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ABSTRACT. This work presents a hybrid approach called GA-NN for solving the Capacitated Vehicle 
Routing Problem (CVRP) using Genetic Algorithms (GA) and Nearest Neighbor heuristic (NN). The 
first technique was applied to determine the groups of customers to be served by the vehicles while the 
second is responsible to build the route of each vehicle. In addition, the heuristics of Gillett & Miller (GM) 
and Downhill (DH) were used, respectively, to generate the initial population of GA and to refine the 
solutions provided by GA. In the results section, we firstly present experiments demonstrating the 
performance of the NN heuristic for solving the Shortest Path and Traveling Salesman problems. The 
results obtained in such experiments constitute the main motivation for proposing the GA-NN. The 
second experimental study shows that the proposed hybrid approach achieved good solutions for instances 
of CVRP widely known in the literature, with low computational cost. It also allowed us to evidence that 
the use of GM and DH helped the hybrid GA-NN to converge on promising points in the search space, 
with a small number of generations. 
Keywords: capacitated vehicle routing problem; genetic algorithms; nearest neighbor; Gillett & Miller; downhill; 

complex networks. 

Uma abordagem híbrida baseada em algoritmo genético e heurística do vizinho mais 
próximo para solução do problema de roteamento de veículos capacitado 

RESUMO. Neste trabalho é apresentada uma abordagem híbrida denominada AG−VMP para solução do 
Problema de Roteamento de Veículos Capacitado (PRVC) empregando Algoritmo Genético (AG) e 
heurística do Vizinho Mais Próximo (VMP). A primeira técnica foi empregada para determinar os grupos 
de clientes a serem atendidos pelos veículos, enquanto a segunda é responsável por construir a rota que 
cada veículo deve percorrer. Em adição, foram utilizados a heurística de Gillett & Miller (GM) e o 
algoritmo Descida de Encosta (DE), respectivamente, para geração da população inicial do AG e para o 
refinamento das soluções providas por ele. Na seção de resultados, primeiro apresentamos experimentos 
que demostram o desempenho da heurística VMP na resolução dos problemas de Caminho Mínimo (CM) 
e Caixeiro Viajante (CV), os quais constituem a principal motivação para a proposição do AG-VMP. Os 
resultados dos experimentos com a abordagem híbrida demonstraram que ela é capaz de fornecer boas 
soluções para instâncias do PRVC amplamente conhecidas na literatura, com baixo custo computacional. 
Tais experimentos também permitiram evidenciar que o uso de GM e DE ajudou o AG−VMP convergir 
para pontos promissores no espaço de soluções, com um pequeno número de gerações. 
Palavras-chave: problema de roteamento de veículos capacitado; algoritmo genético; heurística do vizinho mais 

próximo; Gillett & Miller; algoritmo descida de encosta; redes complexas. 

Introduction 

The Vehicle Routing Problem (VRP) consists in 
defining the routes that a set of vehicles must follow 
to supply the demand of certain customers, 
respecting the operational restrictions imposed by 
the context in which the problem is inserted 
(Laporte, Gendreaub, Potvinb, & Semetc, 2000). 

In recent years, the VRP has attracted an 
increasing attention from  researchers due to the 
great difficulty of its solution and its presence in 

various practical situations (Cordeau, Laporte, 
Potvin, & Savelsbergh, 2007). In consequence, 
there has been great effort to develop more 
robust, agile and flexible algorithms that can be 
modeled according to the scenario that describes 
the problem. 

The VRP has several variants, which take into 
account the capacity (each vehicle has a specific 
capacity), time windows (customers are taken care of 
in time), vehicle fleet heterogeneous (distinct 
vehicles), and multiple depots (vehicles can come 
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from different deposits (distribution centers) 
(Mandal, Pacciarelli, Lokketangen, & Hasle, 2015).  

The Capacitated Vehicle Routing Problem 
(CVRP) is a variant of the VRP, and it consists, 
basically, in determining the routes to be followed 
by a fleet of homogeneous vehicles (in terms of 
capacity), to serve a given number of customers, 
without violating the capacities of the vehicles (Lee 
& Nazif, 2011). 

The CVRP belongs to the class of NP-hard 
problems, which usually require non-polynomial-
time algorithms for their solutions. In other words, 
the difficulty in finding the optimal solution for 
CVRP grows exponentially as the number of clients 
increases. Thus, the CVRP has been usually solved 
with the use of heuristic and metaheuristic 
algorithms such as Gillett & Miller (Gillett & Miller, 
1974), Clarke and Wright (Laporte et al., 2000), 
Tabu Search, Particle Swarm Optimization, and 
Genetic Algorithms (Lu & Yu 2012).  

Reeves (1993) defines heuristic as a technique 
that although does not guarantee optimal solutions, 
it is able to find good solutions (sub-optimal in most 
cases) with feasible computational time. The 
metaheuristics, in turn, are characterized by guiding 
a set of heuristics and have been particularly useful 
in solving complex optimization problems. 
Heuristic and metaheuristic are more flexible than 
the exact algorithms to operate with more 
complicated and realistic objective functions and 
restrictions. 

The choice of algorithm for solving VRP is a 
process of extreme importance, seeing that a well-
defined algorithm can provide a better relation 
between the cost and benefit to define the routing. 
Thus, from all the existing techniques for solving 
the VRP, the Genetic Algorithms (GA) stand out by 
its versatility of construction, and the good results 
that it has been demonstrated in solving of complex 
problems, including VRP, as can be seen in Lee and 
Nazif, (2011); Tasan and Gen (2011); Ursani, 
Essam, Comforth, and Stocker (2011); Lu and Yu 
(2012); Kuo, Zulvia, and Suryadi (2012); Vidal, 
Crainic, Gendreau, Lahrichi, and Rei (2012); Reiter 
and Gutjahr (2012); Osaba, Diaz, and Oniera, 
(2014); Santiciolli et al. (2015).  

For Laporte et al. (2000), a research trend is the 
development of simplest, fast and robust 
metaheuristics that even with some prejudice to the 
quality of the solutions, allowing their incorporation 
into commercial packages.  

In this sense, this paper presents a hybrid 
approach to solve CVRP using Genetic Algorithms 
(GA) and the following heuristics: Nearest 

Neighbor (NN), Gillett & Miller (GM), and 
Downhill (DH). The NN heuristic consists of a 
greedy strategy that is coupled to GA for building 
the route of each vehicle in the solution. The second 
and third heuristics are employed, respectively, to: 
(i) generate solutions that are included in the initial 
population of GA, starting it with some feasible 
solutions, and (ii) refine the solutions generated by 
the GA-NN approach, after a certain number of 
generations without improvement.  

In the experimental study, we demonstrated the 
efficiency of the NN for CVRP. It was applied it on 
the solution of Shortest Path Problem (SPP) and 
Traveling Salesman Problem (TSP). In these 
experiments, it was analyzed the influence of three 
complex networks coefficients (average clustering, 
average shortest path, network size) in the 
performance of NN, considering 2490 graphs. It 
was observed that NN performance improves as the 
average clustering coefficient of network (graph) 
increases. Thus, we could make sure that its use 
coupled to GA is a suitable alternative, since the all 
graphs of the instances from TSPLIB1 considered in 
this work have clustering coefficients with 
maximum value. 

The obtained results, compared with the best 
results found in the literature, indicate that proposed 
approach achieved good solutions for CVRP, with 
low computational cost. In addition, it was 
evidenced that the use of GM and DH improved the 
hybrid GA-NN to converge quickly on promising 
points in the search space. 

Material and methods 

This section presents, firstly, a brief description 
on the considered problems (SPP, TSP, CVRP and 
Complex Networks) and techniques (GA, NN, GM 
and DH). After that, the methodology for 
conducting the experiments is presented. 

Shortest Path Problem (SPP) 

The SPP consists in determining a path between 
a pair of points (origin and a destination) with 
shortest distance (Cormen, Leiserson, & Stein, 
2001). In general, this problem is represented by a 
graph with several paths to be evaluated, which 
represents a computational difficulty. Thus, many 
researches have focused on the development of 
efficient algorithms to solve it. SPP is present in 
several areas such as computer networks, games, 
water and gas distribution, transport logistic, among 
others. In computer networks, for example, the SPP 
                                                           
1 TSPLIB is a public library of sample instances for the TSP, CVRP and related 
problems from various sources and of various types. It is available in: 
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ 
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consists of a routing task, in which information is 
transferred from a source to a destination following 
the shortest available path available (Cormen  
et al., 2001). There are many algorithms for SPP 
solution, many of them based on greedy strategies. 

Traveling Salesman Problem (TSP) 

According to Helsgaun (2006), the TSP is one of 
the most well-known and intensely studied 
combinatorial optimization problem in history. It 
was one of the first types of routing problem to be 
studied. TSP consists of finding the smallest 
possible route, from the point of origin, in order to 
travel through a set of cities (points) and return to 
the origin, visiting each city exactly once. In other 
words, the objective of the TSP is to find in a graph 
G = (V, E), in which V are the set of vertices and E 
the set of edges, the path with the shortest cost so 
that all the vertices are visited only once.  

To problems of this type, the optimal solution 
could be found by enumerating all possible 
solutions, but even with the technological advance 
in the last decades, it becomes unfeasible as the 
number of vertices increases. In this sense, to solve 
practical problems, where there is a high number of 
vertices, heuristic and metaheuristics algorithms are 
normally used to obtain good solutions in an 
acceptable computational time. In this paper, for 
example, Nearest Neighbor (NN) was used to solve 
it.  

Capacitated Vehicle Routing Problem (CVRP) 

According to Cunha (2000), routing problems 
can be seen as a problem of multiple traveling 
salesman with restriction of capacity (for example, 
each traveling salesman can only carry a limited 
capacity of objects). The CVRP is the classic version 
of VRP and consists of finding a set of routes, where 
each route is traveled by a vehicle, with the objective 
to minimize the total cost of determined routes, 
respecting the following restrictions: (1) Each route 
must start and finish at the distribution center; (2) 
Each customer must be visited just once; (3) The 
sum of the customers' demands included in a route 
cannot exceed the vehicle’s capacity. 

Let G = (V, E) be a graph in which V = 0,…,n 
is a set of vertices that represent the customers 
and E the set of edges that connects customers to 
each other and to distribution center. To each 
edge (vi, vj) is associated a cost cij. A set of K 
identical vehicles with capacity cv is allocated to 
the distribution center (v0). Each customer vi has a 
demand di and the demand of distribution center 
is defined as d0 = 0. Mathematically the CVRP 
can be expressed as follows Equation 1 to 8: 
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where:  
di: demand of customer vi; k: vehicle; K: set of 
vehicles; S: set of customers; nc: number of 
customers; m(S): minimum number of vehicles to 
attend S; cv: capacity of vehicles; cij: cost of the path 
from the customer i to customer j; tc: total cost of 
the routes; xijk: path from the customer i to customer 
j with vehicle k. 

Equation 2 ensures that K vehicles will be used 
starting from the distribution center, while the 
Equation 3 guarantees that each route has its 
beginning and ending at the distribution center. 
Equation 4 defines that customers must be attended 
only once and the Equation 5 keeps the flow 
ensuring that the vehicle arrives at a customer and 
out of it, preventing the route ends prematurely. 
The Equation 6 prevents the formulation of routes 
which do not include the distribution center. In this 
restriction, m(S) represents the minimum number 
of vehicles required to attend a set of customers S. 

To ensure that the number of vehicles used to 
attend the customers of set S is not less than m(S), 
the restriction 6 establishes, indirectly, that the 
capacity of vehicle is not exceeded. However, to let 
it explicit, the Equation 7 is used to formulate the 
capacity restriction. The Equation 9 is used to 
evaluate the solutions generated by the proposed 
approach. It reflects the value of the objective 
function (OF) and involves the number of vehicles 
used in the solution, violated restrictions (Equation 2 
to 7) and the total cost of routes (Equation 1). 
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tcnrWKWOF rv ++= )()(  (9)
 

where:  
Wv is the weight assigned to the number of vehicles 
used in the solution; nr is the Number of violated 
restrictions and Wr is the weight given to the 
violated restrictions. 

Complex networks 

Many situations may be mathematically modeled 
by a network (or graph). Nodes that are connected 
by edges express a wide range of problems. For 
instance: the network formed by authors (nodes) 
and the works they published together (edges); 
computers (nodes) and network computers (edges); 
individuals (nodes) and the contact they make with 
each other during a certain period (edges). However, 
regular networks seem not to represent the 
dynamics of such problems, with complex networks, 
which have random characteristics, being used more 
frequently (Barabasi, 2003). 

The approach proposed by Erdös and Rényi 
(1959) started with random networks: given N 
nodes, a fraction p of the possible edges link the 
nodes. Then, considering a regular network with all 
nodes connected to m nearest neighbors, a fraction p 
of the connections is rewired, allowing long-distance 
nodes being connected, but maintaining average 
small distances between nodes. This process forms 
networks called small-world, proposed by Watts and 
Strogatz, in 1998 (Watts & Strogatz, 1998). 
Topological parameters of small-world networks are 
similar to real networks formed by individuals in a 
population (Boccaletti, Latorab, Chavezf, & 
Hwanga, 2006). Moreover, some real networks also 
present a power law distribution in the degree 
(number of connections) distribution, that is, highly 
connected nodes are more likely to receive new 
edges. This is a scale-free network property 
(Bollobás, Riordan, Spencer, & Tusnády, 2001), also 
present in Barabási-Albert networks, whose 
formation is based on richer get richer rule (Albert 
& Barabási, 2002).  

Usually, the most important topological 
parameters to analyze a network are: average 
clustering coefficient, which is the average 
percentage of connections between neighbors of 
each node; average shortest path, which is the 
average shortest path between any two nodes of the 
network; degree distribution and network size 
(Newman, 2010). 

Genetic Algorithm (GA) 

GA is a population-based optimization method 
on the Charles Darwin’s theory of species evolution. 

It is inspired by natural selection model and can be 
understood as a process where the most adapted 
individuals have a greater chance of surviving in an 
adverse environment (Goldberg, 1989). Each new 
generation is constituted from the most adapted 
individuals who pass on, consequently, their 
characteristics to their descendants, aiming at the 
preservation of acquired qualities. This process 
happens in a cyclical way so that each new 
generation is better than previous generation. 
Usually an objective function is used to calculate the 
aptitude (fitness) of an individual.  

Thus, GA artificially applies the principles of the 
evolutional process proposed by Charles Darwin, 
with the objective of optimizing a search technique 
in the search space, seeking a solution of good 
quality. 

In a GA population, an individual (or 
chromosome), represents a possible solution to the 
investigated optimization problem. The 
chromosome is usually represented by a bit string in 
which the genes (chromosome substrings) are 
associated with the decision variables of the problem 
and each bit represents an allele of the chromosome. 
In the beginning, the population is randomly 
generated and then it evolves by means of applying 
GA operators (selection, crossover, and mutation). 
In the selection operation, a percentage of best 
candidates are selected to be crossed, generating a 
new population. In other words, the genetic material 
of best chromosomes is mixed to generate the 
individuals of the next population. Several selection 
methods have been proposed in the literature. The 
most common are roulette wheel, tournament and 
ranking. In the latter, for example, only a portion of 
chromosomes with better fitness are selected to 
generate a new population. The mutation is 
responsible for randomly changing a small portion 
of the alleles (usually defined by a percentage) 
aiming to preserve the diversity of the population, 
that is, to avoid that individuals of population 
become too similar to each other (Goldberg, 1989). 
In fact, the mutation is the key point of the genetic 
algorithm to avoid local minimum (or maximum) 
points. 

It is worth emphasizing that the great challenge 
in the use of GA is to choose well its configuration 
parameters, which include the selection method and 
the mutation rate. In addition, despite its good 
performance in solving optimization problems, 
there may be some difficulty for GA to find optimal 
or sub-optimal solutions, especially in more 
complex problems such as CVRP. In these cases, a 
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good alternative is the use of a local search algorithm 
to refine the solutions found by the GA. 

Nearest Neighbor heuristic (NN) 

According to Cormen et al. (2001), the 
constructive heuristic of Nearest Neighbor works 
basically starting the solution from the origin vertex 
and adding to the route the vertex closest to the last 
vertex added, finalizing the algorithm when all the 
vertices are visited (in the case of TSP) or the 
destination vertex is found [in the case of (SPP)].  

The NN algorithm is easy to implement and run 
quickly, but sometimes it may lose shorter routes, 
which are easily noticed by human vision because of 
its ‘greedy’ nature. As a general guide, if the last 
steps of the route are comparable in length to that of 
the first steps, the course is reasonable; but if they 
are much larger, it means that there are much better 
routes. 

Downhill Heuristic (DH) 

The Downhill algorithm is one of the most basic 
local search techniques (uses a heuristic function for 
making locally optimal choices). At each step of the 
algorithm, the solution generated by the current 
state is replaced by the solution represented by its 
best neighbor. If we consider, for example, a two-
dimensional solution space, the neighbors of a 
solution (x, y) could be (x+1, y), (x-1, y), (x, y+1) 
and (x, y-1). 

The algorithm closes when it does not find a 
neighbor better than that represented by the current 
state (Russel & Norvig, 1995). Due to its 
characteristics of local search, DH is widely used to 
refine solutions generated by metaheuristic 
algorithms.  

The use of a local search algorithm such as DH 
presupposes, in addition to an evaluation function, a 
methodology for generating the neighbors of a 
solution, which is important for the success of the 
approach. A methodology that generates many 
neighbors can lead to an excessive increase of the 
computational cost of the algorithm. 

Gillett & Miller heuristic (GM) 

The GM algorithm (Gillett & Miller, 1974) is 
based on the notion of economies and is a two-stage 
heuristic (Cluster first, Route second) widely used 
for solving Vehicle Routing Problems. GM solves 
the VRP as follows: in the first stage, the vertices 
(costumers) are clustered using some criterion of 
proximity and performing the savings calculations. 

Then, the sequence of visitation for each group of 
vertices is obtained by solving the TSP using, for 
example, the NN algorithm. 

Methodology for conducting the experiments 

In this work, two experiments were conducted. 
The first set of experiments consist of analyzing the 
influence of three complex networks coefficients 
(average clustering, average shortest path, network 
size) on the performance of NN applied to solve 
SPP and TSP, considering a total of 2,490 complex 
networks (graphs) with different topologies (Small 
Word, Barabasi Albert, Scale Free and Erdös & 
Rényi). We have considered the following intervals 
for the coefficients: average clustering (from 0.1 to 
1.0), average shortest path (from 1.0 to 2.5) and 
network size (from 5 to 10). In order to allow the 
comparison of the results obtained by NN for SPP 
and TSP, the optimal solutions were obtained for 
each graph using, respectively, Dijkstra and 
exhaustive search algorithms. In addition, it was 
considered that a solution would be suboptimal 
when it had a gap of up to 10% in relation to the 
optimal solution. 

The second set of experiments was conducted to 
evaluate the performance of proposed GA-NN 
approach for solving the CVRP, considering a set of 
16 instances from Christofides2 and TSPLIB3 
libraries, with up to 30 customers. The results 
obtained by GA-NN were compared with the best 
results found in the literature.  

For the development of GA-NN approach, the 
programming language C/C++ and GAlib4 library 
was employed. The GAlib is a free library widely used 
in solving combinatorial optimization problems. In all 
experiments we used a desktop computer with the 
following configuration: Intel Celeron 2955U−1.40 
GHz processor; 4 GB of RAM; Windows 7 Ultimate 
32-bits operating system.  

Results and discussion 

Analysis of the influence of complex network coefficients 
on the performance of NN 

Table 1 presents the results obtained in 
preliminary experiments conducted to demonstrate 
the influence of average clustering, average shortest 
path and network size coefficients in the 
performance of NN when it is applied to solve SPP 
and TSP.  
                                                           
2Available in: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/ 
3Available in: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/vrp/ 
4Available in: http://lancet.mit.edu/ga/ 
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Table 1. Percentage of optimal and sub-optimal solutions 
obtained by NN with relation to network coefficients. 

Coefficient Interval 
Optimal and sub-optimal solutions 

SPP TSP 

Average clustering  
0.00 – 0.33 52.24% 5.77% 
0.34 – 0.66 56.23% 18.02% 
0.67 – 1.00 61.57 % 43.53% 

Average shortest path 
1 – 1.46 61.26% 39.56% 

1.47 – 1.93 55.10% 8.85% 
1.94 – 2.5 47.11% - 

Network size 
5 – 6  67.73% 42.86% 
7 – 8  61.00% 4.16% 
9 – 10 53.56% 4.16% 

 

As we can be seen in Table 1, the performance of 
NN heuristic for both problems (SPP and TSP) 
improves as the clustering coefficient increases. 
Thus, it is possible to consider that the average 
clustering coefficient directly influences the 
performance of NN. This information was essential 
because we could make sure that the use of NN 
coupled to GA is a good alternative for solving 
CVRP, since the all graphs from Christofides and 
TSPLIB instances have average clustering 
coefficients equal to 1. Concerning to average 
shortest path and network size coefficients, the 
observed behavior indicates that the performance of 
NN is better in small graphs and/or small paths. 

Proposed GA-NN 

In the proposed approach, the chromosome of 
GA (Figure 1) represents just the set of customers 
that must be attended by each vehicle, while the 
sequence or order of visits to customers (route) is 
solved by the NN algorithm.  

 

 
Figure 1. Chromosome representation of the GA. 

As illustrated in Figure 1, the chromosome 
consists of a binary matrix of N rows by M columns, 
where n represents the number of vehicles and M 
the number of costumes. So, alleles (array elements) 
with a value of 1 in each line indicate the customers 
that will be attended by a vehicle.  

The configuration parameters of GA were 
defined empirically as follows: Chromosome 
encoding = Binary Matrix; Population Size = 1200; 
Population subset for refinement (R) = 1/3 of the 
population; Number of generations without 
improvement (gw) = 30; Number of Generations 
(used as stop criterion) = 5000; Population rate of 
replacement = 80%; Elitism (%) = 20; Crossover 
rate (%) = 80; Selection Method = Roulette; Rate 

of Mutation (%) = 1%; Type of Mutation = Flip-
bit. Concerning the mutation, 1% of the alleles from 
population, randomly selected, will have their values 
changed. The flip-bit operation means that if the 
original allele value is 1, it will be switched to zero, 
and vice versa. 

In the refinement process by DH algorithm, the 
neighborhood of a current state (solution) is generated 
by shifting the elements of chromosome's matrix in a 
circular manner along the dimension M (left and 
right). Thus, at each iteration of DH algorithm, only 
two neighbor solutions are examined. 

The sequence of techniques of proposed GA-
NN approach is illustrated in Figure 2. 

For evaluating the proposed approach, ten tests 
for each instance were conducted and the results 
obtained were compared with the best solutions 
found in the literature. 

To evaluate the quality of the obtained solutions, 
we employed a measure called GAP, widely used in 
the literature to express how far the result obtained 
for a problem is from the best result reported in the 
literature for that problem. In our case, GAP = 
(OF*-OF_Best)/OF_Best, being OF* the best 
solution obtained by GA-NN and OF_Best the best 
solution reported in the literature. In addition, the 
average of the objective function (OF) values 
obtained in the 10 tests (OF_Med), the standard 
deviation of OF values (OFσ), the computation time 
and the best solution (OF*) obtained by GA-NN, 
for each instance, are also presented in Table 2. 

From Table 2, we can observe that the approach 
enabled promising results. The maximum GAP has 
not exceeded 18 and 62.5% of the instances showed 
a GAP less than 5%. Regarding the stability, in 
62.5% of instances the GA-NN presented the 
maximum standard deviation (OFσ) up to 10, 
indicating its good performance. 

With respect to computational cost, as can be 
seen in Table 2, the processing time is ranging from 
27 s for smaller instance (Eil7) to 140 s for larger 
instance (E-Eil30 n30-k3). 

Experiments considering GA-NN with and 
without the use of heuristics GM and DH were also 
performed as follows: GA-NN = Only Genetic 
Algorithm/Nearest Neighbor (without the use of 
heuristics); GA-NN/DH = Genetic 
Algorithm/Nearest Neighbor + Downhill; GA-
NN/GM = Genetic Algorithm/Nearest Neighbor 
+ Gillett & Miller; GM = only Gillett & Miller; 
GA-NN/DH/GM = Genetic Algorithm/Nearest 
Neighbor + Gillett & Miller + Downhill; These 
results are presented in Table 3 and Figure 2. 
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Figure 2. Sequence of techniques employed in the proposed approach. 

Table 2. Results of experiments with the proposed approach. 

Source Instance nc K OF_best 
Proposed approach 

OF* OF_Med GAP OFσ Time (s) 

TSPLIB 

Eil7 7 2 114 114 114 0% 0 27 
Eil13 13 4 290 290 296 0% 5 40 
Eil22 22 4 375 375 429 0% 24 90 
Eil23 23 5 875 886 886 1% 0 100 
Eil30 30 3 545 562 582 4% 10 140 

Christofides 

P-n16-k8 16 8 450 450 468 0% 21 50 
P-n19-k2 19 2 212 220 224 4% 2 60 
P-n20-k2 20 2 216 225 230 5% 4 70 
P-n21-k2 21 2 211 223 223 6% 1 80 

P-n202-k2 22 2 216 222 232 2% 4 90 
P-n22-k8 22 8 590 642 686 9% 29 90 
P-n23-k8 23 8 529 538 565 2% 0 100 
E-n13-k4 13 4 247 290 295 18% 4 40 
E-n22-k4 22 4 375 398 453 7% 19 90 
E-n23-k3 23 3 569 569 583 0% 21 100 
E-n30-k3 30 3 534 574 617 8% 25 140 
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Figure 3. Convergence of GA throughout the generations for solving the Eil30 instance, with and without the use of heuristics. 

Table 3. Results of the experiments with and without the use of heuristics GM and DH. 

Source Instance Fbest GM GA-NN GA-NN/ 
GM 

GA-NN/ 
DH 

GA-NN/ 
GM/DH 

TSPLIB 

Eil7 114 114 114 114 114 114 
Eil13 290 332 340 308 334 290 
Eil22 375 573 624 472 385 375 
Eil23 875 1039 1074 1012 984 886 
Eil30 545 795 765 750 676 562 

Christofides 

P-n16-k8 450 474 532 462 450 450 
P-n19-k2 212 296 288 253 245 220 
P-n20-k2 216 273 282 255 242 225 
P-n21-k2 211 271 249 249 230 223 
P-n22-k2 216 271 352 268 244 222 
P-n22-k8 590 635 722 618 630 642 
P-n23-k8 529 553 675 542 542 538 
E-n13-k4 247 332 302 302 290 290 
E-n22-k4 375 522 502 472 460 398 
E-n23-k3 569 762 822 690 569 569 
E-n30-k3 534 792 884 687 574 574 

Average GAP (%) 26.6 33.0 17.0 10.0 3.9 
 

These results indicate that, in general, the use 
of the proposed approach shows better results 
when employing heuristics GM and DH coupled 
to GA-NN. These results indicate that the 
utilization of these heuristics assists the GA-NN 
to converge on promising points in the search 
space, with a smaller number of generations, as 
illustrated in Figure 2. 

In summary, it can be observed in Figure 2 that 
when GA-NN is using DH its convergence is much 
faster, which leads it to a decrease the computational 
cost. However, it should be noted that the neighbor 
structure used in DH plays a crucial role in the local 
search. In our experiments, to explore the 
neighborhood of a solution, we just shift the 
elements of chromosome. This operation, although 
fast, can generate a high number of infeasible 
solutions. Thus, further investigations using, for 
example using k-opt operators, may bring 
improvements to GA-NN. 

Conclusion  

The first contribution of this study consists of 
the experiments with NN for solving SPP and TSP, 
which demonstrates that NN heuristic can produce 
great solutions for CVRP in networks presenting 
high clustering coefficients. Another important 
contribution was the second set of experiments, in 
which we demonstrated that the proposed GA-NN 
obtained good results for the instances used, 
considering the quality of solutions and 
computational time. Through these experiments it 
was also possible to demonstrate that Gillett & 
Miller and Downhill heuristics helped the GA to 
converge on promising points in the search space 
with a small number of generations. 

In this sense, the proposed GA-NN represents a 
great alternative to be employed in applications that 
can be used in daily business operations. As future 
work, we intend to investigate other techniques to 
obtain feasible solutions for composing the initial 
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population of the GA, such as Clarke & Wright 
algorithm; to investigate other types of 
neighborhood structures for the refinement of 
solutions, for example the 2-Opt and 3-Opt 
operators and, finally, to apply the GA-NN in other 
instances from the literature, well as in real 
scenarios, aiming to evaluate its applicability in a 
commercial software. 
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