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ABSTRACT. This paper presents the evaluation of two metaheuristics to solve the Unrelated Parallel 
Machine Scheduling Problem with Sequence Machine Dependent Setup Time. Considering such a 
problem, there is no relation between the time to process each task and the machine; and this is why the 
machines are referred to as unrelated. Furthermore, the setup time between the executions of two tasks 
depends on both, the task sequence and its associated machine. A metaheuristic genetic algorithm and a 
variable neighborhood search were used in order to solve the problem due to the difference among their 
characteristics. The maximal time for the schedule to be completed, also called makespan, was the 
performance measure used to evaluate the solutions. The results obtained by both metaheuristics were 
directly compared according to their performance to try to reduce this makespan. The results showed that 
the variable neighborhood algorithm search outperformed the genetic algorithm regarding the solutions 
quality and execution time. 
Keywords: scheduling problem; machine scheduling; metaheuristic. 

Algoritmo genético e busca em vizinhança variável para o problema de sequenciamento de 
máquinas paralelas não-relacionadas com setup dependente da sequência 

RESUMO. Este artigo avalia a aplicação de duas meta-heurísticas na resolução do problema de 
escalonamento de máquinas paralelas não relacionadas com o tempo de preparação dependente da 
sequência e máquina associada. Para esse problema, não existe relação entre a máquina e o tempo de 
processamento de cada tarefa, por isso as máquinas são denominadas de não relacionadas. Além disso, o 
tempo de preparação entre a execução de duas tarefas depende de ambos os processos - sequência das 
tarefas e máquina a elas associadas. As meta-heurísticas algoritmo genético e busca em vizinhança variável 
foram escolhidas para resolver o problema pela diferença existente entre suas características. A medida de 
desempenho utilizada para avaliar as soluções é o tempo máximo para conclusão do escalonamento, 
também denominado makespan. Os resultados obtidos por ambas as meta-heurísticas são diretamente 
comparados de acordo com seu desempenho na tentativa de redução do makespan. Os resultados 
demonstram que a busca em vizinhança variável obteve melhor desempenho comparado ao algoritmo 
genético no que confere à qualidade das soluções e tempo de processamento. 
Palavras-chave: problema de escalonamento; escalonamento de máquinas; metaheurísticas. 

Introduction 

The task scheduling is an important decision 
problem at operational level, which appears in 
different contexts in modern production systems. Its 
main function is to determine what, when, how and 
what resources should be used to operationalize the 
industrial jobs. The sequencing of parallel machines 
is necessary because several real systems have more 
than one machine to perform the same set of 
activities. This issue fits the sub-problems context  
of greater complexity, such as a flow  shop or  a job  

shop, whose set of workstations containing parallel 
machines works simultaneously. According to Ying, 
Lee, and Lin (2012), this is a common scenario in 
current production systems, especially in the textile, 
chemical, electronics, and implementation services, 
as well as in the maintenance industry. In practice, 
this problem is highly complex, not only because of 
its dimension, but mainly because of the peculiar 
features arising from the situation to be resolved. 

Considering the theoretical aspects, the Parallel 
Machine Scheduling Problem (PMSP) is considered 
to be NP-hard, i.e., a polynomial algorithm capable 
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of generating the optimal scheduling of machines in 
an acceptable computational time is unlikely to exist.  

Sioud, Gravel, and Gagné (2012) consider this 
challenge as an incentive for the investigation of 
heuristics that provide good solutions to the 
problem, which allows the advancement of existing 
algorithms. 

Ravetti, Mateus, Rocha, and Pardalos (2007) 
point out that the literature on PMSP is extensive. 
However, the consideration of an environment with 
unrelated parallel machines is not common, 
especially when this problem is compared to the 
amount of publications regarding either identical or 
uniform machines. Lin, Pfund, and Fowler (2011) 
emphasize the importance of the algorithms 
developed for the PMSP with unrelated machines, 
since it generalizes other problems.  

The PMSP can be classified according to the 
speed to process the tasks in each of the parallel 
machines. Senthilkumar and Narayanan (2010) 
classify the problem in three distinct categories: the 
Identical Parallel Machine Scheduling Problem, the 
Uniform Parallel Machine Scheduling Problem and 
the Unrelated Parallel Machine Scheduling 
Problem. 

Several studies on the application of heuristics to 
evaluate some performance purposes to solve the 
unrelated PMSP are found in the literature. Glass, 
Potts, and Shade (1994) conducted a comparison of 
the metaheuristic genetic algorithms, in addition to 
simulate an annealing and tabu search to reduce the 
maximum completion time (makespan). Piersma 
and Van Dijk (1996) suggested two new local search 
methods with a neighborhood search referred to as 
‘efficient’ to reduce the makespan. Peyro and Ruiz 
(2010) also aimed to reduce the makespan by 
addressing the problem through metaheuristics 
based on an iterated greedy local search. 

Lin et al. (2011) conducted a comparison of the 
performance of several existing heuristics and 
proposed a new meta-heuristic for the unrelated 
PMSP. The authors compared the algorithms from 
the perspective of three performance purposes 
analyzed individually and together: ‘makespan’; the 
total weighed completion time and the total weighed 
tardiness. Lin, Lin, and Hsieh (2013) implemented 
an ant colony optimization algorithm whose main 
purpose was to reduce the total weighed tardiness. 

As aforementioned, the unrelated PMSP is 
common in industry, where the manufacturing 
structure is composed of different machine 
technologies. However, these differences usually 
imply not only in distinct processing time for the 
machines, but also in different preparation time 
among the tasks according to the associated machine 

and established sequence for the activities. This is 
referred to as the unrelated parallel machine-
scheduling problem, with a sequence and machine 
dependent on setup time. According to Vallada and 
Ruiz (2011), the parallel machine scheduling 
problem has widely been studied in the last decades 
when compared to the case involving non-parallel 
machines. However, the consideration of a sequence 
dependent on setup time environment has not been 
applicable until recently. 

Kim, Kim, Jang, and Chen (2002) implemented 
a simulated annealing algorithm for the unrelated 
PMSP with a sequence dependent on setup time to 
reduce the total tardiness. The authors consider a 
variant of the problem where the setup time only 
depends on the task sequence, but not on the 
associated machine. 

Among the studies that involve the application of 
metaheuristics for the unrelated PMSP with 
sequence and machine dependent setup time, 
Logendran, McDonell, and Smucker (2011) solved 
the problem with the aim of reducing the total 
weighed tardiness. The authors considered a 
dynamic task expedition and a dynamic availability 
of machines in order to approximate the real 
situation problem of several industries. Six types of 
algorithms based on taboo search were 
implemented. Ravetti et al. (2007) applied a 
metaheuristics based on GRASP (Greedy 
Randomized Adaptive Search Procedure) to reduce 
makespan and weighed delays. Paula, Ravetti, 
Mateus, and Pardalos (2007) used a Variable 
Neighborhood Search Algorithm (VNS) with the 
aim of reducing the makespan and weighed delays. 
Chen and Chen (2009) proposed various hybrid 
metaheuristics by integrating a Variable 
Neighborhood Descent (VND) and a Taboo Search 
to reduce the weighed number of tardy jobs. Chen 
(2009) considered a heuristic to reduce the total 
tardiness. Vallada and Ruiz (2011) proposed a 
genetic algorithm to reduce the makespan 
sequencing. Liao, Chang, Kuo, and Liao (2014) 
reported five hybrid metaheuristics to solve the 
problem by reducing the makespan: three hybrid 
algorithms by ant colony and two hybrid simulated 
annealing algorithms. 

This paper aims at expanding research on the 
resolution methods for the unrelated parallel 
machine scheduling problem, with a sequence and 
machine dependent on setup time by considering 
the reduction of the maximum completion time 
(makespan) as a performance measure. Therefore, a 
direct comparison is carried out between the 
performance measurements and the results shown 
by two metaheuristics: a genetic algorithm and a 
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variable neighborhood search. These metaheuristics 
were used due to the large difference among their 
characteristics: the genetic algorithm is classified as a 
meta-heuristic inspired by nature and based on 
population, whereas the meta-heuristic VNS is not 
inspired by nature and performs a punctual search 
through several neighboring structures. These 
peculiarities allow a complete diversification of the 
resolution method for the same problem. 

The present study is structured into seven 
sections, in addition to this introduction. Section 2 
characterizes the machine scheduling problem. 
Section 3 shows the problem representation. Section 
4 describes the local search methods, and Section 5 
presents the two proposed algorithms to solve the 
problem. Sections 6 and 7 address experimentation 
and the results obtained, respectively. Finally, 
Section 8 shows the final remarks, contributions and 
considers further research. 

Material and methods 

A production system with parallel machines is 
characterized by the availability of a set of m 
machines, whether identical or not, which executes 
a set of n tasks in a single production stage. The 
purpose of the problem is to determine the best 
sequencing for the tasks, considering not only the 
set of tasks that should be allocated in each machine, 
but also the order according to which these tasks 
must be distributed to improve a particular 
performance criteria.  

The Unrelated Parallel Machine Scheduling Problem 
with Sequence and Machine Dependent Setup Time 
represents one of the classes derived from the 
PMSP. In such a case, there is a set N = {1, ..., n} of 
n tasks and a set M = {1, ..., m} of m unrelated 
machines (m < n), with the following characteristics 
(Eroglu, Ozmutlu, & Ozmutlu, 2014): 

• Each task must be processed exactly once 
by only one machine; 

• Each task i has a pik processing time, which 
depends on the machine k in which it will be 
allocated. It is due to this characteristic that the 
machines are referred to as unrelated; 

• The setup time depends on both, the 
sequence of tasks and their associated machine. Let 
sijk be the setup time of machine k between 
processing tasks i and j, in this order. So, the setup 
time of machine k between tasks i and j is different 
from the setup time of machine k between tasks j 
and i, i.e., sijk ≠ sjik. In addition, the setup time 
between tasks i and j in machine k is different from 
the setup time between tasks i and j in machine h. 
Therefore sijk ≠ sijh. 

Different characteristics may be associated with 
each of the processing tasks, such as availability date, 
setup, preemption, precedence constraints, 
machinery breakdowns, eligibility restrictions, 
permutations, locks, recirculation, among others. 

When n tasks are sequenced in m parallel 
machines, each machine k has a different time Ck to 
complete the processing of all the tasks associated 
with it. The maximum completion time of all 
machines is known as the makespan, represented by 
Cmax = max1≤k≤m {Ck}. The makespan is the 
completion time that will be consumed by the last 
machine to complete its tasks, also called bottleneck 
machine (Vallada & Ruiz, 2011). In other words, if 
Ci is the completion time of job i, so the makespan 
can also be represented by Cmax = max1≤i≤n {Ci}. 

Given these characteristics, the unrelated PMSP 
with sequence and machine dependent setup time 
may be solved by the resolution of the binary 
decision variable ݔ௜௝௞ , where ݔ௜௝௞  is 1 if job j is 
immediately processed after job i on machine k 
and	0 otherwise. In this case, ݔ଴௝௞  represents a job ݆ 
which is scheduled in the initial position on 
machine k.  

Let Ci be the completion time of job i, C0 the 
completion time for a dummy initial job 0, and G a 
very large positive number. Lin and Ying (2014) 
formulated this problem as a mixed-integer 
programming model: 

௠௔௫ܥ	݊݅ܯ  = .ݏ (1)		൛஼ೕൟ	ଵஸ௝ஸ௡ݔܽ݉ ௜௝௞ݔ෍෍ ݐ = 1		∀	݆	 ∈ ܰ	(2)௡
௜ୀ଴௜	ஷ௝

௠
௞ୀଵ  

෍ݔ௢௝௞ = 1	∀	݇	 ∈ ௡(3)	ܯ
௝ୀଵ  

෍ݔ௜௤௞௡
௜ୀ଴௜	ஷ௤ −	෍ ௤௝௞௡ݔ

௝ୀ଴௝	ஷ௤
= 	ݍ	∀	0 ∈ ܰ, 	ܭ	∀ ∈  	(4)	ܯ

	଴ܥ = ௝ܥ (5)	0 − ൥ܥ௜ +෍ݔ௜௝௞ ൫ݏ௜௝௞ + ௝௞൯௠݌
௞ୀଵ + ܩ ൭෍ݔ௜௝௞௠

௞ୀଵ − 1൱൩	∀	݅= 0, . . , ݊		∀݆	 ∈ ௜௝௞ݔ (6)	ܰ 	∈ ሼ0,1ሽ	∀	݅ = 0,… , ݊	∀	݆	 ∈ ܰ	∀݇	 ∈  (7)	ܯ
 

Equation 1 represents the objective function of 
the problem, i.e. the makespan minimization. 
Equation 2 shows that each job is processed once 
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and by only one machine. Equation 3 ensures that 
only one job will be assigned to the first position on 
each machine. Equation 4 guarantees that each job is 
preceded and succeeded by no more than one job. 
Equation 5 sets the completion time for the dummy 
initial job. Equation 6 calculates the completion time 
of job j, ensuring that the completion time of every 
job is a non-negative value, and that no job should 
either precede or succeed the same job. Equation 7 
states the decision variable ݔ௜௝௞  type as a binary.  

According to Pinedo (2008), the unrelated 
parallel machine scheduling problem with sequence 
and machine dependent setup times, whose purpose 
is to reduce the maximum completion time of the 
sequencing, can be denoted by R | Sijk | Cmax. In this 
representation, R indicates the unrelated machines, 
Sijk the setup time (depending on the machine and 
the task execution order) and Cmax the makespan. 

Based on these characteristics, the unrelated 
parallel machine-scheduling problem with sequence 
and machine dependent of setup times has the 
following input data: the number of tasks, the 
number of parallel machines, the task processing 
time for each machine and the setup time of each 
machine while running two consecutive tasks. From 
the problem input data, a solution is generated by 
the distribution of all tasks into the existing 
machines, since all tasks assigned to the same 
machine have a processing order. 

Local search methods 

The local search methods have widely been used 
in applications involving metaheuristics for 
improving current solution. In order to solve the 
proposed problem, three local search methods are 
applied, which are related to a specific neighborhood 
structure based on either the movement exchange or 
the relocation of tasks on the same machine or in 
two different machines. The neighborhood 
structures are:  

(1) Insertion: withdrawal of a task to its original 
position and insertion into a new position in a 
different machine; 

(2) SwapDM: position exchange between two 
tasks a and b allocated in different machines;  

(3) SwapSM: position exchange between two 
tasks a and b allocated in the same machine. 

Figure 1 shows an example of possible 
movement exchanges to which an individual i can be 
submitted after the application of each of the 
neighborhood structures in random tasks belonging 
to the scheduling. The number in each cell 
represents a scheduled specific task. The lighter cells 
correspond to the tasks that have changed position 

due to the movements imposed by each of the 
neighborhood structures. 

 

 
Figure 1. Possible movements for the neighborhood structures. 
Source: This research. 

According to each of the neighborhood 
structures, the following local search methods are 
applied: 

(1) LocalSearchInsert: it is based on the insertion 
neighborhood structure and consists in an analysis 
of the possibility of removing a task from a machine 
and allocation it in all positions of the other existing 
machines;  

(2) LocalSearchSwapDM: it is based on the Swap 
DM neighborhood structure, i.e., the analysis of the 
possibility of exchanging the position of two tasks 
belonging to different machines;  

(3) LocalSearchSwapSM: based on the Swap SM 
neighborhood structure, it analyses the possibility of 
exchanging the position of two tasks belonging to 
the same machine. 

All the local search procedures use a strategy 
referred to as First Improvement. It means that they 
always perform an insertion/exchange movement 
when the exchange simulation of a task is accepted. 
For the LocalSearchSwapSM procedure, the exchange 
movements are accepted in case the completion time 
of the analyzed machine is reduced. For the 
LocalSearchInsert and LocalSearchSwapDM 
procedures, considering each pair of machines, the 
insertion/exchange movement is accepted in the 
following cases: 

(1) If the new processing time of both machines 
is reduced; 

(2) If the processing time of one machine is 
reduced and the processing time of the other 
machine is increased; so the movement is accepted 
in case the reduced time is higher than the increased 
time or if the makespan value, considering the two 
machines, suffers no elevation. 
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Whenever an insertion/exchange movement is 
accepted (and hence, executed), the search begins 
the insertion /exchange simulation for the schedule 
subsequent task. The search only ends when a local 
optimum is found, i.e., when the insertion/exchange 
movements are no longer accepted for all 
neighborhoods. 

Proposed algorithm 

The use of two metaheuristics was suggested: 
Genetic Algorithm (GA) and Variable 
Neighborhood Search (VNS). These metaheuristics 
were chosen due to the difference between their 
characteristics, which allows a diversification of the 
method to solve the problem: GA is a population 
nature-inspired meta-heuristic, whereas VNS 
performs a punctual search through various 
neighborhood structures. Thus, GA deals with 
multiple solutions at each iteration, favoring 
diversity, whereas VNS does not. 

All parameters adopted for the genetic algorithm 
and VNS were obtained through empirical 
experiments. Moreover, with the aim of performing 
a fair and independent comparison of the differences 
between the two metaheuristics, strategies were used 
to implement the algorithms and to analyze the 
results obtained by them. The algorithms 
parameters and the mentioned strategies will be 
described in this section.  

Genetic Algorithm (GA) 

The main aspects of the Parallel Machines 
Sequencing Problem (PMSP) is related to the GA 
specific vocabulary: an individual corresponds to the 
sequence and distribution of all tasks on existing 
machines, their genes are each of its tasks, which 
shall take values belonging to the set N = {1, ..., n}. 
Finally, the fitness function consists in the makespan 
of each individual. 

Initially, a constructive heuristic was applied to 
the development of individuals that belong to the 
initial population. In this heuristic, for each 
individual, the set of n jobs to be processed in 
parallel machines are randomly ordered. Then, each 
task is tested in all positions of all machines 
(including the positions of the tasks already entered 
on the same machine) and it is allocated in the 
position that results the shortest makespan. This 
procedure is performed for each individual until all 
the initial population is built. The population size 
defined for the GA proposed was of 50 individuals. 

Roulette method was used for selecting the 
individuals. Let mak(i) be the fitness function that 
calculates the makespan of an individual i and p the 
size of the GA population. Since the goal of the 

problem is to reduce the makespan, then the function 
f (i) used to determine the selection probability of an 
individual i was calculated according to Equation 8. 

 ݂(݅) = 	 1 ݉ܽ݇(݅)ൗ∑ ቀ1 ݉ܽ݇(݆)ൗ ቁ௣௝ିଵ 							(8) 
 
From the application of Equation 8, all 

individuals shall have a selection probability that is 
inversely proportional to its makespan value. Ten 
pairs of individuals are selected for each generation 
in execution. 

Once the ability is evaluated, two individuals are 
selected (parents) and s the application of the genetic 
operators begins. The crossover is the first operator to 
be used. This operator is applied with a probability 
given by a crossing rate of 100% and based on the 
model proposed by Vallada and Ruiz (2011). 

According to Vallada and Ruiz (2011), the 
objective of the crossing operator is to generate two 
good individuals (children) from both selected 
parents. The ‘One Point Order Crossover’ is one of 
the most used crossover operators, which is adapted 
to the parallel machines scheduling problem. For 
each machine, a p point is randomly selected in 
Parent 1. Every task located from the first position to 
position p is copied to the respective machine of 
Child 1. Now, all the tasks located from position p + 
1 to the last position is copied to the respective 
machine of Child 2. After that, all tasks from Parent 2 
that still do not belong to a particular child are 
sequenced in it. In this process, the task is allocated 
in the child in the same machine as the parent’s. The 
tasks from Parent 2 are inserted in the position that 
results in the lowest processing time for the machine 
belonging to the child (which may reduce the 
makespan for the individual, thus improving the 
schedule). 

Figure 2 shows an example of the crossover 
operator considering two parallel machines and 
eight tasks. In order to facilitate understanding, the 
setup time between two tasks is not displayed and all 
tasks are represented with the same size (which does 
not mean that their processing time is equal). 

Both parents are selected and a point p for each 
machine is randomly assigned to Parent 1. In this 
case p1 = 1 (machine 1) and p2 = 3 (machine 2). 
Thus, Child 1 is formed with the tasks belonging to 
Parent 1 from position 1 (task 5) of machine 1, and 
the tasks from the position 1 to 3 (tasks 8, 2 and 3) 
of machine 2. The Child 2 is formed with the tasks 
belonging to the Parent 1 from position 2 to 3 (tasks 
4 and 6) of machine 1, and the task of position 4 and 
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5 (tasks 1 and 7) from machine 2. Figure 3b shows 
that the tasks that belong to Parent 2, which have not 
been assigned to any children yet, are inserted into 
their respective machines. For Child 1, tasks 7, 4 and 
6 are inserted into the machine 1 and the task 1 on 
machine 2. For Child 2, tasks 2, 3 and 8 are inserted 
into the machine 1 and task 5 is inserted into the 
machine 2. Figure 3 represents the final state for 
both children generated by the crossover operation. 
It is seen that the tasks from Parent 2 are inserted in 
the position that reduces the processing time for the 
associated machine. For example, for the machine 1 
of Child 2, the tasks were sequenced in the order (4, 
2, 3, 6, 8). The original order in case this insertion 
method was not applied would be (4, 6, 2, 3, 8). 

 

 
Figure 2. Example of the crossover operator. Source: Vallada and 
Ruiz (2011). 

 
Figure 3. Pseudocode for the VNS procedure. 

After the crossover operator application, the 
individuals may suffer some kind of mutation: 
InsertMutation, SwapMutationDM and SwapMutationSM. 
These mutation operators are based on the use of the 
three neighborhood structures shown above Insertion, 
SwapDM and SwapSM, respectively. For each 
mutation operator, its respective neighborhood 
structure is applied 25 times to the selected individual. 

An individual may be subjected to mutation with 
a probability of 30%. If the mutation occurs, only 
one of the three operators shall be applied to the 
individual with a similar choice probability for all of 
them. A high mutation probability was purposely 
chosen in order to guarantee more diversity to the 
population during the evolution of the generations. 

After the application of genetic operators, the GA 
uses three local search methods to improve the 
current solution: LocalSearchInsert, 
LocalSearchSwapDM and LocalSearchSwapSM. A 
single individual may be sequentially subjected to 
the three local search procedures. Each procedure is 
applied with a probability of 50%. 

The individuals are reintegrated in the 
population according to the methodology applied by 
Vallada and Ruiz (2011): the children generated are 
accepted only when considered more capable 
(smaller makespan) than the worst individuals in the 
population. Therefore, generations evolve to better 
average makespan and maintain different solutions, 
which help to ensure diversity and to avoid 
premature convergence of the population. 

By means of computational tests, it was 
determined that the best stopping criterion should 
correspond to the algorithm performance until there 
is no improvement of the best solution of the 
population in ten consecutive generations. 

Variable Neighborhood Search (VNS) 

In order to create the initial solution for the VNS 
metaheuristics, the best solution generated in the 
GA initial population was used. This solution 
already has positive features, once it consists in the 
best result among a set of p solutions generated from 
a constructive heuristic, being p the size of the GA 
population. 

This study uses a variant of VNS metaheuristics 
in which the local search procedure is the Variable 
Neighborhood Descent (VND) (Hansen, 
Mladenovic, and Pérez, 2008). The VND uses three 
neighborhood structures, taken as search 
intensification mechanisms: LocalSearchInsert, 
LocalSearchSwapDM and LocalSearchSwapSM. When 
a neighbor does not show improvement over the 
current solution, the next neighborhood structure is 
used in the local optimum search. 

The metaheuristics VNS also uses three 
neighborhood structures, taken now as search 
diversification mechanisms: InsertMutation, 
SwapMutationDM and SwapMutationSM. These 
procedures are the same applied to the GA. For 
each mutation operator, its respective 
neighborhood structure is applied 25 times to the 
current solution. 
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Equivalently to the given GA application, the 
stopping criterion for the VNS metaheuristics is the 
performance of ten outer loops of the algorithm 
with no improvement for the current solution. Let 
S0 be the initial solution of the problem, Figure 3 
presents a summary of the pseudo-code for the VNS 
meta-heuristic. 

Experimentation 

Both proposed algorithms to solve the unrelated 
parallel machine-scheduling problem, with 
sequence and machine dependent of setup times 
were implemented in Pascal and compiled in 
Lazarus IDE version 1.2.4 environment. The 
experiments were performed in a machine with four 
Intel Core i5 processors 2.27 GHz with 4 GB of 
RAM. There was no parallelism of the experiments 
code for both algorithms, and Windows 7 was used 
as the operating system. 

As a computational representation of the solution 
for the algorithms implemented in this study, a m×n 
matrix E = [eij] was used, whose rows represent 
each of the m parallel machines. The tasks of each 
machine are inserted sequentially in the columns of 
the matrix according to the established processing 
order. When a machine is assigned as t tasks (t < n), 
the subsequent columns (n - t) for this machine are 
filled with numbers 0 (zero), indicating the absence 
of scheduled tasks. 

With the purpose to evaluating the efficiency of 
the algorithms, both metaheuristics were tested 
through a standardized set of input data. The 
processing time for each task (pij) was defined as 
integers randomly generated from a uniform 
distribution U [200, 600], whereas the preparation 
time (Sijk) considered integers generated from the 
distribution U [0, 150]. 

For the problem size, it was generated a set of 
instances with the combination of the number of 
machines m = {4, 6, 8, 10} and the number of tasks 
n = {50, 75, 100, 150}. 100 replications were 
generated for each combination of machine and task. 
Each of the instances was submitted to two 
resolution methods (the GA application and VNS 
metaheuristics), totaling 3.200 computational tests 
for comparison of the implemented algorithms. 

Results and discussion 

With the aim of showing a comparison 
between the computational results obtained by 
each of the metaheuristics, the data set averages 
were analyzed for each combination of machines 
and and tasks under three related aspects: 

makespan reduction, processing time, and time 
processing amplitude for each solution. 

According to the implementation of both 
algorithms, the GA and VNS metaheuristics have 
the same initial solution, which is best individual 
belonging of the GA initial population. Figure 4 
shows the computational results for all instances 
tested considering the makespan reduction. By 
analyzing Figure 5, it is possible to see that the VNS 
meta-heuristic achieved a better reduction in 
makespan value from the initial solution, and proved 
to have a better efficiency in achieving the problem 
objective. 

 

 
Figure 4. Average percentage of makespan reduction. 

Figure 5 shows the average time, in seconds, 
spent by both metaheuristics in order to perform all 
the application cases. As the initial solution used for 
the application of VNS metaheuristics corresponds 
to the best solution found from the previous 
generation of GA initial population, the time taken 
to generate the initial population is also considered 
in the runtime of the VNS algorithm. 

 

 
Figure 5. Average processing time. 

Based on the analysis of the processing time of 
both metaheuristics it is seen that the VNS 
algorithm obtained better results when compared to 
the GA. Data from Figure 5 show a reducing 
percentage of the processing time varying from 
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36.94% to 54.59%. It is reasonable to expect that the 
processing time of VNS meta-heuristic is lower than 
the GA due to its characteristics. The GA is based on 
population, and must process several individuals 
during each of its generations, which increases 
processing time. 

Considering the complexity of the 
metaheuristics and the settings of the computer used 
for experimentation, it is evidences that the time 
obtained for computational processing enables the 
practical application of the methods proposed in 
manufacturing environment.  

The graph on Figure 6 shows the average 
machines processing time amplitude among the 
machines of the cases tested for both GA and VNS 
metaheuristics. The solutions range is an important 
feature to be analyzed, since the scheduling goal is to 
reduce the makespan value, which implies a better 
distribution of tasks between the machines and, 
consequentely, closing the processing time of all of 
them (amplitude tends to zero). 

 

 
Figure 6. Average machines processing time amplitude for the set 
of solutions. 

Data in Figure 6 reinforce the better efficiency of 
VNS meta-heuristic when its results are compared 
with the results obtained by the GA. In all cases, 
regardless the problem size, the VNS meta-heuristic 
obtained better amplitudes for the machines 
processing time. This result is strictly related with 
the results in Figure 5, i.e., it shows that the lower 
makespan for VNS meta-heuristic is a consequence 
of a better distribution of tasks in the existing 
machines, which allows the reduction of the 
amplitude for the schedule. 

The data from Table 1 summarizes the results of 
the GA and VNS metaheuristics considering a direct 
and punctual comparison of each of the solutions 
obtained from the tested instances. Columns four, five 
and six of the table represent, for the entire set of 100 
events, the percentage of cases in which GA obtained 

lower makespan; the percentage of cases in which a 
VNS metaheuristics obtained lower makespan; and the 
percentage of cases in which the makespan found for 
both methods has the same value, respectively. 

Table 1. Ratio for best solution. 

#Mach. #Jobs Tested Instances 
Best Solution 

%AG %VNS-VND %Draw

4 

50 100 35 63 2 
75 100 16 84 0 

100 100 3 97 0 
150 100 1 99 0 

6 

50 100 34 66 0 
75 100 27 71 2 

100 100 7 93 0 
150 100 0 100 0 

8 

50 100 42 58 0 
75 100 28 71 1 

100 100 17 82 1 
150 100 1 99 0 

10 

50 100 35 62 3 
75 100 32 67 1 

100 100 19 81 0 
150 100 1 99 0 

 

The data in Table 1 indicate that the VNS meta-
heuristic always achieved higher percentage of 
solutions with lower makespan than the GA 
solutions. Considering the cases in which the 
problem size has little amount of tasks, the GA 
achieved a more significant percentage of better 
solutions. The interpretation of this result is the lack 
of GA adaptability when different sizes of the 
problem are considered. 

It should be highlighted that the fact that the 
VNS outperformed GA in large instances for the 
specific problem evaluated in this study does not 
mean that VNS is generally better than GA, but 
rather that the proposed GA algorithm parameters 
for the chosen problem may not be set appropriately 
(population size, mutation and crossover 
probabilities, etc.), what might have caused the GA 
inefficiency when applied to more complex 
problems. 

Conclusion  

The computational results showed different 
aspects of the solutions obtained by the two 
algorithms. The VNS meta-heuristic showed a 
better ability to improve the initial solution and 
flexibility concerning the problems size. Therefore, 
these metaheuristics allow a better distribution of 
existing tasks and reduce the amplitude of 
processing time of the parallel machines. In 
addition, the VNS algorithm showed better 
processing time when compared with GA, showing 
expressive results and execution time that enable its 
practical application in an industrial environment. 
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An evaluation and a test of the two developed 
metaheuristics are suggested in a further study, 
which shall consider different configuration 
parameters, such as the population size, a selection 
and update method of the GA population; 
neighborhood structures for the VNS and stopping 
criteria for both algorithms. Improvement and 
extensions in the current algorithms should also be 
considered. 

In addition, the application of the proposed 
methods for solving the unrelated parallel machine 
scheduling problem is suggested, with sequence and 
machine dependent setup time, as well as the 
evaluation of other performance measures, besides 
makespan. Therefore, additional features for 
scheduling may be coupled to the input data, 
allowing the investigation of other scheduling 
aspects, such as the minimization of the maximum 
delay for the tasks or the quantity of delayed tasks. It 
means that adjustments in the algorithm may 
consider multi-objective problems, in which several 
performance measures are simultaneously taken to 
analyze the results. 
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