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ABSTRACT. This study analyzed the behavior of daily rainfall in the State of Paraíba using the data from 
five meteorological stations distributed across the mesoregions of this state. We used the three-state 
Markov Chain model, in which states are defined as dry, wet and rainy. We calculated transition 
probabilities among states, probabilities of equilibrium of states, and expected lengths of the defined 
states for all stations and seasons to investigate spatial/seasonal variability. Results showed that for the 
entire region and for all seasons, the probability of dry days is greater than the probability of rainy days; 
expected values of rainy spells are low, indicating that the rainfall regime in Paraíba is characterized by 
high rainfall intensity distributed over short rainy periods. The dry-dry transition probability presents the 
highest values for all seasons and stations, as well as the corresponding expected dry spell length, 
indicating that this region is subjected to prolonged dry periods. The transition probabilities that lead to 
dry condition are higher in the interior of the State, while probabilities that lead to rainy condition are 
higher in the coastal region as well as the probability of rainy days, which is greater in fall, during the 
rainy season. 
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Introduction 

Depletion of water resources in different parts of the world is one of the renowned environmental 
problems of this century. Thus, an essential aspect of water resources planning is the analysis of long-term 
records of hydro−meteorological variables. As a primary input to the hydrological cycle, rainfall represents 
the potential availability of water resources of an area (Maruyama, Kawachi, & Singh, 2005). The knowledge 
about the daily rainfall distribution is fairly crucial for water use practices and future planning in agriculture 
(planting, irrigation and drainage), civil defense (risk of landslide, forest fires or floods), and hydrology 
(river flow estimation, sediment transport) (Cull, Hearn, & Smith, 1981; Ingram, Roncoli, & Kirshen, 2002; 
Seeger et al., 2004; Pereira, Trigo, Camara, Pereira, & Leite, 2005; Collischonn, Haas, Andreolli, & Tucci, 
2005; Minder, Roe, & Montgomery, 2009; Guhathakurta, Sreejith, & Menon, 2011). 

A variety of models has been proposed for simulating daily rainfall and its spatial pattern (Richardson, 1981; 
Wilks, 1998; Serinaldi, 2010; Asong, Khaliq, & Wheater, 2016; Müller & Haberlandt, 2016). The first order two 
state (‘rain’ and ‘no rain’) Markov model was applied on Tel Aviv daily rainfall data by Gabriel and Neuman 
(1962) and since then Markov chain models including multistate (Haan, Allen, & Street, 1976; Pegram, 2009) 
higher order (Lana & Burgueño, 1998; Deni, Jemain, & Ibrahim, 2009), hidden Markov model (Hughes, Guttorp, 
& Charles, 1999; Robertson, Kirshner, & Smyth, 2004) and non-homogeneous Markov model (Rajagopalan, Lall, 
& Tarboton, 1996) were widely used for modeling daily occurrence of precipitation. 

The Northeast of Brazil has mostly a semi-arid climate. It is characterized by high seasonal and 
interannual rainfall variability, with extreme wet and dry episodes. Seasonal variation is associated with the 
migration and intensity of the Intertropical convergent zone (ITCZ) and South American monsoon system 
(Sams). During the rainy season which occurs in February-April, the Atlantic ITCZ reaches its southernmost 
position and directly overlies NE Brazil, merging with the Sams, which moves northward. For most of year, 
the climate is semiarid under the influence of the South Atlantic subtropical anticyclone (Robertson  
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et al., 2004). Interannual variability of rainfall with severe droughts (excessive rainfall) occur when the 
southward seasonal migration of the ITCZ is inhibited (amplified) (Hastenrath & Heller, 1977). The 
interannual behavior of the Atlantic ITCZ is related to El Niño - Southern Oscillation (Enso) in the 
equatorial Indo-Pacific Ocean and the meridional sea surface temperature gradient (Mgrad) over the 
tropical Atlantic (see e.g. Lucena, Servain, & Gomes Filho, 2011; and references therein). During the 
positive-El Niño (negative La Niña) phase of Enso, there is a tendency for the inhibition (reinforcement) of 
the convective system over the west tropical Atlantic leading to less (more) rainfall over Northeast Brazil. 
During a negative phase of Mgrad, which is characterized by a negative SST (sea surface temperature) 
anomaly in the north tropical Atlantic and a positive SST anomaly in the south, there is a thermal gradient 
directed towards the Southern Hemisphere, the intertropical convergence zone (ITCZ) moves southward of 
its normal climatological position leading to increased rainfall over Northeast Brazil. This effect is reversed 
during a positive phase of Mgrad, the regular ITCZ moves northward and the rainfall rate is below the 
average in Northeast Brazil (Hastenrath, 1990; Wagner, 1996). The largest ITCZ displacements occur in Enso 
years in which preexisting Atlantic SST anomalies are such that they amplify the direct impact of Enso 
(Giannini, Saravanan, & Chang, 2004), which can lead to dramatic drought in the region with serious 
environmental, economic and social consequences (Marengo, Torres, & Alves, 2016). Rainfall spatial and 
temporal patterns in NEB were extensively studied, however most of the studies concentrate on interior dry 
region (Hastenrath, 1990; Uvo, Repelli, Zebiak, & Kushnir, 1998; Moscati & Gan, 2007; Hastenrath, 2012; 
Rao, Franchito, Santo, & Gan, 2016), while the knowledge of rainfall characteristics of eastern and southern 
part remain less complete (Chaves & Cavalcanti, 2001; Lyra, Oliveira-Júnior, & Zeri, 2014). 

This study aimed to provide further insight into the pattern of rainfall distribution in the Brazilian 
northeast, specifically the State of Paraíba with a large part (about 80% of total territory) located in the so 
called ‘semiarid polygon’, making it extremely vulnerable to rainfall seasonal and interannual variability 
(Silva, Costa, Campos, & Dantas, 2009). We define three daily weather conditions (dry, wet and rainy) by 
using appropriate rainfall threshold and employ Markov chain to determine the probability of transitions 
between these states, equilibrium probability of each state and expected lengths of dry, wet and rainy spells. 
These results are then used to perform an analysis of temporal and spatial variability of rainfall. 

Material and methods 

Study area 
Paraíba is a State in the Northeast of Brazil, located between the parallels 6º 2’ 24” S and 8º 18’ 36” S and 

meridians 34º 49’ 48” W and 38º 46’ 12” W, it borders the States of Pernambuco, Rio Grande do Norte and 
Ceará, limiting to the east with the Atlantic Ocean. The State is divided into four geographic mesoregions: 
Mata Paraibana (5.242 km2), Agreste (12.914 km2), Borborema (15.572 km2) and Sertão (22.720 km2). In most 
of its territory, Paraíba has a semi-arid climate, characterized by high seasonal and interannual rainfall 
variability and experiences extreme wet and dry conditions. Historically, Paraíba has a short rainy season, 
which usually occurs from April to June in Mata Paraibana, from March to May in Agreste and Borborema 
and from January to March, in Sertão (Soares, Paz, & Piccilli, 2016). The study area (State of Paraíba with 
division into four mesoregions) is shown in Figure 1. 

 
Figure 1. The map of the State of Paraíba divided into mesoregions.  
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Data on daily rainfall in Paraíba for twenty years from January 1, 1995, to December 31, 2015, for five 
meteorological stations (João Pessoa, Areia, Campina Grande, Monteiro and Patos), which are distributed 
over all mesoregions were collected from Brazilian National Institute of Meteorology (Instituto Nacional de 
Meteorologia - Inmet) and are available at http://www.inmet.gov.br/. The daily rainfalls for the four 
(nominal) season periods of summer (Dec 21-Mar 20), fall (Mar 20-Jun 21), winter (Jun 21-Sep 22) and 
spring (Sep 22-Dec 21), were separated and analyzed to investigate spatial and seasonal variability. There 
are no missing observations in the entire daily rainfall data set recorded. All statistical analyses were run 
using the statistical software R. (R Core Team, 2016). 

Markov chain 

Markov chain models have been widely used for simulating discrete time series. Some applications 
include vegetation dynamics (Balzter, 2000), hydrological processes (Schoof & Pryor, 2008; Fu, Li, & Huang, 
2012), wind speed (Shamshad, Bawadi, Hussin, Majid, & Sanusi, 2005) and urban growth (Le Gallo & 
Chasco, 2008). Markov chain models can vary in two properties: the number of states (different values that 
the variable can assume) and the order (number of previous values used to determine the state-to-state 
transition probabilities) (Schoof & Pryor, 2008).  

Ratan and Venugopal (2013) report that the Indian Meteorological Department uses 2.5 mm as a 
threshold to define a rainy day. However, daily rainfall less than 5.0 mm is ineffective as this amount of 
rain would evaporate before entering the ground (Ali & Mubarak, 2017). Therefore, rainfall would only 
humidify the surface. This would be beneficial initially only for plantations of superficial or medium 
roots, e.g., onion and wheat, respectively (Ali & Mubarak, 2017). In this way, we use 2.5 and 5.0 mm 
cut-off point. 

In this work, we used first order three-state Markov chain to study the behavior of rainfall 
occurrence in Paraíba. The states used were: dry (݀), wet (ݓ) and rainy (ݎ). A day was considered dry (݀) 
if rainfall occurrence on that day was at most 2.50 mm; wet (ݓ) if rainfall occurrence was between 2.51 
and 5.00 mm and, rainy (ݎ) if rainfall was more than 5.00 mm. The probability of the rainfall process 
being in a particular state was calculated based on the first order Markov chain assumption that the 
current day's rainfall depends only on the preceding day’s rainfall (Garg & Singh, 2010). The transition 
probability matrix is defined as ௜ܲ௝ ≡ ܲሺ݆|݅), where ݅, ݆ ∈ ܵ (ܵ	 = 	 {݀, ,ݓ  is the state space) and is listed in{ݎ
Table 1. 

The transition probabilities are defined as follows: ௗܲௗ 	= 	ܲሺ݀|݀)is the probability of a dry day preceded 
by a dry day, ௗܲ௪ 	= 	ܲሺݓ|݀)is the probability of a wet day preceded by a dry day, ௗܲ௥ 	= 	ܲሺݎ|݀) is the 
probability of a rainy day preceded by a dry day, and so on. The sum of probabilities of each row equals 
unity: ௗܲௗ + ௗܲ௪ + ௗܲ௥ 	= 	1, ௪ܲௗ + ௪ܲ௪ + ௪ܲ௥ 	= 	1 and ௥ܲௗ + ௥ܲ௪ + ௥ܲ௥ 	= 	1.  

Estimation for Markov Chains 

The transition probability matrix is generally unknown and should be estimated through observations. In 
the literature, some methods for estimating the transition probabilities are: Maximum Likelihood Estimator 
(MLE), Bootstrap Method, Smoothed Estimators, Lagrange Multipliers (Zhang, Wang, & Zhang, 2014). Here, 
we used the MLE. 

Let ݊,݉ ∈ ܰ, with ݊,݉ ≥ 1. Define ܵ	 = 	 {1, … ,݉}. Consider ଵܺ௡ 	= 	 { ଵܺ, … , ܺ௡} a sequence of random 
variables such that ௜ܲ௝ 	= 	ܲሺܺ௧ାଵ 	= 	݆ ∨ ܺ௧ 	= 	݅) is independent from ݐ, ∀݅, ݆߳ܵ. Therefore, the sequence 	ଵܺ௡ 	= 	 { ଵܺ, … , ܺ௡} is a Markov chain with state space ܵ and transition probability ௜ܲ௝∀݅, ݆߳ܵ, subjected to ∑ ௜ܲ௝௠௝	ୀ	ଵ 	= 	1 and 0 ≤ ௜ܲ௝ ≤ 1. 

Taking a sample from the chain ݔଵ௡ 	= 	 ,ଵݔ} … , ଵܺ௡	 ௡}, we have the realization of the random variableݔ 	= 	 { ଵܺ, … , ܺ௡} with probability ܲሺ ଵܺ௡ 	= 	 (ଵ௡ݔ 	= 	ܲሺ ଵܺ 	= ∏(ଵݔ	 ܲሺܺ௧ 	= 	 ଶ	ୀ	௧|௡௧ݔ ܺ௧ିଵ 	= 	   .௧ିଵݔ
Let ߠ	 = 	 ൛ ௜ܲ௝, ∀݅, ݆ ∈ ܵൟ. Its likelihood function is given by ܮሺߠ) 	= 	ܲሺݔଵ; ∏(ߠ ∏ ௜ܲ௝௡೔ೕ௠௝	ୀ	ଵ௠௜	ୀ	ଵ  and 	ܮሺߠ) 	= (ߠሺܮ݃݋݈	 	= ;ଵݔሺܲ݃݋݈	 (ߠ + ∑ ݊௜௝௜௝ ݃݋݈ ௜ܲ௝, subjected to ∑ ௜ܲ௝ 	= 	1௝ . We must choose a probability of any 
transition to express it in terms of others, say ௜ܲଵ 	= 	1 − ∑ ௜ܲ௝௡௝	ୀ	ଶ . Applying the derivative in ܮሺߠ) in relation 
to ௜ܲ௝, we have ߲ܮ ߲ ௜ܲ௝⁄ 	= 	݊௜௝ ௜ܲ௝⁄ − ݊௜ଵ ௜ܲଵ 	= 	0 →⁄ ݊௜௝ ܲ̂௜௝⁄ 	= 	݊௜ଵ ܲ̂௜ଵ⁄ → ݊௜௝ ݊௜ଵ⁄ 	= 	 ܲ̂௜௝ ܲ̂௜ଵ⁄ . As it is true for all ݆ ≠ 1, then ܲ̂௜௝ ∝ ݊௜௝. Therefore, the probabilities ௜ܲ௝ , ݅, ݆	 = 	݀, ,ݓ  can be estimated from the corresponding ݎ
observed absolute frequencies ݊௜௝ of days being in a particular state ݆ preceded by a state ݅, as the maximum 
likelihood estimators (MLE) of ௜ܲ௝ , ሺ݅, ݆	 = 	݀, ,ݓ are given by ܲ̂௜௝ (ݎ 	= 	݊௜௝ ∑ ݊௜௝௠௝	ୀ	ଵ⁄ . Craig and Sendi (2002) 
suggest Efron’s bootstrap as a method to construct confidence intervals for transition probability matrix 
functions. 
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Table 1. Transition probability matrix for three-state Markov chain. 

 Present Day (݆) 
  dry (݀) wet (ݓ) rainy (ݎ) 

Previous Day (݅) dry (݀) ௗܲௗ ௗܲ௪ ௗܲ௥
wet (ݓ) ௪ܲௗ ௪ܲ௪ ௪ܲ௥
rainy (ݎ) ௥ܲௗ ௥ܲ௪ ௥ܲ௥

 

Goodness-of-fit test 

In order to model rainfall dynamics in Paraíba using Markov chain, we first tested the validity of the 
proposed three-state Markov chain approach: the null hypothesis	ܪ଴: Rainfall occurrences on consecutive 
days are independent, vs. alternative hypothesis ܪଵ: Rainfall occurrences on consecutive days are not 
independent. This test is used to verify if the behavior of the rainfall can be explained by the model 
proposed: a Markov chain of three-states of order 1, i.e., rainfall occurrence on successive days is not 
independent (Garg & Singh, 2010). For three-state Markov chain, Wang and Martiz (1990) suggested a WS 
test statistics, given by Equation 1.  ܹܵ	 = 	 ஺ା஻ିଵඥ௏ሺ஺ା஻ିଵ)	→݀	ܰሺ0,1) (1) 

where: ܣ	 = 	 ௗܲௗ + ௪ܲ௪ + ௥ܲ௥, 	ܤ = 	 ௥ܲௗ ௗܲ௥ + ௪ܲ௥ ௥ܲ௪ + ௗܲ௪ ௪ܲௗ − ௗܲௗ ௪ܲ௪ − ௗܲௗ ௥ܲ௥ − ௪ܲ௪ ௥ܲ௥. The variance of (ܣ + ܤ − 1) 
in (Equation 1) is given by ܸሺܣ + ܤ − 1) 	= ଷ݌ଶ݌ଵ݌2	 ቀ ଵ௡೏௡ೢ + ଵ௡ೢ௡ೝ + ଵ௡ೝ௡೏ቁ , ݊ௗ, ݊௪, ݊௥, are numbers of dry, wet, 

and rainy days and ݌ଵ,	݌ଶ and ݌ଷ are the stationary probabilities, which are calculated as 	݌ଵ 	= 	 ሾሺ1 + (݌ + ሺ1 + (ݏ ݌ ⁄ݍ ሿିଵ, ଶ݌ 	= 	 ሾݎ + ݏ݌ ⁄ݍ ሿ݌ଵ and ݌ଷ 	= 	 ሾ݌ ⁄ݍ ሿ݌ଵ where ݌	 = 	 ቂ ௗܲ௥ + ௉ೢ ೝሺଵି௉೏೏)௉ೢ೏ ቃ ቀ ଵଵି௉ೝೝቁ , 	ݍ = 	1 + ቂ ௉ೢ ೝ௉ೝ೏௉ೢ೏ሺଵି௉ೝೝ)ቃ ; 	ݎ = 	 ቀ ௉೏ೢଵି௉ೢ ೢቁ , 	ݏ = 	 ቀ ௉ೝೢଵି௉ೢ ೢቁ. 
According to the test procedures, critical region is |WS|௖ ≥ ܼఈ at ߙ level of significance i.e. the null 

hypothesis is rejected if |ܹܵ| ≥ ܼఈ, where ܼఈ is the 100 (1 −  lower percentage point of a standard normal (ߙ
distribution (Garg & Singh, 2010). 

Equilibrium probabilities  

The equilibrium probabilities ߨௗ,ߨ௪ and ߨ௥ (of a dry, wet and rainy day, respectively) are found by solving 
the stationary matrix equation (Garg & Singh, 2010). This means that the probability of being in any state 
will not change over time. This indicates that the transition matrix will stabilize the values of its elements 
in the long term, i.e., there is a limit such that ݈݅݉௡→ஶ ௜ܲ௝ሺ௡) 	= ௝ߨ	 > 0 where the ߨ௝ satisfy only the following 
stable state equations ߨ௝ 	= 	∑ ଵ	ୀ	௜௠௜ߨ ௜ܲ௝ to ݆	 = 	1, … ,݉. Then Equation 2:  

ሺߨௗߨ௪ߨ௥) 	= 	 ሺߨௗߨ௪ߨ௥) ൭ ௗܲௗ ௗܲ௪ ௗܲ௥௪ܲௗ ௪ܲ௪ ௪ܲ௥௥ܲௗ ௥ܲ௪ ௥ܲ௥ ൱ (2) 

so that the estimators of the long run equilibrium probabilities are given by solving the linear system of 
equations ߨௗ 	= ௗߨ	 ௗܲௗ + ௪ߨ ௪ܲௗ + ௥ߨ ௥ܲௗ, ௪ߨ 	= ௗߨ	 ௗܲ௪ + ௪ߨ ௪ܲ௪ + ௥ߨ ௥ܲ௪and ߨ௥ 	= ௗߨ	 ௗܲ௥ + ௪ߨ ௪ܲ௥ + ௥ߨ ௥ܲ௥, 
together with the probability normalization condition ߨௗ + ௪ߨ + ௥ߨ 	= 	1. 

Distribution of events and expected length of dry, wet and rainy spells 

Given a discretized series of days for the amount of rainfall each day, the distribution separating events 
follows a negative binomial distribution (Longley, 1953). Let ݎ > 0 and ݌	߳	ሺ0, 1). A random variable ܺ has 
the negative binomial distribution ܺ~ܰܤ	ሺݎ, 	if ܲሺܺ (݌ = 	݇) 	= 	 ݎሺ߁} + ݇ − 1) ⁄{(ሺ݇߁(ݎሺ߁ ௥ሺ1݌ − 	݇	 ,௞ିଵ(݌ = 	1,2, … The expected length of different spells is calculated as follows (Garg & Singh, 2010). The 
probability of dry spell of length ݀ (a sequence of ݀ consecutive dry days preceded and followed by wet or 
rainy days) is ݌ሺ݀) 	= 	 ሺ ௗܲௗ)஽ିଵሺ1 − ௗܲௗ). The expected length of dry spell is given by ܧሺܦ) 	= 	1 ሺ1 − ௗܲௗ)⁄ . 
The expected length of dry spell is given by ܧሺܦ) 	= 	1 ሺ1 − ௗܲௗ)⁄ . Equivalently, the probability of a wet spell 
of length ݓ (a sequence of ݓ consecutive wet days preceded and followed by dry or rainy days) is 	݌ሺݓ) 	= 	 ሺ ௪ܲ௪)ௐିଵሺ1 − ௪ܲ௪) with the expected length of wet spell given by ܧሺܹ) 	= 	1 ሺ1 − ௪ܲ௪)⁄ . The 
probability of a rainy spell of length ݎ (a sequence of ݎ consecutive rainy days preceded and followed by dry 
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or wet days) is ݌ሺݎ) 	= 	 ሺ ௥ܲ௥)ோିଵሺ1 − ௥ܲ௥) with the expected length of rainy spell given by ܧሺܴ) 	= 	1 ሺ1 − ௥ܲ௥)⁄ . 
Finally, the weather Cycle (WC) is defined as ܧሺܹܥ) 	= (ܦሺܧ	 + (ሺܹܧ +  .(ሺܴܧ

Results and discussion 

Table 2 lists the geographic information about stations used in this study and descriptive statistics for 
1995-2015 daily data. 

It is seen in Table 2 that the coastal region of Paraíba (João Pessoa station) receives most rain (highest 
mean value), while Sertão (Pato station) is affected by the strongest wet episodes (highest maximum value). 
Table 3 presents the linear correlations and distances (km) in a straight line between the stations. When 
distance increases, linear correlation decreases among rainfall time series. 

The hypothesis of dependence of rainfall occurrences on successive days is tested independently for the 
four seasons (fall, winter, spring, summer), and the estimated values of WS statistics (1) for the four seasons 
and their p-values are presented in Table 4. 

The results of goodness-of-fit test (Table 4) show that rainfall occurrences on consecutive days in 
Paraíba for each of the four seasons are dependent (p < 0.05), satisfying a major property of the Markov 
chain model, except for Patos station for winter season (p = 0.3276). This occurs because there was no 
transition of the typeݓ → ݎ and ݓ →  .in winterݓ

Table 5 lists the estimated equilibrium state probabilities, the expected length of different spells, the weather 
cycle, and the total number of days, for each season for five Paraíba’s stations. It is seen in Table 5 that for the 
stations located in Mata Paraíbana (João Pessoa), Agreste (Areias and Campina Grande) and Borborema 
(Monteiro), the probability of rainy days is greatest in fall, during the rainy season, with the highest value for João 
Pessoa station (~35%), located in the coastal region. Patos station is located in Sertão with the rainy season in 
summer, and consequently the greater probability of rainy days (15%), although this probability is much smaller 
than for dry days (81%). For all seasons (including the rainy season), the probability of dry days (59-98%) is 
greater than the probability of rainy days (2-35%), indicating that the rainfall regime in Paraíba is characterized 
by high rainfall intensity over short rainy spells (the expected length of rainy spell during the rainy season is ~1.5 
days). For all stations, except for Patos, the probability of dry days (87-96%) and the expected length of dry spells 
(13-42 days) is greater in spring, with more prolonged dry spells in Campina Grande and Monteiro (expected 
lengths of dry spells are 29.24 and 42.02, respectively). In Sertão (Patos station) with prolonged dry season, the 
probability of dry days (~98%) and the expected length of dry spells (~50 days) is greater in winter and spring. 
Weather cycle also shows seasonal and spatial variability: lowest for João Pessoa station in fall (6.07) and winter 
(5.97) and highest for Patos station in winter (51.79) and spring (52.45). 

Table 2. Station locations and descriptive statistics (in mm) for daily rainfall. 

Station Long. Lat. Altitude Median Mean Min. Max. Std.Dev. C.V. 
Areia -35.68 -6.97 574.62 0.1 3.59 0 146 8.9026 2.48 

C. Grande -35.88 -7.22 547.56 0 2.183 0 110.1 6.6777 3.0587 
J. Pessoa -34.86 -7.1 7.43 0.2 5.11 0 186 13.56 2.6537 
Monteiro -37.06 -7.88 603.66 0 1.864 0 103.4 7.4048 3.9723 

Patos -37.26 -7.01 249.09 0 1.89 0 258.2 8.7564 4.6328 

Table 3. Correlations between the daily rainfall series and distance between cities. 

 Areia C. Grande J. Pessoa Monteiro Patos 
Areia 1 0.6631 (35) 0.4475 (92) 0.1573 (182) 0.1461 (174) 

C. Grande  1 0.4149 (113) 0.1877 (149) 0.1790 (154) 
J. Pessoa   1 0.0915 (258) 0.1233 (265) 
Monteiro    1 0.2687 (99) 

Patos     1 

Table 4. Estimated values of WS Test Statistics and the associated p-values. 

Station Fall Winter Spring Summer 
Areia 11.54 (p < 0.001) 36.69 (p < 0.001) 117.76 (p < 0.001) 123.98 (p < 0.001) 

C. Grande 43.24 (p < 0.001) 9.3 (p < 0.001) 2.99 (p = 0.0014) 7.8 (p < 0.001) 
João Pessoa 14.97 (p < 0.001) 6.7 (p < 0.001) 6.17 (p < 0.001) 4.26 (p < 0.001) 

Monteiro 53.59 (p < 0.001) 156.17 (p < 0.001) 188.05 (p < 0.001) 20.93 (p < 0.001) 
Patos 11.66 (p < 0.001) 0.45 (p = 0.3276)* 2.27 (p = 0.0117) 5.26 (p < 0.001) 
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These results imply qualitative agreement with findings of Robertson et al. (2004) who applied hidden 
Markov model (HMM) to describe daily rainfall occurrence at 10 gauge stations in the State of Ceará, 
northeast Brazil, during the February-April wet season 1975-2002. They identified four ‘hidden’ rainfall 
states, where two of the states are found to correspond to wet or dry conditions at all stations, with similar 
relative frequencies. They also found that the wet state tends to be more prevalent during March (fall), 
however the dry state is more prevalent at the beginning of the FMA (February-March-April) rainy season. 

Table 6 presents the fit for the duration of days according to the occurrence of states. The dispersion 
parameter refers to the important property of the negative binomial distribution of the over-dispersion, 
since its variance exceeds the mean. Note that João Pessoa presented the highest mean duration and 
standard error for the three events ݀, ݓ and ݎ. This indicates that there is a greater variability in the 
duration of these events/states around their average duration. We highlight the Areia station, with behavior 
closer to João Pessoa in relation to the other stations. This suggests the influence of the climatology of the 
Borborema Plateau, which is hot and humid. 

Figure 2 illustrates the interpolated maps of transition probabilities estimated among states ݀,ݓ,  for ݎ
winter season. In winter, the dry−dry transition presented the highest probability values above 65% (a), 
while dry−wet (b) and rainy−wet (h) transition presented the lowest probability, below 10%. The dry-rainy 
(c), wet-rainy (f) and rainy-rainy (i) transition probability increased towards the coastline, while dry-dry (a), 
wet-dry (d) and rainy−dry (g) transition probability increased in the Coastal−Sertão direction. Sertão region 
(Patos station) showed the highest transition probabilities that lead to dry condition (Figure 2 a, d, g) and 
lowest transition probabilities that lead to wet and rainy conditions (Figure 2 b, c, e, f, h, i). 

For all seasons and for all stations, there was the highest probability of the transition from a dry day to 
another dry day, reflecting the climate characteristics in the Northeast of Brazil: the rainfall is concentrated 
in short time periods with prolonged dry spells (Lucena et al., 2011). The transition probabilities from wet 
and rainy conditions to dry condition are higher in the Sertão region, while transition probabilities that lead 
to rainy conditions are higher in the coastal region.  

Table 5. Equilibrium state probabilities, expected length of different spells, weather cycle, and total number of days for Paraíba’s 
rainfall stations for different seasons. The observed lengths of different spells and weather cycles are given in parentheses. 

Station Season ߨௗ ߨ௪ ߨ௥ 
Expected Length of Season’s Spell 

Total 
Dry (݀) Wet (ݓ) Rainy (ݎ) Weather Cycle 

Areia 

Fall 0.63 0.1 0.27 3.55 (4) 1.09 (1) 1.7 (2) 6.34 (6) 1840 
Winter 0.65 0.09 0.26 3.89 (4) 1.19 (1) 1.73 (2) 6.81 (7) 1879 
Spring 0.87 0.09 0.24 13.09 (13) 2.19 (2) 1.3 (1) 16.58 (17) 1800 

Summer 0.76 0.1 0.14 6.08 (6) 1.83 (2) 1.48 (1) 9.39 (9) 1780 

Campina Grande 

Fall 0.72 0.1 0.18 4.61 (5) 1.29 (1) 1.5 (2) 7.4 (7) 1840 
Winter 0.76 0.09 0.15 5.41 (5) 1.18 (1) 1.39 (1) 7.9 (8) 1879 
Spring 0.96 0.02 0.02 29.24 (29) 1.15 (1) 1.12 (1) 31.51 (32) 1800 

Summer 0.87 0.04 0.09 10.13 (10) 1.11 (1) 1.33 (1) 12.57 (13) 1780 

João Pessoa 

Fall 0.57 0.08 0.35 2.94 (3) 1.12 (1) 2.01 (2) 6.07 (6) 1840 
Winter 0.59 0.11 0.3 3.02 (3) 1.14 (1) 1.81 (2) 5.97 (6) 1879 
Spring 0.9 0.05 0.05 13.53 (14) 1.16 (1) 1.26 (1) 15.95 (16) 1800 

Summer 0.79 0.07 0.14 6.6 (7) 1.12 (1) 1.43 (1) 9.15 (9) 1780 

Monteiro 

Fall 0.81 0.05 0.14 7.04 (7) 1.22 (1) 1.54 (2) 9.8 (10) 1840 
Winter 0.9 0.03 0.07 17.27 (17) 1.33 (1) 2.1 (2) 20.7 (21) 1879 
Spring 0.96 0.02 0.02 42.02 (42) 2 (2) 1.47 (1) 45.49 (45) 1800 

Summer 0.86 0.03 0.11 10.11 (10) 1.12 (1) 1.51 (2) 12.74 (13) 1780 

Patos 

Fall 0.83 0.04 0.13 8.25 (8) 1.12 (1) 1.48 (1) 10.85 (11) 1840 
Winter 0.98 0.01 0.01 49.75 (50) 1 (1) 1.04 (1) 51.79 (52) 1879 
Spring 0.97 0.01 0.02 50 (50) 1.08 (1) 1.37 (1) 52.45 (52) 1800 

Summer 0.81 0.04 0.15 7.16 (7) 1.06 (1) 1.55 (2) 9.77 (10) 1780 

Table 6. The fit of the day’s duration for the events ݀, ݓ and ݎ to the negative binomial distribution. 

State Parameters Areia C. Grande J. Pessoa Monteiro Patos ݀ 
Dispersion 0.40 (0.07) 0.46 (0.07) 0.42 (0.07) 0.69 (0.11) 0.62 (0.10) 

Average 22.76 (5.4) 13.31 (2.6) 25.82 (6.2) 8.22 (1.28) 7.06 (1.14) ݓ 
Dispersion 0.02 (0.09) 0.01 (0.006) 0.01 (0.006) 0.02 (0.01) 0.005 (0.003) 

Average 10.35 (11.44) 6.37 (7.9) 11.78 (17.62) 2.75 (2.23) 2.38 (4.16) ݎ 
Dispersion 0.04 (0.01) 0.01 (0.007) 0.04 (0.01) 0.03 (0.01) 0.02 (0.009) 

Average 18.85 (14.04) 10.23 (10.26) 21.62 (16.03) 6.58 (4.68) 5.91 (4.8) 
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Figure 2. Interpolated maps of transition probabilities for winter season in the period 1995-2015. 

Conclusion 

The results of ܹܵ goodness-to-fit test indicate that Markov chain is an appropriate model for 
rainfall dynamics in Paraíba. For all stations/seasons, the probability of dry days is greater than the 
probability of rainy days (regime characterized by high rainfall intensity distributed over short rainy 
spells). The estimated transition probabilities among states show that the dry-dry transition presents 
the highest values for all seasons/stations, as well as the expected dry spell length (severe droughts). 
The transition probabilities that lead to rainy condition are higher in the coastal region, while the 
transition probabilities that lead to dry condition are higher in Sertão. 

Acknowledgements 

We acknowledge the support of the Brazilian agency Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior (Capes) and anonymous reviewers for the constructive criticisms and suggestions that contributed 
to the improvement of this work. 



Page 8 of 10 Jale et al. 

Acta Scientiarum. Technology, v. 41, e37186, 2019 

References 

Ali, M., & Mubarak, S. (2017). Effective rainfall calculation methods for field crops: an overview, analysis 
and new formulation. Asian Research Journal of Agriculture, 7(1), 1-12. doi: 10.9734/ARJA/2017/36812 

Asong, Z. E., Khaliq, M. N., & Wheater, H. S. (2016). Multisite multivariate modeling of daily precipitation 
and temperature in the Canadian Prairie Provinces using generalized linear models. Climate Dynamics, 
47(9-10), 2901-2921. doi: 10.1007/s00382-016-3004-z 

Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126(2), 139-154. doi: 
10.1016/S0304-3800(00)00262-3 

Chaves, R. R., & Cavalcanti, I. F. A. (2001). Atmospheric circulation features associated with rainfall 
variability over southern Northeast Brazil. Monthly Weather Review, 129(10), 2614-2626. doi: 
10.1175/1520-0493(2001)129<2614:ACFAWR>2.0.CO;2 

Collischonn, W., Haas, R., Andreolli, I., & Tucci, C. E. M. (2005). Forecasting River Uruguay flow using 
rainfall forecasts from a regional weather-prediction model. Journal of Hydrology, 305(1), 87-98. doi: 
10.1016/j.jhydrol.2004.08.028 

Craig, B. A., & Sendi, P. P. (2002). Estimation of the transition matrix of a discrete�time Markov chain. 
Health Economics, 11(1), 33-42. doi: 10.1002/hec.654 

Cull, P. O., Hearn, A. B., & Smith, R. C. G. (1981). Irrigation scheduling of cotton in a climate with uncertain 
rainfall. Irrigation Science, 2(3), 127-140. doi: 10.1007/BF00257975. 

Deni, S. M., Jemain, A. A., & Ibrahim, K. (2009). Fitting optimum order of Markov chain models for daily 
rainfall occurrences in Peninsular Malaysia. Theoretical and Applied Climatology, 97(1-2), 109-121. doi: 
10.1007/s00704-008-0051-3 

Fu, D. Z., Li, Y. P., & Huang, G. H. (2012). A fuzzy-Markov-chain-based analysis method for reservoir 
operation. Stochastic Environmental Research and Risk Assessment, 26(3), 375-391. doi: 10.1007/s00477-
011-0497-1 

Gabriel, K. R., & Neumann, J. (1962). A Markov chain model for daily rainfall occurrence at Tel Aviv. 
Quarterly Journal of the Royal Meteorological Society, 88(375), 90-95. doi: 10.1002/qj.49708837511 

Garg, V. K., & Singh, J. B. (2010). Three-state Markov chain approach on the behaviour of rainfall. New York 
Science Journal, 3(12), 76-81. doi: 10.7537/marsnys031210.14 

Giannini, A., Saravanan, R., & Chang, P. (2004). The preconditioning role of tropical Atlantic variability in 
the development of the Enso teleconnection: Implications for the prediction of Nordeste rainfall. Climate 
Dynamics, 22(8), 839-855. doi: 10.1007/s00382-004-0420-2 

Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and 
flood risk in India. Journal of Earth System Science, 120(3), 359-373. doi: 10.1007/s12040-011-0082-5 

Haan, C. T., Allen, D. M., & Street, J. O. (1976). A Markov chain model of daily rainfall. Water Resources 
Research, 12(3), 443-449. doi: 10.1029/WR012i003p00443 

Hastenrath, S. (1990). Prediction of Northeast Brazil rainfall anomalies. Journal of Climate, 3(8), 893-904. 
doi: 10.1175/1520-0442(1990)003<0893:PONBRA>2.0.CO;2 

Hastenrath, S. (2012). Exploring the climate problems of Brazil’s Nordeste: a review. Climatic Change, 
112(2), 243-251. doi: 10.1007/s10584-011-0227-1 

Hastenrath, S., & Heller, L. (1977). Dynamics of climatic hazards in northeast Brazil. Quarterly Journal of the 
Royal Meteorological Society, 103(435), 77-92. doi: 10.1002/qj.49710343505 

Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non�homogeneous hidden Markov model for 
precipitation occurrence. Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(1), 15-30. 
doi: 10.1111/1467-9876.00136 

Ingram, K. T., Roncoli, M. C., & Kirshen, P. H. (2002). Opportunities and constraints for farmers of west 
Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agricultural Systems, 
74(3), 331-349. doi: 10.1016/S0308-521X(02)00044-6 

Lana, X., & Burgueño, A. (1998). Daily dry-wet behaviour in Catalonia (NE Spain) from the viewpoint of 
Markov chains. International Journal of Climatology, 18(7), 793-815. doi: 10.1002/(SICI)1097-
0088(19980615)18:7<793::AID-JOC262>3.0.CO;2-M 



Markov Chain on daily rainfall - Paraíba Page 9 of 10 

Acta Scientiarum. Technology, v. 41, e37186, 2019 

Le Gallo, J., & Chasco, C. (2008). Spatial analysis of urban growth in Spain, 1900-2001. Empirical Economics, 
34(1), 59-80. doi: 10.1007/s00181-007-0150-5 

Longley, R. W. (1953). The length of dry and wet periods. Quarterly Journal of the Royal Meteorological 
Society, 79(342), 520-527. doi: 10.1002/qj.49707934208 

Lucena, D. B., Servain, J., & Gomes Filho, M. F. (2011). Rainfall response in Northeast Brazil from ocean 
climate variability during the second half of the twentieth century. Journal of Climate, 24(23), 6174-6184. 
doi: 10.1175/2011JCLI4194.1 

Lyra, G. B., Oliveira�Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal 
variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 
34(13), 3546-3558. doi: 10.1002/joc.3926 

Marengo, J. A., Torres, R. R., & Alves, L. M. (2016). Drought in Northeast Brazil—past, present, and future. 
Theoretical and Applied Climatology, 129(3-4), 1189-1200. doi: 10.1007/s00704-016-1840-8 

Maruyama, T., Kawachi, T., & Singh, V. P. (2005). Entropy-based assessment and clustering of potential 
water resources availability. Journal of hydrology, 309(1), 104-113. doi: 10.1016/j.jhydrol.2004.11.020 

Minder, J. R., Roe, G. H., & Montgomery, D. R. (2009). Spatial patterns of rainfall and shallow landslide 
susceptibility. Water Resources Research, 45(4), 1-11. doi: 10.1029/2008WR007027 

Moscati, M. C. L., & Gan, M. A. (2007). Rainfall variability in the rainy season of semiarid zone of Northeast 
Brazil (NEB) and its relation to wind regime. International Journal of Climatology, 27(4), 493-512. doi: 
10.1002/joc.1408 

Müller, H., & Haberlandt, U. (2016). Temporal rainfall disaggregation using a multiplicative cascade model 
for spatial application in urban hydrology. Journal of Hydrology, 556, 847-864. doi: 
10.1016/j.jhydrol.2016.01.031 

Pegram, G. G. (2009). A nested multisite daily rainfall stochastic generation model. Journal of Hydrology, 
371(1), 142-153. doi: 10.1016/j.jhydrol.2009.03.025 

Pereira, M. G., Trigo, R. M., Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated 
with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1), 11-25. doi: 
10.1016/j.agrformet.2004.12.007 

R Core Team. (2016). R: A language and environment for statistical computing. Vienna, AT: R Foundation for 
Statistical Computing.  

Rajagopalan, B., Lall, U., & Tarboton, D. G. (1996). Nonhomogeneous Markov model for daily precipitation. 
Journal of Hydrologic Engineering, 1(1), 33-40. doi: 10.1061/(ASCE)1084-0699(1996)1:1(33) 

Rao, V. B., Franchito, S. H., Santo, C. M., & Gan, M. A. (2016). An update on the rainfall characteristics of 
Brazil: seasonal variations and trends in 1979-2011. International Journal of Climatology, 36(1), 291-302. 
doi: 10.1002/joc.4345 

Ratan, R., & Venugopal, V. (2013). Wet and dry spell characteristics of global tropical rainfall. Water 
Resources Research, 49(6), 3830-3841. doi: 10.1002/wrcr.20275 

Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. 
Water Resources Research, 17(1), 182-190. doi: 10.1029/WR017i001p00182 

Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over 
northeast Brazil using a hidden Markov model. Journal of climate, 17(22), 4407-4424. doi: 
10.1175/JCLI-3216.1 

Schoof, J. T., & Pryor, S. C. (2008). On the proper order of Markov chain model for daily precipitation 
occurrence in the contiguous United States. Journal of Applied Meteorology and Climatology, 47(9),  
2477-2486. doi: 10.1175/2008JAMC1840.1 

Seeger, M., Errea, M. P., Begueria, S., Arnáez, J., Martı, C., & Garcıa-Ruiz, J. M. (2004). Catchment soil 
moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic 
loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology, 288(3), 299-311. doi: 
10.1016/j.jhydrol.2003.10.012 

Serinaldi, F. (2010). Multifractality, imperfect scaling and hydrological properties of rainfall time series 
simulated by continuous universal multifractal and discrete random cascade models. Nonlinear Processes 
in Geophysics, 17(6), 697-714. doi: 10.5194/npg-17-697-2010 



Page 10 of 10 Jale et al. 

Acta Scientiarum. Technology, v. 41, e37186, 2019 

Shamshad, A., Bawadi, M. A., Hussin, W. W., Majid, T. A., & Sanusi, S. A. M. (2005). First and second order 
Markov chain models for synthetic generation of wind speed time series. Energy, 30(5), 693-708. doi: 
10.1016/j.energy.2004.05.026 

Silva, L. L., Costa, R. F., Campos, J. H. D. C., & Dantas, R. T. (2009). Influência das precipitações na 
produtividade agrícola no Estado da Paraíba. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(4), 
454-461. doi: 10.1590/S1415-43662009000400013 

Soares, A. S. D., Paz, A. R., & Piccilli, D. G. A. (2016). Avaliação das estimativas de chuva do satélite TRMM 
no Estado da Paraíba. Revista Brasileira de Recursos Hídricos, 21(2), 288-299. doi: 
10.21168/rbrh.v21n2.p288-299 

Uvo, C. B., Repelli, C. A., Zebiak, S. E., & Kushnir, Y. (1998). The relationships between tropical Pacific and 
Atlantic SST and northeast Brazil monthly precipitation. Journal of Climate, 11(4), 551-562. doi: 
10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2 

Wagner, R. G. (1996). Mechanisms controlling variability of the interhemispheric sea surface temperature 
gradient in the tropical Atlantic. Journal of Climate, 9(9), 2010-2019. doi: 10.1175/1520-
0442(1996)009<2010:MCVOTI>2.0.CO;2 

Wang, D. Q., & Martiz, J. S. (1990). Note on testing a three state Markov Chain for independence. Journal 
Statistics Computation and Simulation, 37(1-2), 61-68. doi: 10.1080/00949659008811294 

Wilks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. Journal of 
Hydrology, 210(1), 178-191. doi: 10.1016/S0022-1694(98)00186-3 

Zhang, S., Wang, H., & Zhang, X. (2014). Estimation of channel state transition probabilities based on 
Markov chains in cognitive radio. Journal of Communications, 9(6), 468-474. doi: 10.12720/jcm.9.6.468-
474. 


