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ABSTARCT. In this paper, homotopy analysis transform method and residual power series method for 
solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets 
Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in 
the form of rapidly convergent series with easily calculable components by using mathematica software 
package. Reliability of methods are given graphical consequens and series solutions are made use of to 
illustrate the solution. The approximate solutions are compared with the known exact solutions.  
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Introduction 

The RPSM was produced as an efficient method for definite worths of coefficients of the power series 
solution for fuzzy differential equations (Arqub, 2013). The RPSM is constituted with an repeated algorithm. 
This method is effective and easily to obtain power series solution for forcibly linear and nonlinear 
equations lacking linearization, perturbation, or discretization. Unlike the other series method, the RPSM 
does not want to match the coefficients of the comparable conditions and a repeated connection is'nt 
needed. Present method calculates the coefficients of the power series by a bond of algebraic equations of 
some variables. Besides, the RPSM does not need any transforming while changing from the low-order to 
the higher-order; thus the present method can be worked straight to the given example by selecting an 
suitable initial estimate approximation. This method have tested to be powerful, effective, and can easily 
handle a broad class of linear and nonlinear problems (Arqub, El-Ajou, Bataineh, & Hashim, 2013; El-Ajou, 
Arqub, Al Zhour, & Momani, 2013; Arqub, El-Ajou, Al Zhour, & Momani, 2014; Arqub, El-Ajou, & Momani, 
2015; El-Ajou, Arqub, & Momani, 2015; Ich, Körpınar, Al-Qurashi, & Baleanu, 2016; Tchier, Ich, Körpınar, 
& Baleanu, 2016; Mishra & Sen, 2016; Mishra, Agarwal, & Sen, 2016). 

The homotopy analysis transform method (Hatm) is a compounding of the homotopy analysis method 
(HAM) and Laplace transform method (Khan, Gondala, Hussain, & Vanani, 2012; Gondal, Arife, Khan, & 
Hussain, 2011; Kumar, Singh, & Kumar, 2014; Kumar, Kumar, & Baleanu, 2016). The profit of this method is 
its potentiality of combination two powerful methods for finding exact and approximate analytical solutions 
for nonlinear equations. HATM solves nonlinear problems without using Adomian's polynomials and He's 
polynomials is a net profit of this method over the Adomian's decomposition method (ADM) and the 
homotopy perturbation transform method (HPTM). 

The purpose of this work is to utilize RPSM and HATM to find the numerical solutions for the linear 
Schrodinger Equation 1 (Wazwaz, 2008). 

1,=,=,0)(0,= 23 −+ iexuiuu ix
xxt  (1) 

and the nonlinear Schrodinger Equation 2 (Wazwaz, 2008). 

,=,0)(0,=2 ix
xxt exuuuuiu γ−+  (2) 

where: 
γ  is a constant and ),( txu  is a complex function. Equation 2 considers the time development of a free 
molecule. It is applied variational iteration method to handle approximate solutions of these equations by 
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(Wazwaz, 2008). It is studied sine-cosine function method for nonlinear Schrodinger equation by (Jawad, 
Kumar, & Biswas, 2013). 

The Schrodinger equations apply in several area of physics, containing nonlinear optics, plasma physics, 
superconductivity and quantum mechanics. The linear Schrodinger Equation 1 is commonly used by 
applying the spectral transform among other methods (Wazwaz, 2002).The nonlinear Schrodinger's 
Equation 2 acts a critical function in several fields of physical, biological, and engineering sciences. It seems 
in several applied fields, containing liquid dynamics, nonlinear optics, plasma physics, and 
proteinchemistry.  

The outline of the remainder of this paper is as follows. In the next section, we explained Hatm. In 
Sections 3, we applied RPSM and Hatm for linear and nonlinear Schrodinger's Equations. In Sections 4, is 
formed graphics and is drew tables for reliable of obtained solutions in Figure 1-4. Finally, some concluding 
remarks are given. 

Material and method 

In N(u(x)) = r(x) equation, N a general ordinary or partial nonlinear differential operator containing every 
two cases. The linear case is L+R, where L is the greatest order linear operator and R is the resting of the 
linear operator. Thus, Equation 3, 

),(= xrNuRuLu ++  (3) 

where: 
Nu is the nonlinear cases. By using Laplace transform on both sides of )].(=[£ xrNuRuLu ++  
From the property of Laplace transform, we have Equation 4, 

)].([£=][£][£(0)][£ )(1

1=
xrNuRuusus imi
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i

m ++− −− Then 
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(4) 

We describe the nonlinear element: )(0);,(1)];,([£=)];,([ )(1

1=
ztxs

s
ztxztxN imi

m

i
m

−− Ψ−ΨΨ   

)]],;,([£)];,([£[1 ztxNztxR
sm

Ψ+Ψ+  where );,( ztxΨ  is real functions of x, t and z on condition that 

0,1][∈z . Now we make a homotopy, Equation 5: 

)],,([),(=)],();,([£)(1 0 txuNtxhzHtxuztxz −Ψ−  (5) 

in Equation 5, £; Laplace transform, 0≠h ; an assisting parameter, 0,1][∈z ; embedding parameter, 
0),( ≠txH ; an assisting function, );,( ztxΨ ; a unknown function and u0 (x, t); an initial condition of u(x, t). 

Then, for z = 0 and z = 1, it gives, ),,(=;0),( 0 txutxΨ  ),,(=;1),( 0 txutxΨ  respectively. Thus, Equation 6: 

,),(),(=);,(
1=

0
n

n
n

ztxutxuztx
∞

+Ψ  (6) 

where, Equation 7, 

.);,(
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1=),(
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n z
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∂
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Then we have Equation 8, 

).,(=),(
1=

0 txuutxu n
n

∞

+  (8) 

The present equation can be concluded from the 0th- order deformation. 

Describe the vector )}.,(),...,,(),,(),,({=),( 210 txutxutxutxutxu m

→
 

Differentiating Equation 6 n times with respect to the embedding parameter z and then setting z = 0 and 
finally dividing them by n!, we have the socalled nth-order deformation Equation 9: 
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).(),(=)],(),([£ 11 −

→

−− nnnnn uRtxhzHtxutxu χ  (9) 

Using inverse Laplace transform, we obtain Equation 10, 
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where: 
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(11) 

Results and discussion 

Numerical applications for Schrodinger's equations 

Example 1: We first study the linear Schrodinger Equation 12, 

1,=,=,0)(0,= 23 −+ iexuiuu ix
xxt  (12) 

It isfound the exact solution for (Equation 12) as Equation 13: 
)3(3=),( txietxu −
, (13) 

by (Jawad et al., 2013). 
For applications of Hatm; applying the Laplace transform on both sides of Equation 12, we have 
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We describe a nonlinear operator as ( ) )];,([£11)];,([£=)];,([ 2
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The nth-order deformation equation is given by )(=)],(),([£ 11 −

→

−− nnnnn uhRtxutxu χ . Applying the inverse 

Laplace transform, we rewrite Equation 15: 

)].([£)],(=),( 1
1
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−

− + nnnnn uRhtxutxu χ  (15) 

Solving Equation 14, for n = 1, 2, 3, ..., we get Equation 16: 
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(16) 

Hence, the 5th-order HATM solution (for h = -1) is given by Equation 17; 
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For applications of RPSM; 
We consider (Equation 12) equation and his initial condition. We apply the RPSM to find out series 

solution for this equation subject to given initial conditions by replacing its power series expansion with its 
truncated residual function. From this equation a repetition formula for the calculation of coefficients is 
supplied, while coefficients in PS expansion can be calculated repeatedly from the truncated residual 
function (El-Ajou et al., 2013; 2015). 

Theorize that the solution yields the expanse form, Equation 18: 

.,<0,)(=
0=

IxRttxfu n
n

n
∈≤

∞

  (18) 

Next, we let uk to denote k. truncated series of u, Equation 19: 

.,<,0)(=
0=

IxRttxfu n
n

k

n
k ∈≤  (19) 

where: 
u0 = f0(x) = u(x, 0) = f(x), Equation 19 can be written as Equation 20: 

 
,)()(=

1=
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.1,=,,<0 ∞∈≤ kIxRt  

(20) 

At first, to find the value of coefficients fn(x), n = 1, 2, 3, ..., k in series expansion of Equation 20, we 
define residual function Res; for Equation 12 as Res = ut + iuxx and the k-th residual function, Resk as follows 
Equation 21: 

( ) ( )xxktkk uiuRes += 1,2,3,...=k  (21) 

(Arqub, 2013; Arqub et al., 2013; El-Ajou et al., 2013) show that Res = 0 and ResReskk
=lim

∞→
 for each Ix∈  

and 0.≥t  

Then, 0=r

r

t
Res

∂
∂  when t = 0 for each kr 0,= . To determine f1(x), we write k = 1 in Equation 21, 

Equation 22: 

( ) ( ) ,= 111 xxt uiuRes +  (22) 

where:  
u1 = f(x) + tf1(x) for u0 = f0(x) = f(x) = u(x, 0) = e3ix. 

From Equation 22 we deduce that Res1 = 0 (t = 0) and thus, Equation 23: 

.9=)( 3
1

ixiexf  (23) 

Therefore, the 1-st RPS approximate solutions are Equation 24: 

.9= 33
1 tieeu ixix +  (24) 

Similarly, to find out the form of the second unknown coefficient f2(x), we write u2 = f(x) + tf1(x) + t2f2(x) in 

Res2. 0=2
t
Res
∂

∂
 (t = 0) and thus, Equation 25: 

,
2
81=)( 3

2
ixexf −  (25) 

Therefore, the 2-st RPS approximate solutions are Equation 26: 

3.159= 33
2 tieeu ixix + .

2
81 23 te ix−  (26)
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Similarly, we write u4 = f(x) + tf1(x) + t2f2(x) + t3f3(x) + t4f4(x) in Res4. 0=3
4

3

t
Res
∂

∂  (t = 0) nd thus, acoording 

Equation 27: 

,
8
2187=)( 3

4
ixexf  (27) 

Therefore, the 4-st RPS approximate solutions are )24310836(8
8
9= 3233

4 tittiteeu ixix +−−+ . 

Example 2: We now study the cubic nonlinear Schrodinger Equation 28, 

,=,0)(0,=2 2 ix
xxt exuuuuiu −+  (28) 

The exact solution for (Equation 28) is (Wazwaz, 2008), acoording Equation 29. 
( ) .=),( 3 itxetxu −  (29) 

For applications of Hatm; applying the Laplace transform on both sides of Equation 28, we have 
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The nth-order deformation equation is given by )(=)],(),([£ 11 −

→

−− nnnnn uhRtxutxu χ .  

Applying the inverse Laplace transform, we have Equation 30: 

)].([£)],(=),( 1
1

1 −

→
−

− + nnnnn uRhtxutxu χ  (30) 

Solving Equation 30, for n = 1, 2, 3, ..., we get u0(x, t) = eix, u1(x, t) = 3ieixht 
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Hence, the 5th-order Hatm solution (for h = -1) is given by Equation 31: 
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(31)

For applications of RPSM; 
We the cubic (Equation 28) nonlinear Schrodinger equation and his initial condition.  
If we apply the RPSM, we can write, Equation 32: 

,=)(0
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Therefore, the 4-st RPS approximate solutions are Equation 33: 
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2
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Figure 1. The surface graphs of linear Schrödinger equation. a) Exact solution (Re), b) Exact solution (Im), c) Approximate solution with Hatm 

(Re), d) Approximate solution with Hatm (Im), e) Approximate solution with RPSM (Re), f) Approximate solution with RPSM (Im). 

 

Figure 2. 2D graphs of exact and approximate solutions for linear Schrödinger equation ( 0.005=t ). 

 
Figure 3. The surface graphs of nonlinear Schrödinger equation. a) Exact solution (Re), b) Exact solution (Im), c) Approximate solution with 

Hatm (Re), d) Approximate solution with Hatm (Im), e) Approximate solution with RPSM (Re), f) Approximate solution with RPSM (Im). 
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Figure 4. 2D graphs of exact and approximate solutions for nonlinear Schrödinger equation (t = 0.5, t = 0.5). 

Table 1. Comparison between RPSM approximate solution u5(x, t) and exact solution of linear Schrödinger equation. 

 0.01 0.02 0.03 0.04 0.05 

0.01 5.39992  1.07994  1.6198  2.15953  2.69908  
0.02 1.07998  2.15987  3.23959  4.31904  5.39815  
0.03 1.61996  3.23978  4.85934  6.47851  8.09716  
0.04 2.15992  4.31966  6.47906  8.63793  1.07961  
0.05 2.69986  5.39951  8.09871  1.07973  1.34949  

 

Table 2. Comparison between Hatm approximate solution u5(x, t) and exact solution of linear Schrödinger equation. 

 0.01 0.02 0.03 0.04 0.05 

0.01 5.39992  1.07994  1.6198  2.15953  2.69908  

0.02 1.07998  2.15987  3. 23959  4.31904  5.39815  

0.03 1.61996  3.23978  4.85934  6.47851  8.09716  

0.04 2.15992  4.31966  6.47906  8.63793  1.07961  

0.05 2.69986  5. 39951  8.09871  1.07973  1.34949  
 

Table 3. Comparison between RPSM approximate solution u4(x, t) and exact solution of nonlinear Schrödinger equation. 

 0.01 0.02 0.03 0.04 0.05 

0.01 1.01148  7.68811  2.4201  2.02148  9.13486  

0.02 3.02372  6.45381  2.45929  1.94821  2.97814  

0.03 5.00575  1.28354  7.31412  2.06025  3.20833  

0.04 6.93777  1.90888  1.20959  4.08043  9.36275  

0.05 8.80046  2.51515  1.67567  6.05985  1.54236  

Table 4. Comparison between Hatm approximate solution u5(x, t) and exact solution of nonlinear Schrödinger equation. 

 0.01 0.02 0.03 0.04 0.05 

0.01 2.28657  4.97242  7.52547  9.11458  9.05243  
0.02 2.28623  4.9884  7.59856  9.29106  9.25587  
0.03 2.28304  4.99449  7.65568  9.45461  9.46623  
0.04 2.27701  4.99065  7.69625  9.6036  9.68162  
0.05 2.26822  4.97691  7.71988  9.73656  9.90013  

Final considerations 

In this section, we formed graphics and drew tables for reliable to above obtained solutions. 
Table 1-4 clarify the convergence of the approximate solutions to the exact solution. In these tables, 

comparison among approximate solutions with known results is made. These results obtained by using 
RPSM and Hatm. 

Conclusion 

In this work we have demonstrated efficiency of the Homotopy analysis transform method (Hatm) and 
Residual power series method (RPSM) for finding series solutions of linear and nonlinear Schrödinger 
equations. These methods are applied successfully and series solutions are compared known exact 
solutions. Graphical and numerical consequences are introduced to illustrate the solutions. The solution 
finded by using RPSM is more convenient as compared to Hatm solution.Thus, it is concluded that the 
RPSM becomes powerful and efficient in finding numerical solutions than Hatm by assuming h = -1. We 

t x
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104 103 103 103

104 103 103

t x
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conclude that consequences emphasizes the powers of these methods in handling a wide variety of 
nonlinear problems. 
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