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ABSTRACT. In recent years several longitudinal studies have been conducted in the field of 
pharmacology. In general, continuous response variables occur frequently in these situations and tend to 
present asymmetric characteristics, as well as being restricted to the set of positive real numbers. 
Therefore, using the normal model would be incorrect. In this conjecture, generalized linear mixed 
models (GLMM) are used to analyze data characterized in this way, aiming to accommodate inter- and 
intra-individual variations. Thus, we propose a mixed gamma model (LGMM) with a log link function and 
random effects normally distributed to evaluate data from a longitudinal experiment, where the effects of 
cerebral ischemia associated with diabetes on the performance of long-term retrograde memory were 
evaluated in rats. Based on the results obtained, the random intercept model presented a good fit and 
accommodated the correlation inherent to the data. It was possible to observe that normoglycemic 
animals, when compared to hyperglycemic animals, whether submitted to ischemia or not, had their 
cognitive capacity partially preserved, indicating that hyperglycemia (‘diabetes’) aggravates the cognitive 
effects of brain ischemia. 
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Introduction 

Recently, longitudinal studies have gained prominence in the area of health and biological sciences, 
especially in the pharmacological area. This is due to the interest of repeatedly evaluating one or more 
experimental units, in order to verify the effectiveness of a treatment or the evolution of a patient 
through an intervention. Longitudinal studies are versatile designs, since they allow the verification of 
the evolution of  treatment over time, either for a specific group or for the individuals studied. In 
particular, the objectives of studies in this area are related to the understanding of which treatments 
can be used, both in the prevention and in the rehabilitation of individuals, as for example after 
cerebral ischemia (stroke). 

In the literature, it is possible to identify several studies with this theme which we highlight Bacarin  
et al. (2015), Bacarin et al. (2016) and Zaghi et al. (2016). Commonly, the studies longitudinally analyze the 
cognitive behavior of animals treated with different drugs over different time periods, as well as when the 
ischemic induction method is altered. In this conjecture, several statistical models can be used to model the 
data in question. Considering that the evaluation over time for the same experimental unit induces a 
correlation for the measurements of the same individual, the modeling technique through mixed models 
becomes attractive for data evaluation. It allows modeling this correlation through the inclusion of random 
effects in the model, as well as through the use of a correlation structure. However, this is little explored by 
authors in the health area. In this scenario, even though the number of studies addressing this technique is 
limited, the predominant methodology is the one that considers normal distribution for response variable 
and random effects, for example in Ribeiro, Milani, and Prevideli (2016) and Ferreira et al. (2014). 
Nevertheless, it is possible that in certain situations, the data present a characteristic of asymmetry and are 
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restricted to the set of positive real numbers. Thus, a distribution for a response variable that is appropriate 
for such data should be used, such as the gamma distribution, for example (Sassoon et al., 2016). 

Regarding longitudinal designs, one possibility is the use of generalized linear mixed models (GLMM) 
(Breslow & Clayton, 1993). These are so called because random effects are included in the linear predictor of 
the standard generalized linear model (GLM) (Nelder & Wedderburn, 1972), so that it is possible to 
accommodate intra-individual variations resulting from the longitudinal characteristic of the study. A 
GLMM allows the structure of temporal dependence, caused by the correlation of the data, to be 
accommodated by adding random effects in the linear predictor, which induces the correlation between the 
observations of the same experimental unit (Fitzmaurice, Laird, & Ware, 2004). 

Thus, the objective of this study was to adopt the GLMM methodology with gamma distribution to 
model the response variable latency, i.e., the time spent by the animal to perform the behavioral task 
after a condition of chronic cerebral hypoperfusion (CCH) combined with diabetes. More specifically, 
we want to verify if diabetes aggravates the outcome of CCH. To this end, we measured the  
ability of hyper- or normoglycemic rats to remember the task that was learned prior to the induction of 
CCH.  

Material and methods 

Data set 

The data used in this article are a result of an experiment performed in the Cerebral Ischemia and 
Neuroprotection Laboratory of Maringá State University during the year of 2015-2016. The aim of this study 
is to evaluate whether diabetes (viewed as a risk factor for vascular dementia) aggravates the cognitive 
sequelae caused by chronic cerebral hypoperfusion (CCH) in middle-aged rats (12-15 months of age). The 
experiments were carried out following a completely randomized design, with four treatment (groups): 
sham/normoglycemic (SN - 12 animals – 1 to 12), sham/hyperglycemic (SH - 12 animals – 13 to 24), 
CCH/normoglycemic (CN - 12 animals – 25 to 36) and CCH/hyperglycemic (CH - 11 animals – 37 to 47). 
Hyperglycemia (diabetes) was induced by a single intravenous injection of streptozotocin (STZ, 35 mg kg-1, 
Sigma, St. Louis. Mo, USA) dissolved in 10 mM citrate buffer (pH = 4.5). Control animals received the buffer 
solution alone. Blood glucose levels were measured 2 days after injection and animals with glycaemia higher 
than 250 mg dl-1 were classified as overtly diabetic. CCH was induced according to the four-vessel 
occlusion/internal carotid artery (4VO/ICA) model, as described in detail elsewhere (Pereira, Ferreira, 
Oliveira, & Milani, 2012).  

Fifteen days after STZ or vehicle injections, the diabetic or normal rats were trained for 15 days to learn a 
radial maze task, as described previously (Pereira et al., 2012). At the end of training, the rats were subjected 
to 4VO/ICA or sham surgery. They were left to recover from surgery stress for 7 days, and then they were 
tested for their ability to remember the task that was learned prior to surgery, i.e., retrograde memory 
performance. The retrograde memory tests (MT) were applied once a week, for 3 weeks and once a time 
before ischemia procedures. Retrograde memory performance was measured by response variable latency, as 
well by other variables not discussed (e.g., number of reference and working memory errors). The latency 
response expresses the time spent (s) by the animal to find the destination (i.e., the goal box or the safe 
place within the aversive radial maze) during each attempt.  

For each animal, and in each testing day (session), the recorded latency was the arithmetic average of 
three attempts (trials). The operational procedures for diabetes and ischemia induction followed the ‘Basic 
principles for animal use’, as approved by the Ethics Committee on Animal Experiments of the Maringá 
State University. 

Generalized linear mixed models (GLMM) 

In studies whose data are modeled following GLM, only fixed effects are considered. However, when we 
come across longitudinal studies whose probability distribution of the response variable belongs to the 
exponential family (EF), random effects can be included in the linear predictor. In this sense, a class of 
models with this characteristic was developed, called Generalized Linear Mixed Models (GLMM) (Breslow & 
Clayton, 1993). In this context, the temporal dependence structure caused by the correlation of the data is 
accommodated by adding random effects to the linear predictor. 
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In general, GLMMs arise the combination of exponential family models with normally distributed 
random effects (Molenberghs, Verbeke, Demétrio, & Vieira, 2010). However, there is no need for the 
random effects of the model to be normally distributed, as can be seen in studies found in the literature, for 
example Molenberghs et al. (2010) and Fabio, Paula, and Castro (2012). Modeling via these models has 
several advantages. They allow the evaluation of data whose distribution of the response variable belongs to 
the EF, as well as to work with estimates using an approximation of integrals (Stroup, 2012). In addition, 
they are versatile in modeling the covariance structure and random effects for the longitudinal 
measurements of the same individual in contrast to other methodologies such as ANOVA for repeated 
measurements. 

The GLMM has been used to quantify the longitudinal benefits of different strategies after 
hypoxic/ischemic brain damage. They include investigations on the neuroprotective effects of the anti-
neuroinflammatory lipid signaling molecule N-palmitoylethanolamine associated with the antioxidant 
agent luteolin in rats and humans (Caltagirone et al., 2016), the effects of prophylactic triple-H therapy on 
hemodynamic variables in humans victims of subarachnoid hemorrhage (Tagami et al., 2014), the impact of 
reducing the time window of treatment with intravenous tissue plasminogen activator (tPA) and the 
complicating effects of bleeding in patients that underwent acute ischemic stroke (Ido et al., 2016). Overall, 
these studies indicate the importance of using GLMM to evaluate experimental data related to the long-
term outcomes of cerebral ischemia. 

In order to determine the general form of a GLMM, we consider Yij the jth observation for the ith 
sampling unit, i = (1, ..., m) and j = (1, ..., ni), with probability distribution Yij for belonging to the EF, 
conditional to a vector of random effects ui = (ui1, …, uiq) of dimension q, where it is written Equation 1. 

( ) ( ) ( ) ( )1
ij ij ij| f | ,  η ,  exp ( η b η ) c ,  ,aα αφ− ∼ = − + ij i ij i ij ijY u y u y y  (1) 

with a(.), b(.) and c(.) being known functions and ϕ dispersion parameter to the distribution used. The 

parameter nij relates the expected value of the conditional response variable to the random effects, say μij , 
with a set of explanatory variables by means of Equation 2. 

 ( )( ) | .ij ijg g E η η = = ⇔ = + 
' '

ij ij i ij ij iμ Y u x β z u  (2) 

For the expressions presented in Equation 2, we have that xij is a p-dimensional vector of explanatory 
variables, β is a p-dimensional vector of unknown parameters (related to fixed effects), zij is a q-dimensional 
vector of variables that were, in general, a subset of xij ui, is a vector of random effects and g (.) a link 
function (Molenberghs, Verbeke, & Demétrio, 2007; Mcculloch, Searle, & Neuhaus, 2008; Mcculloch & 
Neuhaus, 2011; Gad & Kholy, 2012). 

Estimation of parameters 

The maximum likelihood method can be considered as one of the most popular parameter estimation 
methods in the statistical literature. Based on the maximization of the likelihood function, the maximum 
likelihood estimators are obtained. It is possible to write the conditional distribution function of the 
response variable Yi in relation to the random effects ui.  

The estimation of the vector of fixed parameters β as well as the components of the variance-covariance 
matrix ψ will be done through the maximization of the marginal likelihood function obtained through 
integration under the random effects ui (Molenberghs et al., 2007). In this context, from a random sample 
(y1, …, yij) of i observations with j repeated measures, two by two independents, the log-likelihood function 
is given by Equation 3: 

 

(3) 

The distribution of random effects for this problem is multivariate normal, with mean vector 0 and 
variance-covariance matrix ψ. In order to maximize the expression presented in Equation 3 it is necessary to 
solve the integrals involved. However, it is a fact that there is no analytical solution, that is, the solution 
cannot be obtained through of traditional methods presented in integral and differential calculus. In this 
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sense it is necessary to use numerical integration methods, which provide approximate solutions to given 
integrals. 

Log-gamma mixed model (LGMM) 

For the problem addressed, it is assumed that the conditional distribution of yij given ui belongs to the EF 
with probability density function given by Equation 4: 

 
( ) ( ) ( )( )1 1( | ) exp log log log log ,f α α α α

      = − − + − − Γ               
ij i ij ij ij

ij ij

y u y y y
μ μ

 

(4) 

that is, yij ui∼Gamma (μ,α), where μ is a mean for gamma distribution and α is scale parameter, with 

de dispersion parameter ϕ=
1
α  , both positive, yij is the latency for the ith (i = 1, ..., 47) evaluated animal, 

in the jth (j = 1, 2, 3, 4) memory test (MT). The functions a(.), b(.) and c(.), considering the Equation 4 and 1 
are Equation 5:  

( ) ( ) ( )( )
ij ij

1 1 1( ) , log , ( ,α) α log α log log αμ μα
a b cφ    = = − = − − Γ   

   
ij ij ijy y y  (5) 

In fact, the systematic component of the LGMM adopted is given by Equation 6:  

( ) 0 1 2 2 3 41 3log =(β + )+ β G β G +β G β+ +ij i ijμ u t
 
(6) 

with from β0  to β4 being the unknown regression parameters, Gl, l = 1, 2, 3 is the group in which the ith 
animal was allocated. The Gl assume values 1 to l = 1, 2, 3, representing CH, CN and SH groups, respectively, 
and 0 otherwise and considering the SN group as a reference. Still tij is the time of the ith animal evaluated 
according to the jth MT. Also, log(nij) represents the link function. The random effect ui = (ui0)’ is the random 

intercept to the ith animal, and it is assumed that , where . 
According to the LGMM presented in Equation 6, the log-likelihood function is given by Equation 7, 
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(7) 

From the one reported in section estimation of the parameters, especially in Equation 3, the expression given 
by Equation 7 does not have an analytical solution. Thus, the maximization of the log-likelihood function, to 
obtain the estimates for fixed effects, will be done through the Laplace approximation (Tierny & Kadane, 1986). 

Diagnostic analysis 

After the adjustment of a regression model, whether it is only fixed effects or fixed and random effects, 
the validation of the adjusted model is necessary. This phase is comprised of the verification that the model 
is satisfactorily adjusted (residual analysis) to the identification of possible influential observations 
(influence analysis). The exclusion of this phase of the analysis may imply the uncertainty of the 
conclusions obtained from the adjusted model, thus compromising the developed study. 

To verify if the model is properly adjusted, an easy-to-interpret method is to construct a half-normal 
plot (Atkinson, 1985). These plots are obtained by plotting the ordered absolute values of a model 
diagnostic versus the expected order statistic of a half-normal distribution, according to Equation 8: 

1
1i n

Φ 12n 2

8−
 + −
 
 +   

(8) 
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where: n consists of the sample size, i from 1 to n, adding to this graph a simulated envelope from the 
estimates of the adjusted model (Moral, Hinde, & Demétrio, 2016). If the adjustment of the model is 
adequate, then the points are expected to be contained within the simulated envelope (Vieira, Hinde, & 
Demétrio, 2000). To check if the residuals of the adjusted model have a random pattern, a graph of the fitted 
values versus the Pearson residue will be used. A random behavior around zero is expected.  

Over time, different measures of influence have been proposed in the literature, among which Cook's 
Distance (CD) stands out (Cook, 1977). However, when working with a GLMM, it must be taken into account 
that there are estimated parameters associated with the fixed effects, as well as the prediction of random 
effects. Thus, it is necessary to use a measure that is useful for evaluation in such cases. In this sense, an 
extension of the measure of influence proposed by Xiang, Tse, and Lee (2002) was proposed by Pinho, Nobre, 
and Singer (2015). This extension takes into account the aspects described above. This measure is obtained 
by means of the Equation 9: 

( ) ( )
( ) ( )

'

ij
1

ˆ ˆ ˆ ˆ Var( )  
  

[ 1 q pa iφ −=
 − + 

ij
ij

η - η Y | u η - η
CD

 

(9) 

which can be decomposed into three components as follows, according Equation 10: 

,1 2
ij ij ij ij

3CD = CD +CD +CD
 

(10) 

where the subscripts ij indicate the ith animal and its jth MT, Var (Y | u) is the conditional variance of Y 

in relation to the vector of random effects u, િෝ  is an estimate of η, િෝܑܒ  an estimate of િෝ  without the jth 

MT of the ith animal and jth MT, ( )a φ  is a known function in relation to the dispersion parameter φ  to 

gamma distribution in this case, reported in Equation 5, p and q are de dimension the vectors of fixed effects 

β  and Zij. The terms ۱۲ܑ࢜ܒ, ܞ = 1,2,3  are the components of the distance from which they can identify the 
influence of ith animal and jth MT in relation to the parameter estimates for the fixed effects, prediction of 

the random effects and influence in relation to the covariance of ઺෡  and ෝܝ , which is expected to trend to 
zero (Pinho et al., 2015). To identify influential observations, a graph of the observed values/units versus 
the proposed CDij should be used. Points outside the established limits will be influential candidates. 

The obtained results were generated using the software R (R Core Team, 2015). Were using the lme4 
(Bates, Machler, Bolker, & Walker, 2015) and hnp (Moral et al., 2016) packages for adjustment and 
validation of the proposed model respectively. For the construction of the influence analysis graphs, R codes 
for GLMM diagnostics available at http://www.ime.usp.br/~jmsinger/GLMMdiagnostics.zip were used. 

Results and discussions 

Figure 1a represents the total average latency of the animals for the four groups CH (hipoperfusion 
hyperglycemic), CN (hipoperfucion normoglycemic), SH (sham hyperglcycemic) and SN (sham 
normoglycemic). It is possible to notice that the groups that underwent CCH under the conditions of 
hyperglycemia (CH) or normoglycemia (CN) had a higher latency (CH: 116.64 ± 13.69 and CN: 85.82 ± 6.98) 
when compared to the groups that were not submitted to ischemic induction, i.e., sham-surgery (SH: 61.97 ± 
5.97 and SN: 52.32 ± 3.54), indicating that diabetes aggravated the cognitive deficit caused by CCH. 
Regarding the latency of normglycemic and hyperglycemic sham-operated animals, it is identified that the 
first group performs slightly better than the second one. This suggests that hyperglycemia alone did not 
compromise the memory performance. From Figure 1b, which represents the average observed latency 
profiles, considering that the measurement 1 was made before the animals underwent ischemia or only the 
surgical procedures, it is seen that for the groups SN (52.71 ± 3.33; 52.10 ± 2.49, 45.17 ± 3.19) and SH (60.60 
± 6.39, 65.03 ± 6.93, 58.75 ± 4.85), as the measure is applied to the post-ischemia memory tests, the animal's 
ability to perform tasks remains approximately constant and is slightly better at the end of the tests. 
However, the same does not occur for the CH group (142.34 ± 11.17, 126.70 ± 10.22, 137.83 ± 9.45), which 
indicates the occurrence of severe cognitive impairment. For the CN group, similar behavior to the SN and 
SH groups is observed, however, with less intensity. 
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Figure 1. Total average latency and average profiles (vertical bar represent the 95% confidence interval to average) for the four groups 

CH (hipoperfusion hyperglycemic), CN (hipoperfucion normoglycemic), SH (sham hyperglycemic) and SN (sham normoglycemic). 

From the adjustment of the model presented in Equation 6, it was possible to identify that there is 
difference in the response variable for the different groups and memory effect, time effect, (x2

2 = 4.07-40.94, 
p < 0.05). Table 1 presents the parameter estimates for the model, standard error (SE), p-value for the model 
parameters.  

With the results presented in Table 1, it is verified, without exception, that animals of the CN or CH 
group had inferior performance in the retrograde memory tests when compared with the SN group. In 
addition, when comparing group SH with groups CH and CN, those who underwent ischemic induction via 
CCH had inferior performance, that is, they took a long time to perform the MT activities. A similar 
performance was observed when comparing the results of groups SH and SN. This indicates that even 
without ischemic induction, hyperglycemic animals have their cognitive performance compromised, 
although with less intensity. 

Animals in the CH group had their cognitive function compromised by diabetes, as well as the animals of 
the CN group, although the latter in lesser intensity. Growing evidence support the hypothesis that CCH 
represents a possible etiological factor in the development of age-related dementias, including that of 
Alzheimer’s disease (AD) type (Zhao & Gong, 2014), and the occurrence of diabetes may aggravate this 
scenario (Saedi, Gheini, Faiz, & Arami, 2016). Therefore, in the pre-clinical investigation of the 
physiopathology of age-related dementias, the clinical relevance of animals’ models of neurodegenerative 
diseases associated with CCH may be improved if certain preexisting risk factors (e.g., diabetes, 
hypertension) are combined with CCH. In these studies, the reliability of the experimental data can further 
be improved if the appropriate statistical method is used to quantitate the behavioral data.  

Table 1. Estimparison between groups, SE, t-value, z-value and p-value for estimates of LGMM. 

Effect Parameter Estimate SE t-value p-value 

Intercept  3.89 0.06 56.50 < 0.05 

CH  0.78 0.09 8.46 < 0.05 

CN  0.49 0.08 5.49 < 0.05 

SH  0.16 0.08 1.80 0.07 

Time  0.04 0.01 1.97 0.04 

  0.09    

 

Comparison Estimate SE z-value p-value 
SH vs CN -0.33 0.08 -3.69 < 0.05 
SH vs CH -0.61 0.08 -6.71 < 0.05 
SN vs SH 0.16 0.08 1.97 0.27 

Where 2ߪ
 is the parameter of the ψ = σ2۷૝  matrix. 
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By means of Figure 2a, it is observed that all points are located around zero, randomly distributed 
without presenting a systematic pattern, and are within the established limits. This implies that there is no 
violation of the homoscedasticity assumption for the Pearson's residuals of the adjusted model. Figure 2b 
shows a half-normal simulated envelope graph for Pearson's residue, with 99% confidence for the adjusted 
model. It is possible to see that without exception, all points are within the established limits or at the 
border. This indicates that the model is well adjusted, as the assumption of gamma distribution for the 
response variable is adequate. 

 
Figure 2. Graphs for analysis of residuals of the adjusted model. 

 
Figure 3. Graph for influence analysis. 

 

Conclusion 

From the aforementioned results, the adjusted LGMM proved to be effective at modeling behavioral data. 
Diagnostic analysis for the adjusted model was satisfactory. The modeling by a GLMM was able to capture 
the inherent variability in the longitudinal data. It becomes an alternative to frequently used traditional 
method, which disregard the effect of longitudinal dependence and may make the developed inferences 
inadequate. Through of GLMM methodology, we demonstrated that the statistical method developed here 
fit the behavioral data very well. From this, we demonstrated that ischemia condition is aggravated by 
diabetes. 
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