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ABSTRACT. Artificial neural networks in the multivariable control of chlorine dosing in the post-
chlorination stage in a water treatment plant in the Greater São Paulo, Brazil, are analyzed. The plant has 
constant fluctuations in chlorine demand caused by natural influences related to raw water from surface 
source. Modeling and computer simulation were implemented in MATLAB/Simulink® environment, 
according to the physical and operational characteristics of the water treatment plant. Moreover, a 
Proportional-Integral (PI) controller was incorporated to provide better stability. Simulation results 
showed improved stability of free residual chlorine when compared to method currently employed, i.e. 
Proportional-Integral-Derivative (PID) controller that would reduce chlorine consumption in water 
treatment process. 
Keywords: computational intelligence; process optimization; set-point control; water treatment plant. 

Redes neurais artificiais para controlar a dosagem de cloro em uma estação de tratamento 
de água 

RESUMO. Este artigo propõe o uso de redes neurais artificiais no controle multivariável da dosagem de 
cloro na etapa de pós-cloração em uma planta de tratamento de água localizada na região metropolitana de 
São Paulo. Esta planta tem flutuações constantes na demanda de cloro causada por influências naturais da 
água bruta captada de manancial de superfície. A modelagem e a simulação computacional foram 
implementadas no ambiente MATLAB/Simulink®, de acordo com as características físicas e operacionais da 
planta de tratamento de água em estudo. Além disso, foi incorporado um controlador PI (Proporcional-
Integral) para proporcionar melhor estabilidade. Os resultados da simulação mostraram estabilidade 
melhorada do cloro residual livre em relação ao método atualmente utilizado, isto é, o controlador PID 
(Proporcional-Integral-Derivativo) que poderia levar à redução no consumo de cloro no processo de 
tratamento de água. 
Palavras-chave: inteligência computacional; otimização de processo; controle de referência; estação de tratamento de 
água. 

Introduction 

Water treatment eliminates or decreases 
suspended materials, microorganisms and other 
chemical compounds to safeguard public health 
(Tabesh, Azadi, & Roozbahani, 2011; Juntunen, 
Liukkonen, Lehtola, & Hiltunen, 2013; Plappally & 
Lienhard, 2013). The most common type of water 
treatment is the conventional one, comprising 
pretreatment, coagulation, flocculation, 
sedimentation, filtration, final pH correction and 
free chlorine residual. The latter is particularly 
important for water disinfection (Gupta & 
Shrivastava, 2010; McBean, Zhu, & Zeng, 2010; 
Farhaoui, Hasnaoui, & Derraz, 2016). 

Water treatment plants (WTP) are disinfected 
with chlorine concentration in water, commonly 
known as chlorination process (Mouly et al., 2010; 
Zimocha & Łobos, 2014). In many WTPs, the 
process has been automated and the electronic 
equipment corrects the dosers to maintain the free 
residual chlorine established (Soyupak, Kilic, 
Karadirek, & Muhammetoglu, 2011; Hong, Lee, 
Lee, Park, & Lee, 2012; Liu, Rong, Xu, & Zhang, 
2013). Automation processes of a WTP continually 
seek water quality by optimizing the uptake of 
chemical products (Lee, Shin, Hong, Choi, & Chun, 
2016).  

State-of-the-art technology has made the use of 
equipment for the automatic control of dosage 
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increasingly present, such as dosers with electronic 
drives, online tools for measuring physical and 
chemical parameters of water, Programmable Logic 
Controllers (PLCs) and Supervisory Control and 
Data Acquisition (Scada) (Liu et al., 2013; Dubey, 
Agarwal, Gupta, Dohare, & Upadhyaya, 2017). Due 
to technological improvement in automation 
equipments, the implementation of Computational 
Intelligence resources becomes useful to solve 
complex problems in non-linear processes (Santos, 
Librantz, Dias, & Rodrigues, 2017). 

Artificial Neural Networks (ANN), a technique 
related to computational intelligence, improves 
processes with multivariate and non-linear 
characteristics, such as water treatment and effluent 
processes (Han & Qiao, 2014; Liu & Chung, 2014). 
Likewise, ANN is capable of extracting information 
from processes that are not well understood or 
detailed (Na, Ren, Shang, & Guo, 2012; Zenooz, 
Ashtiani, Ranjbar, Nikbakht, & Bolour, 2017). 

According to Kulkarni and Chellam (2010), the 
use of Artificial Neural Networks for the 
disinfection process may enhance over time 
microbial inactivation prediction and other 
physicochemical water parameters, such as 
temperature and pH, when compared to traditional 
methods of determination. Chlorine dosage 
produces free residual chlorine in treated water and 
ensures sanitization of the distribution network 
(Fisher, Kastl, Sathasivan & Jegatheesan, 2011). 
Several studies determined the free residual chlorine 
rates throughout the distribution network as a 
prediction of rates in the network, after a specific 
period. Predicted rate was calculated from physical 
and chemical parameters of previous periods 
forwarded during the training of artificial neural 
networks (Rodriguez & Sérodes, 1996; Rodriguez, 
West, Powell & Sérodes, 1997). Alternative studies 
on measurement and management of free residual 
chlorine have been performed, such as decentralized 
monitoring in a distribution system to investigate 
the possibility of reducing residual rates (Soyupak  
et al., 2011; Chang, Gao, Wu, & Yuan, 2011; Islam, 
Sadiq, & Rodriguez, 2013; Ammar, Abid, El-Bindary 
& El-Sonbati, 2014; Babaei, Tabesh, & Nazif, 2015). 

Current analysis proposes a multivariable control 
for post-chlorination dosage system in a WTP using 
artificial neural networks applied to the disinfection 
process to reduce free residual chlorine variations of 
treated water in the water tank and, consequently, in 
the main water distribution.  

The disinfection process is an important step for 
water and effluent treatment, frequently using 
chlorine as a chemical agent (Fisher et al., 2011). 
The system requires a multivariable control which 

presents several negative issues, such as temperature 
variation and level reservoir variation dynamics 
causing a nonlinear behavior. The proposed control 
system predicts changes in WTP flows and 
compensating system, free residual chlorine of the 
filtered water and clearing system to achieve a set-
point rate at the output of the treated water tank. 

Material and methods 

Artificial neural networks 

The main goal of artificial intelligence 
techniques is the development of computational 
solution, or algorithms, capable of performing 
cognitive tasks. In other words, intelligent systems 
are used in a range of applications wherein human 
knowledge, or a knowledge base of an environment, 
is available (Singh & Gupta, 2012; Gour & Gour, 
2014). 

The performance of the artificial neural network 
is measured by the mean squared error (MSE) and 
mean absolute error (MAE), respectively shown in 
Equation 1 and 2 (Ayodele & Auta, 2012; Zenooz  
et al., 2017): 
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where: 
ti is the desired rate;  
yi is the rate obtained at the ANN output;  
N is number of samples.  

The Levenberg-Marquardt (LM) algorithm has 
been used in current paper for neural network 
training. According to Hagan and Menhaj (1994), 
although LM is much higher for each computational 
iteration, it is greatly applicable due to its increased 
efficiency. In addition, LM is very efficient with 
training networks with a few hundred weights. In 
current assay, neural network structure has less than 
one hundred weights, since the hidden layer varied 
between 10 to 16 neurons and the ANN model had 
six inputs. It should be noted that LM algorithm is 
an approximation to Newton’s method while back 
propagation is the steepest descent algorithm (Hagan 
& Menhaj, 1994). Thus, in function ܸ(ݔ), which 
should be minimized with respect to parameter ݔ, 
the Newton’s method is given by Equation 3: 
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On the other hand, the Gauss-Newton method 
may be written Equation 4: 

 

( ) ( )[ ] ( ) ( )xexJxJxJx TT 1−
=Δ  (4)

 
where: (ݔ)ܬ is the Jacobian matrix and ݁(ݔ) is a vector of 
network errors. According to modifications in the 
Gauss-Newton method, LM algorithm is given by 
Equation 5: 
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Moreover, according to Hagan and Menhaj 

(1994), when scalar parameter μ is large, the 
algorithm becomes gradient descent; when μ is 
small, the algorithm becomes Gauss-Newton. In 
this paper, μ = 0.001 has been used as a starting 
point. 

Problem description 

The WTP under study is located in the 
metropolitan region of São Paulo and has a nominal 
production flow rate of approximately 0.9 m3 s-1. 
This amount may be reduced during periodic 
maintenance of equipment or according to 
consumption demand. 

Further, the physicochemical parameters of raw 
water of the water source (river) change course, 
especially during the rainy season, and cause 
fluctuations in the rates of free residual chlorine 
(FRC) during treatment up to the post-chlorination 
stage. Figure 1 illustrates the setup process that 
involves post-chlorination in the WTP under 
analysis. 

Figure 1 demonstrates the water compensating 
system intended to complement the treated water 
tank of the WTP with water from another 
production system located in  another  city  of  the  

Greater São Paulo to attend to the pumping flow of 
the high lift pump. The flow of treated water from 
the compensating system varies between 0.0 and  
0.4 m3 s-1 and has a free residual chlorine (FRC) rate 
of approximately 1.1 mg L-1 The amount of free 
residual chlorine in the reservoir outlet is designed 
to control the dosage of post-chlorination so that 
water is distributed with free chlorine residual of 2.5 
± 0.2 mg L-1 (set-point). The filtered water flow 
may vary between 0.0 and 0.9 m3 s-1 according to the 
WTP´s production flow, with free residual chlorine 
of approximately 1.5 mg L-1.  

Mathematical modeling and implementation with 
artificial neural networks 

Dieu, Garrett Jr., Ahmad, and Young (1995) 
proposed a single variable Proportional-Integral-
Derivative (PID) chlorine control dosage, with all 
the required devices, such as online analyzer free 
residual chlorine, PLCs and chlorine dosers, 
demonstrating a control loop similar to that used in 
WTP under analysis. Since the WTP post-
chlorination dosage has several variables that directly 
impact the FRC rate in the treated water, the use of 
the traditional PID controller is restricted, as 
reported by Escobar and Trierweiler (2013). The use 
of Computational Intelligence resources becomes 
favorable to understand the flow signals from 
processes that directly impact dosage, set-point and 
critical measurement points of free residual 
chlorine. Thus, the modeling of the proposed 
system includes six input variables: (i) Set-point 
output of the reservoir (SPFRC) in mg L-1; (ii) FRC 
output of treated water tank (FRCRES) in mg L-1; (iii) 
FRC output of WTP (FRCWTP) in mg L-1; (iv) 
WTP’s production flow rate (FLOWWTP) in m3 s-1; 
(v) Compensating system flow rate (FLOWSC) in  
m3 s-1; (vi) Dosage error. 

 

 
Figure 1. Schematic diagram of the process that involves post-chlorination in the WTP under analysis. 
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Data flows are measured in meters installed in 
the WTP´s water transfer piping. The free chlorine 
residual signals are obtained from online analyzers. 
Set-point is manually defined by the operation of 
the water treatment plant, referencing the free 
residual chlorine in the treated water that will be 
sent to the distribution network. The error is 
calculated over control to compensate any deviations 
in the process. The modeling of the proposed 
system still includes two output variables: (i) Post-
chlorination reference set-point (SPWTP) in mg L-1; 
(ii) Chlorine Dosage (Dosage) in kg s-1. 

The set-point rate (SPWTP) at the output of the 
artificial neural network merely provides reference 
employed in the control to have the required free 
residual chlorine required in the WTP’s treated 
water output and consequently achieve limits 
determined by set-point at the output of the treated 
water reservoir. Dosage output corresponds to the 
chlorine mass effective rate that chlorine dosers 
apply at the post-chlorination point. 

Data set was normalized with limits between -1 
and 1 for use with a tangent hyperbolic activation 
function. Stopping criteria for training the neural 
networks comprised the desired mean squared error 
and/or the maximum number of 500 epochs. 
Levenberg-Marquardt training algorithm was 

employed and the number of neurons in the hidden 
layer varied between 10 and 16 neurons. Table 1 
shows the parameters used for neural network 
training.  

Table 1. Levenberg-Marquardt parameters used for neural 
network training. 

Parameters Rates Description 
epochs 500 Maximum number of epochs to train 
goal 1.0 e-04 Performance goal 
max fail 6 Maximum validation failures 
min grad 10.0 e-100 Minimum performance gradient 
μ 0.001 Initial μ 
μ dec 0.1 μ decrease factor 
μ inc 10 μ increase factor 
μ max 1.0 e+100 Maximum μ 
show 25 Epochs between displays 
showCommandLine 0 Generate command-line output 
showWindow 1 Show training GUI 
time inf Maximum time to train in seconds 
 

The neural networks database for training and 
validation has 15325 and 2700 records, respectively. 
Control based on artificial neural networks was 
developed and simulated with all the variables that 
comprise the WTP post-chlorination system under 
study so that the disturbances may be observed and 
corrected by control. Figure 2 illustrates the diagram 
of the computing environment 
MATLAB/Simulink® for the simulations. 

 

 

Figure 2. Diagram of the computing environment MATLAB/Simulink® for the process simulation. 
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As previously mentioned, the foreseen entries were 
filtered water flow rate, compensating system flow rate, 
FRC output of treated water tank (FRCRES), FRC 
output of WTP (FRCWTP), set-point output of the 
reservoir (SPFRC) and error (Dosage error). 
Implemented dosage variables (Dosage) and WTP set-
point output (SPWTP) were implemented at the exit. 
The variable FRC filtered water (FRCFW) was inserted 
to simulate FRC that reached the high lift suction 
pump referring to previous dosage chlorine processes. 
Figure 2 shows the modeling diagram for simulation, 
with all input and output variables. FRC calculation 
block, tagged ‘Calculation block’ in Figure 2, is shown 
in Equation 6, and the error calculation regarding 
Dosage input error is shown in Equation 7: 
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where: 
FRCTW is FRC dosed by control in mg L-1; D is 
chlorine dosage in kg s-1 and QFIL is WTP filtered 
water flow rate in m3 s-1. 
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where: 
Error is error calculated in mg L-1; SPWTP is FRC set-
point in WTP treated water output; FRCWTP is FRC 
in WTP treated water output; k is constant gain; i is 
the lower limit of the integrator; j is the upper limit 
of the integrator.  

Figure 3 demonstrates the proposed model for 
closed-loop control using ANN and PI controller. 

Three operational situations that may occur in 
the WTP under study were chosen: 

• Scenario 1: Filtered Water Flow (WTP under 
study) at 0.9 m3 s-1, with variations ± 0.05 m3 s-1; FRC 
filtered water 1.5 mg L-1, with variations ± 0.35 mg L-1, 
without using the water compensating system; 

• Scenario 2: Filtered Water Flow (WTP under 
study) at 0.9 m3 s-1, with variations ± 0.05 m3 s-1; 
FRC filtered water 1.5 mg L-1, with variations ± 
0.35 mg L-1 of water flow compensating system, 
with 0.10 m3 s-1 range ± 0.10 m3 s-1; 

• Scenario 3: Filtered Water Flow (WTP under 
study) at 0.5 m3 s-1, with variations ± 0.05 m3 s-1; 
FRC filtered water 1.5 mg L-1, with variations ± 
0.35 mg L-1 of water flow compensating system, 
with 0.10 m3 s-1 range ± 0.10 m3 s-1. 

Results and discussion 

Training with neural network topologies was 
carried out with 10-16 neurons in the hidden layer 

to detect the best performance. Table 2 shows the 
mean squared errors for the proposed topologies, 
calculated according to Equation 1. According to 
Table 2, the topology with 15 neurons in the hidden 
layer had the lowest mean squared error among the 
neurons tested, with 96 epochs, with processing 
time of 12.6 s. 

Generalizations of artificial neural network in 
relation to the desired value or required to control 
chlorine dosage were verified at the validation stage. 
Figure 4a shows a comparison of the required 
dosage and the general rate of the artificial neural 
network, while Figure 4b illustrates the referential 
rate required of residual free chlorine at the WTP 
output and distributed by the artificial neural 
network. 

Table 2. Errors rates with different neurons numbers obtained 
during neural network learning step. 

Number of neurons in the hidden layer Mean squared error (MSE) 
10 0.000159 
11 0.000155 
12 0.000128 
13 0.000120 
14 0.000113 
15 0.0000998 
16 0.000128 
 

Figures 4a and b show a strong correlation between 
ANN outputs and the desired rates. As a result, it 
seems that the training step and the selected data were 
adequate. In the simulation stage, the free residual 
chlorine rates in WTP output under study and the 
corresponding set-point (SPWTP) to this point were 
observed so that any changes in the flow rate of the 
water compensating system are compensated to keep 
the output free residual chlorine in the water tank 
within the operationally treated limits. 

Further, Figure 5a and b illustrate the simulated 
behavior with the parameters of Scenario 1. 

Without the compensating system in this 
simulation, there is no need to change the set-point 
(SPWTP); rates near the set-point (SPRES) remain. Figure 
5a shows stability of set-point (SPWTP) and small 
variations of free residual chlorine in treated water at 
the WTP output, opposite control action due to 
variations submitted the dosage step prior chlorine, or 
FRC filtered water at 1.5 mg L-1, with variations ± 0.35 
mg L-1 used in the simulation. Figure 5b illustrates the 
error between the set-point (SPWTP) and the free 
residual chlorine in the WTP output, between -
0.00271 and 0.00046 mg L-1. Maximum and minimum 
rates are lower than the operational limits ± 0.20 mg L-

1 applied to the set-point.  
Figure 6a and b show simulation results in 

Scenario 2. The difference in this simulation is the 
use of water compensating system in the post-
chlorination dosage system. 
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Figure 3. Proposed model for closed-loop control using ANN and PI (proportional and integral) controller.

 
Figure 4. Correlation between (a) desired dosage value and ANN output; (b) desired SPWTP (set-point in the water treatment plant) 
value and ANN output. 

 
Figure 5. (a) Control behavior of the free residual chlorine set-point for the scenario 1; (b) error rate calculated between the simulated 
and measured set-point in the scenario 1. 
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The same WTP characteristics in Scenario 1 
were considered in this simulation, except for the 
inclusion of water in the compensating system of the 
treated water tank. Consequently, the set-point 
(SPWTP) was modified to keep free residual chlorine 
in the output within operational limits. Scenario 2 
required adjustment of chlorine dosage due to 
variations in the above required processes of dosage 
chlorine and changes on the set-point (SPWTP). 
However, free residual chlorine in the WTP output 
accompanied the set-point (SPWTP) satisfactorily 
before the disturbances to which the model was 
submitted. The error between these two quantities 
ranged between -0.00291 and 0.00074 mg L-1.  

Figure 7a and b give results from Scenario 3, 
corresponding to the control flow behavior with the 
production of the reduced WTP. Comparing  
Figure 6a and 7a, results show the variation in the 
amplitude of set-point (SPWTP), similar to Scenario 
2. However, a greater range, caused by WTP flow 
decrease, has been reported in the simulation, 
coupled to the permanence of the same flow within 
the water compensation system. The latter is 
necessary to control the free residual chlorine at the 
reservoir output, according to plan. 

Similar to Scenario 2, the control changed 
chlorine dosage so that free residual chlorine at the 
output of WTP was kept near the set-point (SPWTP) 
at the given instant. Figure 7b shows that error 
variation between the two magnitudes remained 
between -0.00399 and 0.00095 mg L-1. Control 
would generally establish chloride concentration in 
the post-chlorination appropriate to the various set-
point rates (SPWTP) with each simulated scenario. 
The above reveals that the compensating system is  a  

major disturbance to the system and becomes more 
critical in reducing WTP flow. In the three proposed 
scenarios, mean absolute error (MAE) between set-
point (SPWTP) and the free output WTP´s residual 
chlorine were calculated, according to Equation 2. 
MAEs are shown in Table 3. 

Table 3. Mean absolute error (MAE) obtained for different 
scenarios. 

Scenario Mean Absolute Error (MAE) 
1 0.00029 mg L-1 
2 0.00032 mg L-1 
3 0.00038 mg L-1 
current WTP 0.083 mg L-1 
 

When MAE for simulated scenarios is compared 
with WTP under analysis, 0.083 mg L-1, it is possible 
to obtain a reduction of 200 times by employing the 
proposed control. Furthermore, a reduction may be 
obtained in the consumption of chlorine used in the 
post-chlorination between the current situation and 
the proposed 2400 kg of chemical product during a 
1-year period. 

Pastre et al. (2002) suggested maintaining free 
residual chlorine in the reservoir output between 0.8 
and 1.2 mg L-1, or to a specific rate of the set-point 
and the operational limits ± 0.20 mg L-1, as used in 
WTP study, merely differentiating the set-point at 
each location. However, the model proposed in this 
article resulted in lower ranges, which favor the 
reduction of operating limits currently used in 
WTP. Furthermore, the proposed system reduces 
the manual interference in case of abrupt changes in 
flow rates to maintain free residual chlorine within 
the operational limits. 

 

 

Figure 6. (a) Control behavior of the free residual chlorine set-point for the scenario 2; (b) error rate calculated between the simulated 
and measured set-point in the scenario 2. 
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Figure 7. (a) Control behavior of the free residual chlorine set-point for the scenario 3; (b) error rate calculated between the simulated 
and measured set-point in the scenario 3. 

Conclusion 

In current study, a multivariate post-chlorination 
dosage control system employing an artificial neural 
network was used. The three scenarios for the 
simulation are considered adequate for WTP 
operating, reducing potentially the limits of current 
control, especially when compared to conventional 
PID control and, consequently, contributing to 
reduce operational costs. Moreover, it should be 
underscored that there is no technological 
limitations in the current automation system on the 
plant to implement proposed control system. 
Further research may include reservoir detention 
time and temperature parameters to the proposed 
model. 
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