
Acta Scientiarum

http://periodicos.uem.br/ojs/acta
ISSN on-line: 1807-8664
Doi: 10.4025/actascitechnol.v40i1.36607 TECHNOLOGICAL INFORMATION

Acta Scientiarum. Technology, v. 40, e36607, 2018

A genetic algorithm and variable neighborhood search for the
unrelated parallel machine scheduling problem with sequence
dependent setup time

Everton Tozzo, Syntia Lemos Cotrim, Edwin Vladimir Cardoza Galdamez and Gislaine Camila
Lapasini Leal*

Departamento de Engenharia de Produção, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil.
*Author for correspondence. E-mail: gclleal@uem.br

ABSTRACT. This paper presents the evaluation of two metaheuristics to solve the Unrelated Parallel
Machine Scheduling Problem with Sequence Machine Dependent Setup Time. Considering such a
problem, there is no relation between the time to process each task and the machine; and this is why the
machines are referred to as unrelated. Furthermore, the setup time between the executions of two tasks
depends on both, the task sequence and its associated machine. A metaheuristic genetic algorithm and a
variable neighborhood search were used in order to solve the problem due to the difference among their
characteristics. The maximal time for the schedule to be completed, also called makespan, was the
performance measure used to evaluate the solutions. The results obtained by both metaheuristics were
directly compared according to their performance to try to reduce this makespan. The results showed that
the variable neighborhood algorithm search outperformed the genetic algorithm regarding the solutions
quality and execution time.
Keywords: scheduling problem; machine scheduling; metaheuristic.

Algoritmo genético e busca em vizinhança variável para o problema de sequenciamento de
máquinas paralelas não-relacionadas com setup dependente da sequência

RESUMO. Este artigo avalia a aplicação de duas meta-heurísticas na resolução do problema de
escalonamento de máquinas paralelas não relacionadas com o tempo de preparação dependente da
sequência e máquina associada. Para esse problema, não existe relação entre a máquina e o tempo de
processamento de cada tarefa, por isso as máquinas são denominadas de não relacionadas. Além disso, o
tempo de preparação entre a execução de duas tarefas depende de ambos os processos - sequência das
tarefas e máquina a elas associadas. As meta-heurísticas algoritmo genético e busca em vizinhança variável
foram escolhidas para resolver o problema pela diferença existente entre suas características. A medida de
desempenho utilizada para avaliar as soluções é o tempo máximo para conclusão do escalonamento,
também denominado makespan. Os resultados obtidos por ambas as meta-heurísticas são diretamente
comparados de acordo com seu desempenho na tentativa de redução do makespan. Os resultados
demonstram que a busca em vizinhança variável obteve melhor desempenho comparado ao algoritmo
genético no que confere à qualidade das soluções e tempo de processamento.
Palavras-chave: problema de escalonamento; escalonamento de máquinas; metaheurísticas.

Introduction

The task scheduling is an important decision
problem at operational level, which appears in
different contexts in modern production systems. Its
main function is to determine what, when, how and
what resources should be used to operationalize the
industrial jobs. The sequencing of parallel machines
is necessary because several real systems have more
than one machine to perform the same set of
activities. This issue fits the sub-problems context
of greater complexity, such as a flow shop or a job

shop, whose set of workstations containing parallel
machines works simultaneously. According to Ying,
Lee, and Lin (2012), this is a common scenario in
current production systems, especially in the textile,
chemical, electronics, and implementation services,
as well as in the maintenance industry. In practice,
this problem is highly complex, not only because of
its dimension, but mainly because of the peculiar
features arising from the situation to be resolved.

Considering the theoretical aspects, the Parallel
Machine Scheduling Problem (PMSP) is considered
to be NP-hard, i.e., a polynomial algorithm capable

Page 2 of 10 Tozzo et al.

Acta Scientiarum. Technology, v. 40, e36607, 2018

of generating the optimal scheduling of machines in
an acceptable computational time is unlikely to exist.

Sioud, Gravel, and Gagné (2012) consider this
challenge as an incentive for the investigation of
heuristics that provide good solutions to the
problem, which allows the advancement of existing
algorithms.

Ravetti, Mateus, Rocha, and Pardalos (2007)
point out that the literature on PMSP is extensive.
However, the consideration of an environment with
unrelated parallel machines is not common,
especially when this problem is compared to the
amount of publications regarding either identical or
uniform machines. Lin, Pfund, and Fowler (2011)
emphasize the importance of the algorithms
developed for the PMSP with unrelated machines,
since it generalizes other problems.

The PMSP can be classified according to the
speed to process the tasks in each of the parallel
machines. Senthilkumar and Narayanan (2010)
classify the problem in three distinct categories: the
Identical Parallel Machine Scheduling Problem, the
Uniform Parallel Machine Scheduling Problem and
the Unrelated Parallel Machine Scheduling
Problem.

Several studies on the application of heuristics to
evaluate some performance purposes to solve the
unrelated PMSP are found in the literature. Glass,
Potts, and Shade (1994) conducted a comparison of
the metaheuristic genetic algorithms, in addition to
simulate an annealing and tabu search to reduce the
maximum completion time (makespan). Piersma
and Van Dijk (1996) suggested two new local search
methods with a neighborhood search referred to as
‘efficient’ to reduce the makespan. Peyro and Ruiz
(2010) also aimed to reduce the makespan by
addressing the problem through metaheuristics
based on an iterated greedy local search.

Lin et al. (2011) conducted a comparison of the
performance of several existing heuristics and
proposed a new meta-heuristic for the unrelated
PMSP. The authors compared the algorithms from
the perspective of three performance purposes
analyzed individually and together: ‘makespan’; the
total weighed completion time and the total weighed
tardiness. Lin, Lin, and Hsieh (2013) implemented
an ant colony optimization algorithm whose main
purpose was to reduce the total weighed tardiness.

As aforementioned, the unrelated PMSP is
common in industry, where the manufacturing
structure is composed of different machine
technologies. However, these differences usually
imply not only in distinct processing time for the
machines, but also in different preparation time
among the tasks according to the associated machine

and established sequence for the activities. This is
referred to as the unrelated parallel machine-
scheduling problem, with a sequence and machine
dependent on setup time. According to Vallada and
Ruiz (2011), the parallel machine scheduling
problem has widely been studied in the last decades
when compared to the case involving non-parallel
machines. However, the consideration of a sequence
dependent on setup time environment has not been
applicable until recently.

Kim, Kim, Jang, and Chen (2002) implemented
a simulated annealing algorithm for the unrelated
PMSP with a sequence dependent on setup time to
reduce the total tardiness. The authors consider a
variant of the problem where the setup time only
depends on the task sequence, but not on the
associated machine.

Among the studies that involve the application of
metaheuristics for the unrelated PMSP with
sequence and machine dependent setup time,
Logendran, McDonell, and Smucker (2011) solved
the problem with the aim of reducing the total
weighed tardiness. The authors considered a
dynamic task expedition and a dynamic availability
of machines in order to approximate the real
situation problem of several industries. Six types of
algorithms based on taboo search were
implemented. Ravetti et al. (2007) applied a
metaheuristics based on GRASP (Greedy
Randomized Adaptive Search Procedure) to reduce
makespan and weighed delays. Paula, Ravetti,
Mateus, and Pardalos (2007) used a Variable
Neighborhood Search Algorithm (VNS) with the
aim of reducing the makespan and weighed delays.
Chen and Chen (2009) proposed various hybrid
metaheuristics by integrating a Variable
Neighborhood Descent (VND) and a Taboo Search
to reduce the weighed number of tardy jobs. Chen
(2009) considered a heuristic to reduce the total
tardiness. Vallada and Ruiz (2011) proposed a
genetic algorithm to reduce the makespan
sequencing. Liao, Chang, Kuo, and Liao (2014)
reported five hybrid metaheuristics to solve the
problem by reducing the makespan: three hybrid
algorithms by ant colony and two hybrid simulated
annealing algorithms.

This paper aims at expanding research on the
resolution methods for the unrelated parallel
machine scheduling problem, with a sequence and
machine dependent on setup time by considering
the reduction of the maximum completion time
(makespan) as a performance measure. Therefore, a
direct comparison is carried out between the
performance measurements and the results shown
by two metaheuristics: a genetic algorithm and a

Unrelated parallel machine scheduling problem Page 3 of 10

Acta Scientiarum. Technology, v. 40, e36607, 2018

variable neighborhood search. These metaheuristics
were used due to the large difference among their
characteristics: the genetic algorithm is classified as a
meta-heuristic inspired by nature and based on
population, whereas the meta-heuristic VNS is not
inspired by nature and performs a punctual search
through several neighboring structures. These
peculiarities allow a complete diversification of the
resolution method for the same problem.

The present study is structured into seven
sections, in addition to this introduction. Section 2
characterizes the machine scheduling problem.
Section 3 shows the problem representation. Section
4 describes the local search methods, and Section 5
presents the two proposed algorithms to solve the
problem. Sections 6 and 7 address experimentation
and the results obtained, respectively. Finally,
Section 8 shows the final remarks, contributions and
considers further research.

Material and methods

A production system with parallel machines is
characterized by the availability of a set of m
machines, whether identical or not, which executes
a set of n tasks in a single production stage. The
purpose of the problem is to determine the best
sequencing for the tasks, considering not only the
set of tasks that should be allocated in each machine,
but also the order according to which these tasks
must be distributed to improve a particular
performance criteria.

The Unrelated Parallel Machine Scheduling Problem
with Sequence and Machine Dependent Setup Time
represents one of the classes derived from the
PMSP. In such a case, there is a set N = {1, ..., n} of
n tasks and a set M = {1, ..., m} of m unrelated
machines (m < n), with the following characteristics
(Eroglu, Ozmutlu, & Ozmutlu, 2014):

• Each task must be processed exactly once
by only one machine;

• Each task i has a pik processing time, which
depends on the machine k in which it will be
allocated. It is due to this characteristic that the
machines are referred to as unrelated;

• The setup time depends on both, the
sequence of tasks and their associated machine. Let
sijk be the setup time of machine k between
processing tasks i and j, in this order. So, the setup
time of machine k between tasks i and j is different
from the setup time of machine k between tasks j
and i, i.e., sijk ≠ sjik. In addition, the setup time
between tasks i and j in machine k is different from
the setup time between tasks i and j in machine h.
Therefore sijk ≠ sijh.

Different characteristics may be associated with
each of the processing tasks, such as availability date,
setup, preemption, precedence constraints,
machinery breakdowns, eligibility restrictions,
permutations, locks, recirculation, among others.

When n tasks are sequenced in m parallel
machines, each machine k has a different time Ck to
complete the processing of all the tasks associated
with it. The maximum completion time of all
machines is known as the makespan, represented by
Cmax = max1≤k≤m {Ck}. The makespan is the
completion time that will be consumed by the last
machine to complete its tasks, also called bottleneck
machine (Vallada & Ruiz, 2011). In other words, if
Ci is the completion time of job i, so the makespan
can also be represented by Cmax = max1≤i≤n {Ci}.

Given these characteristics, the unrelated PMSP
with sequence and machine dependent setup time
may be solved by the resolution of the binary
decision variable ݔ௜௝௞ , where ݔ௜௝௞ is 1 if job j is
immediately processed after job i on machine k
and	0 otherwise. In this case, ݔ଴௝௞ represents a job ݆
which is scheduled in the initial position on
machine k.

Let Ci be the completion time of job i, C0 the
completion time for a dummy initial job 0, and G a
very large positive number. Lin and Ying (2014)
formulated this problem as a mixed-integer
programming model:

௠௔௫ܥ	݊݅ܯ = .ݏ (1)		൛஼ೕൟ	ଵஸ௝ஸ௡ݔܽ݉ ௜௝௞ݔ෍෍ ݐ = 1		∀	݆	 ∈ ܰ	(2)௡
௜ୀ଴௜	ஷ௝

௠
௞ୀଵ

෍ݔ௢௝௞ = 1	∀	݇	 ∈ ௡(3)	ܯ
௝ୀଵ

෍ݔ௜௤௞௡
௜ୀ଴௜	ஷ௤ −	෍ ௤௝௞௡ݔ

௝ୀ଴௝	ஷ௤
= 	ݍ	∀	0 ∈ ܰ, 	ܭ	∀ ∈ 	(4)	ܯ

	଴ܥ = ௝ܥ (5)	0 − ൥ܥ௜ +෍ݔ௜௝௞ ൫ݏ௜௝௞ + ௝௞൯௠݌
௞ୀଵ + ܩ ൭෍ݔ௜௝௞௠

௞ୀଵ − 1൱൩	∀	݅= 0, . . , ݊		∀݆	 ∈ ௜௝௞ݔ (6)	ܰ 	∈ ሼ0,1ሽ	∀	݅ = 0,… , ݊	∀	݆	 ∈ ܰ	∀݇	 ∈ (7)	ܯ

Equation 1 represents the objective function of
the problem, i.e. the makespan minimization.
Equation 2 shows that each job is processed once

Page 4 of 10 Tozzo et al.

Acta Scientiarum. Technology, v. 40, e36607, 2018

and by only one machine. Equation 3 ensures that
only one job will be assigned to the first position on
each machine. Equation 4 guarantees that each job is
preceded and succeeded by no more than one job.
Equation 5 sets the completion time for the dummy
initial job. Equation 6 calculates the completion time
of job j, ensuring that the completion time of every
job is a non-negative value, and that no job should
either precede or succeed the same job. Equation 7
states the decision variable ݔ௜௝௞ type as a binary.

According to Pinedo (2008), the unrelated
parallel machine scheduling problem with sequence
and machine dependent setup times, whose purpose
is to reduce the maximum completion time of the
sequencing, can be denoted by R | Sijk | Cmax. In this
representation, R indicates the unrelated machines,
Sijk the setup time (depending on the machine and
the task execution order) and Cmax the makespan.

Based on these characteristics, the unrelated
parallel machine-scheduling problem with sequence
and machine dependent of setup times has the
following input data: the number of tasks, the
number of parallel machines, the task processing
time for each machine and the setup time of each
machine while running two consecutive tasks. From
the problem input data, a solution is generated by
the distribution of all tasks into the existing
machines, since all tasks assigned to the same
machine have a processing order.

Local search methods

The local search methods have widely been used
in applications involving metaheuristics for
improving current solution. In order to solve the
proposed problem, three local search methods are
applied, which are related to a specific neighborhood
structure based on either the movement exchange or
the relocation of tasks on the same machine or in
two different machines. The neighborhood
structures are:

(1) Insertion: withdrawal of a task to its original
position and insertion into a new position in a
different machine;

(2) SwapDM: position exchange between two
tasks a and b allocated in different machines;

(3) SwapSM: position exchange between two
tasks a and b allocated in the same machine.

Figure 1 shows an example of possible
movement exchanges to which an individual i can be
submitted after the application of each of the
neighborhood structures in random tasks belonging
to the scheduling. The number in each cell
represents a scheduled specific task. The lighter cells
correspond to the tasks that have changed position

due to the movements imposed by each of the
neighborhood structures.

Figure 1. Possible movements for the neighborhood structures.
Source: This research.

According to each of the neighborhood
structures, the following local search methods are
applied:

(1) LocalSearchInsert: it is based on the insertion
neighborhood structure and consists in an analysis
of the possibility of removing a task from a machine
and allocation it in all positions of the other existing
machines;

(2) LocalSearchSwapDM: it is based on the Swap
DM neighborhood structure, i.e., the analysis of the
possibility of exchanging the position of two tasks
belonging to different machines;

(3) LocalSearchSwapSM: based on the Swap SM
neighborhood structure, it analyses the possibility of
exchanging the position of two tasks belonging to
the same machine.

All the local search procedures use a strategy
referred to as First Improvement. It means that they
always perform an insertion/exchange movement
when the exchange simulation of a task is accepted.
For the LocalSearchSwapSM procedure, the exchange
movements are accepted in case the completion time
of the analyzed machine is reduced. For the
LocalSearchInsert and LocalSearchSwapDM
procedures, considering each pair of machines, the
insertion/exchange movement is accepted in the
following cases:

(1) If the new processing time of both machines
is reduced;

(2) If the processing time of one machine is
reduced and the processing time of the other
machine is increased; so the movement is accepted
in case the reduced time is higher than the increased
time or if the makespan value, considering the two
machines, suffers no elevation.

Unrelated parallel machine scheduling problem Page 5 of 10

Acta Scientiarum. Technology, v. 40, e36607, 2018

Whenever an insertion/exchange movement is
accepted (and hence, executed), the search begins
the insertion /exchange simulation for the schedule
subsequent task. The search only ends when a local
optimum is found, i.e., when the insertion/exchange
movements are no longer accepted for all
neighborhoods.

Proposed algorithm

The use of two metaheuristics was suggested:
Genetic Algorithm (GA) and Variable
Neighborhood Search (VNS). These metaheuristics
were chosen due to the difference between their
characteristics, which allows a diversification of the
method to solve the problem: GA is a population
nature-inspired meta-heuristic, whereas VNS
performs a punctual search through various
neighborhood structures. Thus, GA deals with
multiple solutions at each iteration, favoring
diversity, whereas VNS does not.

All parameters adopted for the genetic algorithm
and VNS were obtained through empirical
experiments. Moreover, with the aim of performing
a fair and independent comparison of the differences
between the two metaheuristics, strategies were used
to implement the algorithms and to analyze the
results obtained by them. The algorithms
parameters and the mentioned strategies will be
described in this section.

Genetic Algorithm (GA)

The main aspects of the Parallel Machines
Sequencing Problem (PMSP) is related to the GA
specific vocabulary: an individual corresponds to the
sequence and distribution of all tasks on existing
machines, their genes are each of its tasks, which
shall take values belonging to the set N = {1, ..., n}.
Finally, the fitness function consists in the makespan
of each individual.

Initially, a constructive heuristic was applied to
the development of individuals that belong to the
initial population. In this heuristic, for each
individual, the set of n jobs to be processed in
parallel machines are randomly ordered. Then, each
task is tested in all positions of all machines
(including the positions of the tasks already entered
on the same machine) and it is allocated in the
position that results the shortest makespan. This
procedure is performed for each individual until all
the initial population is built. The population size
defined for the GA proposed was of 50 individuals.

Roulette method was used for selecting the
individuals. Let mak(i) be the fitness function that
calculates the makespan of an individual i and p the
size of the GA population. Since the goal of the

problem is to reduce the makespan, then the function
f (i) used to determine the selection probability of an
individual i was calculated according to Equation 8.

 ݂(݅) = 	 1 ݉ܽ݇(݅)ൗ∑ ቀ1 ݉ܽ݇(݆)ൗ ቁ௣௝ିଵ 							(8)

From the application of Equation 8, all

individuals shall have a selection probability that is
inversely proportional to its makespan value. Ten
pairs of individuals are selected for each generation
in execution.

Once the ability is evaluated, two individuals are
selected (parents) and s the application of the genetic
operators begins. The crossover is the first operator to
be used. This operator is applied with a probability
given by a crossing rate of 100% and based on the
model proposed by Vallada and Ruiz (2011).

According to Vallada and Ruiz (2011), the
objective of the crossing operator is to generate two
good individuals (children) from both selected
parents. The ‘One Point Order Crossover’ is one of
the most used crossover operators, which is adapted
to the parallel machines scheduling problem. For
each machine, a p point is randomly selected in
Parent 1. Every task located from the first position to
position p is copied to the respective machine of
Child 1. Now, all the tasks located from position p +
1 to the last position is copied to the respective
machine of Child 2. After that, all tasks from Parent 2
that still do not belong to a particular child are
sequenced in it. In this process, the task is allocated
in the child in the same machine as the parent’s. The
tasks from Parent 2 are inserted in the position that
results in the lowest processing time for the machine
belonging to the child (which may reduce the
makespan for the individual, thus improving the
schedule).

Figure 2 shows an example of the crossover
operator considering two parallel machines and
eight tasks. In order to facilitate understanding, the
setup time between two tasks is not displayed and all
tasks are represented with the same size (which does
not mean that their processing time is equal).

Both parents are selected and a point p for each
machine is randomly assigned to Parent 1. In this
case p1 = 1 (machine 1) and p2 = 3 (machine 2).
Thus, Child 1 is formed with the tasks belonging to
Parent 1 from position 1 (task 5) of machine 1, and
the tasks from the position 1 to 3 (tasks 8, 2 and 3)
of machine 2. The Child 2 is formed with the tasks
belonging to the Parent 1 from position 2 to 3 (tasks
4 and 6) of machine 1, and the task of position 4 and

Page 6 of 10 Tozzo et al.

Acta Scientiarum. Technology, v. 40, e36607, 2018

5 (tasks 1 and 7) from machine 2. Figure 3b shows
that the tasks that belong to Parent 2, which have not
been assigned to any children yet, are inserted into
their respective machines. For Child 1, tasks 7, 4 and
6 are inserted into the machine 1 and the task 1 on
machine 2. For Child 2, tasks 2, 3 and 8 are inserted
into the machine 1 and task 5 is inserted into the
machine 2. Figure 3 represents the final state for
both children generated by the crossover operation.
It is seen that the tasks from Parent 2 are inserted in
the position that reduces the processing time for the
associated machine. For example, for the machine 1
of Child 2, the tasks were sequenced in the order (4,
2, 3, 6, 8). The original order in case this insertion
method was not applied would be (4, 6, 2, 3, 8).

Figure 2. Example of the crossover operator. Source: Vallada and
Ruiz (2011).

Figure 3. Pseudocode for the VNS procedure.

After the crossover operator application, the
individuals may suffer some kind of mutation:
InsertMutation, SwapMutationDM and SwapMutationSM.
These mutation operators are based on the use of the
three neighborhood structures shown above Insertion,
SwapDM and SwapSM, respectively. For each
mutation operator, its respective neighborhood
structure is applied 25 times to the selected individual.

An individual may be subjected to mutation with
a probability of 30%. If the mutation occurs, only
one of the three operators shall be applied to the
individual with a similar choice probability for all of
them. A high mutation probability was purposely
chosen in order to guarantee more diversity to the
population during the evolution of the generations.

After the application of genetic operators, the GA
uses three local search methods to improve the
current solution: LocalSearchInsert,
LocalSearchSwapDM and LocalSearchSwapSM. A
single individual may be sequentially subjected to
the three local search procedures. Each procedure is
applied with a probability of 50%.

The individuals are reintegrated in the
population according to the methodology applied by
Vallada and Ruiz (2011): the children generated are
accepted only when considered more capable
(smaller makespan) than the worst individuals in the
population. Therefore, generations evolve to better
average makespan and maintain different solutions,
which help to ensure diversity and to avoid
premature convergence of the population.

By means of computational tests, it was
determined that the best stopping criterion should
correspond to the algorithm performance until there
is no improvement of the best solution of the
population in ten consecutive generations.

Variable Neighborhood Search (VNS)

In order to create the initial solution for the VNS
metaheuristics, the best solution generated in the
GA initial population was used. This solution
already has positive features, once it consists in the
best result among a set of p solutions generated from
a constructive heuristic, being p the size of the GA
population.

This study uses a variant of VNS metaheuristics
in which the local search procedure is the Variable
Neighborhood Descent (VND) (Hansen,
Mladenovic, and Pérez, 2008). The VND uses three
neighborhood structures, taken as search
intensification mechanisms: LocalSearchInsert,
LocalSearchSwapDM and LocalSearchSwapSM. When
a neighbor does not show improvement over the
current solution, the next neighborhood structure is
used in the local optimum search.

The metaheuristics VNS also uses three
neighborhood structures, taken now as search
diversification mechanisms: InsertMutation,
SwapMutationDM and SwapMutationSM. These
procedures are the same applied to the GA. For
each mutation operator, its respective
neighborhood structure is applied 25 times to the
current solution.

Unrelated parallel machine scheduling problem Page 7 of 10

Acta Scientiarum. Technology, v. 40, e36607, 2018

Equivalently to the given GA application, the
stopping criterion for the VNS metaheuristics is the
performance of ten outer loops of the algorithm
with no improvement for the current solution. Let
S0 be the initial solution of the problem, Figure 3
presents a summary of the pseudo-code for the VNS
meta-heuristic.

Experimentation

Both proposed algorithms to solve the unrelated
parallel machine-scheduling problem, with
sequence and machine dependent of setup times
were implemented in Pascal and compiled in
Lazarus IDE version 1.2.4 environment. The
experiments were performed in a machine with four
Intel Core i5 processors 2.27 GHz with 4 GB of
RAM. There was no parallelism of the experiments
code for both algorithms, and Windows 7 was used
as the operating system.

As a computational representation of the solution
for the algorithms implemented in this study, a m×n
matrix E = [eij] was used, whose rows represent
each of the m parallel machines. The tasks of each
machine are inserted sequentially in the columns of
the matrix according to the established processing
order. When a machine is assigned as t tasks (t < n),
the subsequent columns (n - t) for this machine are
filled with numbers 0 (zero), indicating the absence
of scheduled tasks.

With the purpose to evaluating the efficiency of
the algorithms, both metaheuristics were tested
through a standardized set of input data. The
processing time for each task (pij) was defined as
integers randomly generated from a uniform
distribution U [200, 600], whereas the preparation
time (Sijk) considered integers generated from the
distribution U [0, 150].

For the problem size, it was generated a set of
instances with the combination of the number of
machines m = {4, 6, 8, 10} and the number of tasks
n = {50, 75, 100, 150}. 100 replications were
generated for each combination of machine and task.
Each of the instances was submitted to two
resolution methods (the GA application and VNS
metaheuristics), totaling 3.200 computational tests
for comparison of the implemented algorithms.

Results and discussion

With the aim of showing a comparison
between the computational results obtained by
each of the metaheuristics, the data set averages
were analyzed for each combination of machines
and and tasks under three related aspects:

makespan reduction, processing time, and time
processing amplitude for each solution.

According to the implementation of both
algorithms, the GA and VNS metaheuristics have
the same initial solution, which is best individual
belonging of the GA initial population. Figure 4
shows the computational results for all instances
tested considering the makespan reduction. By
analyzing Figure 5, it is possible to see that the VNS
meta-heuristic achieved a better reduction in
makespan value from the initial solution, and proved
to have a better efficiency in achieving the problem
objective.

Figure 4. Average percentage of makespan reduction.

Figure 5 shows the average time, in seconds,
spent by both metaheuristics in order to perform all
the application cases. As the initial solution used for
the application of VNS metaheuristics corresponds
to the best solution found from the previous
generation of GA initial population, the time taken
to generate the initial population is also considered
in the runtime of the VNS algorithm.

Figure 5. Average processing time.

Based on the analysis of the processing time of
both metaheuristics it is seen that the VNS
algorithm obtained better results when compared to
the GA. Data from Figure 5 show a reducing
percentage of the processing time varying from

Page 8 of 10 Tozzo et al.

Acta Scientiarum. Technology, v. 40, e36607, 2018

36.94% to 54.59%. It is reasonable to expect that the
processing time of VNS meta-heuristic is lower than
the GA due to its characteristics. The GA is based on
population, and must process several individuals
during each of its generations, which increases
processing time.

Considering the complexity of the
metaheuristics and the settings of the computer used
for experimentation, it is evidences that the time
obtained for computational processing enables the
practical application of the methods proposed in
manufacturing environment.

The graph on Figure 6 shows the average
machines processing time amplitude among the
machines of the cases tested for both GA and VNS
metaheuristics. The solutions range is an important
feature to be analyzed, since the scheduling goal is to
reduce the makespan value, which implies a better
distribution of tasks between the machines and,
consequentely, closing the processing time of all of
them (amplitude tends to zero).

Figure 6. Average machines processing time amplitude for the set
of solutions.

Data in Figure 6 reinforce the better efficiency of
VNS meta-heuristic when its results are compared
with the results obtained by the GA. In all cases,
regardless the problem size, the VNS meta-heuristic
obtained better amplitudes for the machines
processing time. This result is strictly related with
the results in Figure 5, i.e., it shows that the lower
makespan for VNS meta-heuristic is a consequence
of a better distribution of tasks in the existing
machines, which allows the reduction of the
amplitude for the schedule.

The data from Table 1 summarizes the results of
the GA and VNS metaheuristics considering a direct
and punctual comparison of each of the solutions
obtained from the tested instances. Columns four, five
and six of the table represent, for the entire set of 100
events, the percentage of cases in which GA obtained

lower makespan; the percentage of cases in which a
VNS metaheuristics obtained lower makespan; and the
percentage of cases in which the makespan found for
both methods has the same value, respectively.

Table 1. Ratio for best solution.

#Mach. #Jobs Tested Instances
Best Solution

%AG %VNS-VND %Draw

4

50 100 35 63 2
75 100 16 84 0

100 100 3 97 0
150 100 1 99 0

6

50 100 34 66 0
75 100 27 71 2

100 100 7 93 0
150 100 0 100 0

8

50 100 42 58 0
75 100 28 71 1

100 100 17 82 1
150 100 1 99 0

10

50 100 35 62 3
75 100 32 67 1

100 100 19 81 0
150 100 1 99 0

The data in Table 1 indicate that the VNS meta-
heuristic always achieved higher percentage of
solutions with lower makespan than the GA
solutions. Considering the cases in which the
problem size has little amount of tasks, the GA
achieved a more significant percentage of better
solutions. The interpretation of this result is the lack
of GA adaptability when different sizes of the
problem are considered.

It should be highlighted that the fact that the
VNS outperformed GA in large instances for the
specific problem evaluated in this study does not
mean that VNS is generally better than GA, but
rather that the proposed GA algorithm parameters
for the chosen problem may not be set appropriately
(population size, mutation and crossover
probabilities, etc.), what might have caused the GA
inefficiency when applied to more complex
problems.

Conclusion

The computational results showed different
aspects of the solutions obtained by the two
algorithms. The VNS meta-heuristic showed a
better ability to improve the initial solution and
flexibility concerning the problems size. Therefore,
these metaheuristics allow a better distribution of
existing tasks and reduce the amplitude of
processing time of the parallel machines. In
addition, the VNS algorithm showed better
processing time when compared with GA, showing
expressive results and execution time that enable its
practical application in an industrial environment.

Unrelated parallel machine scheduling problem Page 9 of 10

Acta Scientiarum. Technology, v. 40, e36607, 2018

An evaluation and a test of the two developed
metaheuristics are suggested in a further study,
which shall consider different configuration
parameters, such as the population size, a selection
and update method of the GA population;
neighborhood structures for the VNS and stopping
criteria for both algorithms. Improvement and
extensions in the current algorithms should also be
considered.

In addition, the application of the proposed
methods for solving the unrelated parallel machine
scheduling problem is suggested, with sequence and
machine dependent setup time, as well as the
evaluation of other performance measures, besides
makespan. Therefore, additional features for
scheduling may be coupled to the input data,
allowing the investigation of other scheduling
aspects, such as the minimization of the maximum
delay for the tasks or the quantity of delayed tasks. It
means that adjustments in the algorithm may
consider multi-objective problems, in which several
performance measures are simultaneously taken to
analyze the results.

References

Chen, C. L., & Chen, C. L. (2009). Hybrid metaheuristics
for unrelated parallel machine scheduling with
sequence-dependent setup times. International Journal of
Advanced Manufacturing Technology, 43, 161-169. doi:
10.1007/s00170-008-1692-1

Chen, J. F. (2009). Scheduling on unrelated parallel
machines with Sequence and Machine-dependent
setup times and due-date constraints. International
Journal of Advanced Manufacturing Technology, 44(11-12),
1204-1212. doi: 10.1007/s00170-008-1917-3

Eroglu, D. Y., Ozmutlu, H. C., & Ozmutlu, S. (2014).
Genetic algorithm with local search for the unrelated
parallel machine scheduling problem with sequence-
dependent set-up times. International Journal of
Production Research, 52(19), 5481-5856. doi:
10.1080/00207543.2014.920966

Glass, C. A., Potts, C. N., & Shade, P. (1994). Unrelated
parallel machine scheduling using local search.
Mathematical and Computer Modeling, 20(2), 41-52. doi:
10.1016/0895-7177(94)90205-4

Hansen, P., Mladenovic, N., & Pérez, J. A. M. (2008).
Variable neighbourhood search: methods and
applications. A Quarterly Journal of Operations Research,
6(4), 319-360. doi: 10.1007/s10479-009-0657-6

Kim, D. W., Kim, K. H., Jang, W., & Chen, F. F. (2002).
Unrelated parallel machine scheduling with setup
times using simulated annealing. Robotics and
Computer-Integrated Manufacturing, 18(3-4), 223-231.
doi: 10.1016/S0736-5845(02)00013-3

Liao, T. W., Chang, P. C., Kuo, R. J., & Liao, C. J. (2014).
A comparison of five hybrid metaheuristic algorithms
for unrelated parallel-machine scheduling and
inbound trucks sequencing in multi-door cross
docking systems. Applied Soft Computing Journal, 21,
180-193. doi: 10.1016/j.asoc.2014.02.026

Lin, C. W., Lin, Y. K., & Hsieh, H. T. (2013). Ant colony
optimization for unrelated parallel machine
scheduling. The International Journal of Advanced
Manufacturing Technology, 67(1-4), 35-45. doi:
10.1007/s00170-013-4766-7

Lin, S., & Ying, K. (2014). ABC-based manufacturing
scheduling for unrelated parallel machines with
machine-dependent and job sequence-dependent
setup times. Computers & Operations Research, 51,
172-181. doi: 10.1016/j.cor.2014.05.013

Lin, Y. K., Pfund, M. E., & Fowler, J. W. (2011).
Heuristics for minimizing regular performance
measures in unrelated parallel machine scheduling
problems. Computers and Operations Research, 38(6),
901-916. doi: 10.1016/j.cor.2010.08.018

Logendran, R., McDonell, B., & Smucker, B. (2011).
Scheduling unrelated parallel machines with
sequence-dependent setup times. Computers and
Operations Research, 81(9-12), 1487-1496. doi:
10.1016/j.cor.2006.02.006

Paula, M. R., Ravetti, M. G., Mateus, G. R., & Pardalos, P.
M. (2007). Solving parallel machines scheduling
problems with sequence-dependent setup times using
variable neighbourhood search. IMA Journal of
Management Mathematics, 18(2), 101-115. doi:
10.1093/imaman/dpm016

Peyro, L. F., & Ruiz, R. (2010). Iterated greedy local
search methods for unrelated parallel machine
scheduling. European Journal of Operational Research,
207(1), 55-69. doi: 10.1016/j.ejor.2010.03.030

Piersma, N., & Van Dijk, W. (1996). A local search
heuristic for unrelated parallel machine scheduling
with efficient neighborhood search. Mathematical and
Computer Modelling, 24(9), 11-19. doi: 10.1016/0895-
7177(96)00150-1

Pinedo, M. L. (2008). Scheduling: theory, algorithms, and
systems (3rd ed.). Springer, OK: Springer.

Ravetti, M. G., Mateus, G. R., Rocha, P. L., & Pardalos, P.
M. (2007). A scheduling problem with unrelated
parallel machines and sequence dependent setups.
International Journal of Operational Research, 2(4),
380-399. doi: 10.1504/IJOR.2007.014169

Senthilkumar, P., & Narayanan, S. (2010). Literature
review of single machine scheduling problem with
uniform parallel machines. Intelligent Information
Management, 2(8), 457-474. doi:
10.4236/iim.2010.28056

Sioud, A., Gravel, M., & Gagné, C. (2012). A hybrid
genetic algorithm for the single machine scheduling
problem with sequence-dependent setup times.

Page 10 of 10 Tozzo et al.

Acta Scientiarum. Technology, v. 40, e36607, 2018

Computers & Operations Research, 39(10), 2415-2424.
doi: 10.1016/j.cor.2011.12.017

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the
unrelated parallel machine scheduling problem with
sequence dependent setup times. European Journal of
Operational Research, 211(3), 612-622. doi:
10.1016/j.ejor.2011.01.011

Ying, K. C., Lee, Z. J., & Lin, S. W. (2012). Makespan
minimization for scheduling unrelated parallel
machines with setup times. Journal of Intelligent

Manufacturing, 23(5), 1795-1803. doi: 10.1007/s10845-
010-0483-3

Received on April 7, 2017.
Accepted on June 13, 2017.

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

