + + α α α α (19)

 

where ( ) ( ) .
''''' 'E = + Γα α α  Being elastica implies that 

we have Equation 20: 
 

( ) ( ) 0
''''' 'E = + Γ ≡α α α  (20)

 
for some function ( )tΓ . Thanks to Noether's 
Theorem we know that from Equation 21: 

 
''' 'J = + Γα α  (21)

 
is a constant vector field. For a parametrized curve 
α  with the arc-lengths, we have Equation 22 and 23 
if we consider the (Equation 2): 

 
,== 332211 EEEαT,α kkk''' ++  (22)

T.EEEα 2
332211= κ+++ '''''' kkk  (23)

 
Thus we get Equation 24: 
 

( )T.EEE Γ++++ 2
332211 κ''' kkk=J  (24)

By the fact that J is a constant vector field we 
find Js = 0. From this, we have following 
Equation 25, 26, 27 and 28: 

 
( ) 0,=1

2
3

2
2

2
11 kkkkk '' Γ++++  (25)

( ) 0,=2
2
3

2
2

2
12 kkkkk '' Γ++++  (26)

( ) 0,=3
2
3

2
2

2
13 kkkkk '' Γ++++  (27)

0,=
3

3 332211 






 Γ+++
'

''' kkkkkk  (28)

 

and if we solve them we will get ( ) ,
22

3= 2 Ω+−Γ κs  

for some constant .Ω  Finally we get a vector field J 
along the curve and some other restrictions as stated in 
the following Equation 29, 30, 31 and 32, respectively. 

 

,
2

= 332211

2

EEET ''' kkk +++−Ω κ
J  (29)

( ),
2

=0 2
3

2
2

2
1

1
1 Ω−++− kkk
k

k ''  (30)

( ),
2

=0 2
3

2
2

2
1

2
2 Ω−++− kkk
k

k ''  (31)

( ).
2

=0 2
3

2
2

2
1

3
3 Ω−++− kkk
k

k ''  (32)

 
If we assume that we have Equation 33: 
 

2 2 2
1 2 3 = sin ,k k k s+ + − Ω  (33)

 
then we can solve the differential equation system 
and get the following plot for the sample solution 
family (Figure 1). 
 

 
Figure 1. Sample solution family. 

Theorem 3.4: Constant vector field's energy by 
using Sasaki metric is stated byEquation 34: 

 

( )1 = .
2
s

nergy Jε −  (34)

 
Proof: From Equation 6 and 7 we obtain 

Equation 35: 
 

( ) ( )1 0

1= , .
2

s

Snergy J dJ dJ dsε ρ (T) (T)  (35)
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Using the Equation 8, we obtain the Equation 36: 
 

( ), = ( ( , ( ( ( , ( ).S dJ dJ d J d J Q J Q Jρ ρ ω ω ρ+(T) (T) (T)) (T))) (T)) (T)) (36)
 

Since J is a section, we get Equation 37: 
 

( ) ( ) = ( ( ) = .C TCd d J d J d id idω ω ) =  (37)
 
We also know that from Equation 38: 
 

( = 0.Q J J∇T(T)) =  (38)
 
Thus, we find from the former statement to the 

Equation 39: 
 
( ) ( ) ( ), = , ,S dJ dJ J Jρ ρ ρ+ ∇ ∇T T(T) (T) T T

= 1.−  
(39)

 
So we can easily obtain Equation 40 as in the 

following form: 
 

( )1 = .
2
s

nergy Jε −  (40)

 
This completes the proof. 
Corollary 3.5: For a unit speed timelike curve 

∈α 4
1E , we have following relationgiven in the 

Equation 41: 
 

( ) ( )1nergy J G nergyε ε+ = T  (41)
 
Case 2: Unit speed spacelike curve ∈α 4

1E  with 
the characterization of spacelike vectors T, E2, E3 
and timelike vector E1 on any fixed interval [y1, y2] is 
defined in the Equation 42: 

 

[ ] ( )4
1 2 1, = = 0.' ds
y y E v t

dt
→ ≠α : α  (42)

 
By using the pseudo orthonormal frame given by 

(Equation 3) we already computed the energy of 
spacelike vectors T, E2, E3 and timelike vector E1, 
(Körpinar & Demirkol, 2017). This study is helpful 
to see a relation between the energy of Bishop 
vectors and bending energy functional which is 
defined in theEquation 43: 

 
2 21 1= ,

2 2
G ds dsκ= ∇ Tα α

T  (43)

 
where 2

3
2
2

2
1= kkk ++−κ  is defined as curvature 

and k1, k2 and k3 denote principal curvatures of the 
curve α  according to parallel frame. 

LetV be a vector field along αsuch that it is a 
curve's infinitesimal variation. By using Equation 13 
and 14 we get Equation 44 and 45: 

 

( ) ( ) dtVV '''y

y





 −ϒ+Γ+ϒ+

ϒ∂
∂
 1

2
1=0

222

1
αα  (44)

.,,= 2

1

2

1
dtVdtV ''y

y

''''y

y
αα Γ+   (45)

 
Applying integration by parts we obtain 

Equation 46: 
 

( )2

1
0 = , , , ,

y'' ' ' '''

y
V V V E dt+ Γ − + α α α α  (46)

 

where ( ) ( ) .
''''' 'E = − Γα α α  So being elastica implies 

that we have Equation 47: 
 

( ) ( ) 0
''''' 'E = − Γ ≡α α α  (47)

 
for some function ( )tΓ . Thanks to Noether's 
Theorem we know that Equation 48 satisfies that: 

 
''' 'J = − Γα α  (48)

 
is a constant vector field. For a parametrized curve α  
with the arc-lengths, we have Equation 49 and 50 from 
the (Equation 3): 
 

,== 332211 EEEαT,α kkk''' ++  (49)

T.EEEα 2
332211= κ+++ '''''' kkk  (50)

 
Thus we get Equation 51: 
 

( )2
1 1 2 2 3 3
' ' 'J k k k κ= + + + − ΓE E E T.  (51)

 
By the fact that J is a constant vector field we 

find Js = 0. From this, we have following 
Equation 52, 53, 54 and 55: 

 
( ) 0,=1

2
3

2
2

2
11 kkkkk '' Γ−++−+  (52)

( ) 0,=2
2
3

2
2

2
12 kkkkk '' Γ−++−+  (53)

( ) 0,=3
2
3

2
2

2
13 kkkkk '' Γ−++−+  (54)

0,=
3

3 332211 











 Γ−−−
'

''' kkkkkk  (55)

 
and if we solve it we will get ( ) ,

22
3= 2 Ω+Γ κs  for 

some constant .Ω  Finally we get a vector field J 
along the curve and some other restrictions as stated 
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in the following Equation 56, 57, 58 and 59, 
respectively.  

 

,
2

= 332211

2

EEET ''' kkk +++−Ω− κ
J  (56)

( ),
2

=0 2
3

2
2

2
1

1
1 Ω+++−− kkk
k

k ''  (57)

( ),
2

=0 2
3

2
2

2
1

2
2 Ω+++−− kkk
k

k ''  (58)

( ).
2

=0 2
3

2
2

2
1

3
3 Ω+++−− kkk
k

k ''  (59)

 
If we assume that we have Equation 60: 
 
2 2 2

1 2 3 = cos ,k k k s− + + + Ω  (60)

 
then we can solve the differential equation system 
and get the following plot for the sample solution 
family (Figure 2). 

 

 
Figure 2. Sample solution family. 

Theorem 3.6: Constant vector field's energy by 
using Sasaki metric is stated by Equation 61: 

 

( )2 = .
2
s

nergy Jε  (61)

 
Corollary 3.7: For a unit speed spacelike curve 

with the given Bishop characters we have the 
following Equation 62: 

 
( ) ( )2nergy J G nergyε ε+ = T  (62)

 
Case 3: Let α  be a unit speed vector with the 

Bishop characterization of spacelike vectors T, E1, 

E3 and timelike vector E2. For a vector field V which 
is an infinitesimal variation of the curve α , we have 
constant vector field J and some restrictions as the 
following Equation 63, 64, 65 and 66: 

 

,
2

= 332211

2

EEET ''' kkk +++−Ω− κ
J  (63)

( ),
2

=0 2
3

2
2

2
1

1
1 Ω++−− kkk
k

k ''  (64)

( ),
2

=0 2
3

2
2

2
1

2
2 Ω++−− kkk
k

k ''  (65)

( ).
2

=0 2
3

2
2

2
1

3
3 Ω++−− kkk
k

k ''  (66)

 
If we assume that we have Equation 67: 
 

2 2 2
1 2 3 = log ,k k k s− + + Ω (67)

 
then we can solve the differential equation system 
and get the following plot for the sample solution 
family (Figure 3). 

 

 
Figure 3. Sample solution family. 

Theorem 3.8: Constant vector field's energy by 
using Sasaki metric is stated by Equation 68: 

 

( )3 = .
2
s

nergy Jε  (68)

 
Corollary 3.9: For a unit speed spacelike curve 

with the given Bishop characters we have the 
Equation 69: 

 
( ) ( )3 3 .nergy J G nergyε ε+ = T (69)

 
Case 4: Let α  be a unit speed vector with the 

Bishop characterization of spacelike vectors T, 
E1, E3 and timelike vector E3. For a vector field V 
which is an infinitesimal variation of the curve α , 
we have constant vector field J and some 
restrictions as the following Equation 70, 71, 72 
and 73: 

 

,
2

= 332211

2

EEET ''' kkk +++−Ω− κ
J  (70)

( ),
2

=0 2
3

2
2

2
1

1
1 Ω+−+− kkk
k

k ''  (71)

( ),
2

=0 2
3

2
2

2
1

2
2 Ω+−+− kkk
k

k ''  (72)

( ).
2

=0 2
3

2
2

2
1

3
3 Ω+−+− kkk
k

k ''  (73)

 
If we assume that we have Equation 74: 
 

2 2 2
1 2 3 = arcsin ,k k k s+ − + Ω (74)



Energy of elastica with Bishop vector fields Page 7 of 9 

ActaScientiarum. Technology, v. 40, e35493, 2018 

then we can solve the differential equation system 
and get the following plot for the sample solution 
family (Figure 4). 

 

 

Figure 4. Sample solution family.  

Theorem 3.10: Constant vector field's energy by 
using Sasaki metric is stated by Equation 75: 

 

( )4 = .
2
s

nergy Jε  (75)

 
Corollary 3.11: For a unit speed spacelike curve 

with the given Bishop characters we have the 
following Equation 76: 

 
( ) ( )4 .nergy J G nergyε ε+ = T  (76)

Conclusion 

In this section, we deal with the concept of non-
elastic curve and their energy for different type of 
curves in 4

1E . 
Case 1: Let ∈α 4

1E  be a unit speed timelike curve 
defined on any fixed interval [y1, y2] so that it has the 
Bishop characterization same as in Equation 2. For a 
vector fieldV, which is an infinitesimal variation of 
the curve α , by using Equation 13 and 14 we get 
Equation 77: 

 

( )2

1
0 = , , , ,

y'' ' ' '''

y
V V V E dt− Γ + + α α α α  (77)

 

where ( ) ( ) ,
''''' 'E = + Γα α α  for some function ( )tΓ . 

As opposed to Equation 20, if we assume that the 
curve is not elastica then for ( ) ,

22
3 2 Ω+−≠Γ κs  for 

some constant ,Ω  we will have Equation 78 and 79: 
 

( ) ( )( ) ( )( )2 2 2 2 2 2
1 1 1 2 3 1 2 2 1 2 3 2= '' ''E k k k k k k k k k k+ + + + Γ + + + + + Γα E E (78)

( )( ) TE












 Γ++++Γ+++++
3

3 3322113
2
3

2
2

2
133

'

''''' kkkkkkkkkkk (79)

 
for non-elastic curve α , which is parametrized by 
the arc-lengths. 

Theorem 4.1:Energy of non-elastic curve by using 
Sasaki metric is stated by Equation 80, 81 and 82: 

( )( ) ( )( )22 2 2
1 1 1 1 2 30

1= (
2 2

s ''s
nergy E k k k k kε − + + + + + Γα  (80)

( )( )22
3

2
2

2
122 Γ+++++ kkkkk ''  (81)

( )( ) ,)
3

9
2

332211
22

3
2
2

2
133 dskkkkkkkkkkk

'

'''''













 Γ+++−Γ+++++ (82)

 
Example 1:If we takethe values given in the 

Equation 83: 
 

2 3
1 2 3= , = , = 0, = 1,k s k s k Γ  (83)

 
then we have a following graph for the energy of 
non-elastic timelike particle (Figure 5). 
 

 

Figure 5. Energy of non-elastic timelike particle. 

Corollary 4.2 For a unit speed timelike curve with 
the given Bishop character we have the 
followingrelations given by Equation 84, 85 and 86: 

 

( )( ) ( ) ( )( )22 2 2
1 1 1 1 1 2 30

1= (
2

s ''nergy E nergy J k k k k kε ε− + + + + Γα (84)

( )( )22
3

2
2

2
122 Γ+++++ kkkkk ''  (85)

( )( ) .)
3

9
2

332211
22

3
2
2

2
133 dskkkkkkkkkkk

'

'''''













 Γ+++−Γ+++++
 

(86)

 
Case 2: Let ∈α 4

1E  be a unit speed spacelike curve 
defined on any fixed interval [y1, y2] so that it has the 
Bishop characterization same as in Equation 3, 4 and 
5; respectively .  For a vector field V, which is an 
infinitesimal variation of the curve α , by using 
Equation 13 and 14 we get Equation 87: 

 

( )2

1
0 = , , , ,

y'' ' ' '''

y
V V V E dt+ Γ − + α α α α  (87)

 

where ( ) ( ) ,
''''' 'E = − Γα α α  for some function ( )tΓ . As 

opposed to Equation 47, if we assume that the curve is 

not elastica then for ( ) ,
22

3= 2 Ω+Γ κs  for some 

constant ,Ω  we will have Equation 88 and 89: 
 

( ) ( )( ) ( )( )2 2
1 1 1 2 2 2= '' ''E k k k kκ κ+ − Γ + + − Γα E E (88)



Page 8 of 9 Körpinarand Demirkol 

ActaScientiarum. Technology, v. 40, e35493, 2018 

( )( ) TE












 Γ−+++Γ−++
3

3 3322113
2

33

'

''''' kkkkkkkk κ (89)

 
for non-elastic curve α , which is parametrized by 
the arc-lengths. 

Theorem 4.3: Energy of non-elastic curve that has 
the Bishop characterization as in Equation 3, 4 and 5 
can be given respectively by using Sasaki metric as the 
following way by Equation 90, 91 and 92: 

 

( )( ) ( )( 2 2 2
2 1 1 1 2 30

1 1= (
2 2

s ''nergy E s k k k k kε + − + − + + − Γα

( )( ) ( )( )22
3

2
2

2
133

22
3

2
2

2
122 Γ−++−++Γ−++−++ kkkkkkkkkk ''''

,)
3

9
2

332211 dskkkkkk
'

'''













 Γ−+++  
(90)

( )( ) ( )( 2 2 2
3 1 1 1 2 30

1 1= (
2 2

s ''nergy E s k k k k kε + + − + − Γα

( )( ) ( )( )22
3

2
2

2
133

22
3

2
2

2
122 Γ−+−++Γ−+−+− kkkkkkkkkk ''''

,)
3

9
2

332211 dskkkkkk
'

'''













 Γ−+++

(91)

( )( ) ( )( 2 2 2
4 1 1 1 2 30

1 1= (
2 2

s ''nergy E s k k k k kε + + + − − Γα

( )( ) ( )( )22
3

2
2

2
133

22
3

2
2

2
122 Γ−−++−Γ−−+++ kkkkkkkkkk ''''

.)
3

9
2

332211 dskkkkkk
'

'''













 Γ−+++

(92)

 
Example 2: If we take the values given in the 

Equation 93: 
 

2 3
1 2 3= , = , = 0, = 1,k s k s k Γ  (93)

 
then we have a following graph respectively for the 
energy of non-elastic spacelike particle with the Bishop 
characterization Equation 3, 4 and 5 (Figure 6). 

Corollary 4.4: For a unit speed spacelike curve 
with the given Bishop characters as in Equation 3, 4 
and 5 we have the following Equation 94, 95 and 96, 
respectively: 

 

( )( ) ( ) (( 2 2 2
2 2 1 1 1 2 30

1= (
2

s ''nergy E nergy J k k k k kε ε− − + − + + −α

( )( ) ( )( )22
3

2
2

2
133

22
3

2
2

2
122 Γ−++−++Γ−++−++ kkkkkkkkkk ''''

,))
3

9( 2
332211 dskkkkkk

'

''' Γ−+++  

(94)

( )( ) ( ) (( 2 2 2
3 3 1 1 1 2 30

1= (
2

s ''nergy E nergy J k k k k kε ε− + − + −α

( )( )22
3

2
2

2
122 Γ−+−+− kkkkk ''

( )( ) ,))
3

9( 2
332211

22
3

2
2

2
133 dskkkkkkkkkkk

'

''''' Γ−+++Γ−+−++

(95)

( )( ) ( ) (( 2 2 2
4 4 1 1 1 2 30

1= (
2

s ''nergy E nergy J k k k k kε ε− + + − −α

( )( )22
3

2
2

2
122 Γ−−+++ kkkkk ''

( )( ) .))
3

9( 2
332211

22
3

2
2

2
133 dskkkkkkkkkkk

'

''''' Γ−+++Γ−−++−
 

(96)

 

 

 

Figure 6. Energy of non-elastic spacelike particle.  

Corollary 4.5: If the energy of non-elastic curve 
is constant for each ( )( ) ,inergy Eε α  where i = 1, 2, 

3, 4 then we have following statements given by 
Equation 97, 98, 99 and 100: 

 
If ( )( )( )1 = 0,d

nergy E
ds

ε α then

( )( ) ( )( )22
3

2
2

2
122

22
3

2
2

2
111 Γ+++++Γ++++ kkkkkkkkkk ''''

( )( ) 1.=)
3

9( 2
332211

22
3

2
2

2
133

'

''''' kkkkkkkkkkk
Γ+++−Γ+++++  

(97)

If ( )( )( )2 = 0,d
nergy E

ds
ε α then

( )( ) ( )( )22
3

2
2

2
122

22
3

2
2

2
111 Γ−++−++Γ−++−+− kkkkkkkkkk ''''

( )( ) 1=)
3

9( 2
332211

22
3

2
2

2
133 −Γ−+++Γ−++−++

'

''''' kkkkkkkkkkk
 

(98)

If ( )( )( )3 = 0,d
nergy E

ds
ε α then

( )( ) ( )( )22
3

2
2

2
122

22
3

2
2

2
111 Γ−+−+−Γ−+−+ kkkkkkkkkk ''''

( )( ) 1=)
3

9( 2
332211

22
3

2
2

2
133 −Γ−+++Γ−+−++

'

''''' kkkkkkkkkkk  

(99)
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If ( )( )( )4 = 0,d
nergy E

ds
ε α then

( )( ) ( )( )22
3

2
2

2
122

22
3

2
2

2
111 Γ−−+++Γ−−++ kkkkkkkkkk ''''

( )( ) 1=)
3

9( 2
332211

22
3

2
2

2
133 −Γ−+++Γ−−++−

'

''''' kkkkkkkkkkk

(100)
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