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ABSTRACT. Total acidity and vitamin C were determined by using ultraviolet spectroscopy and multi-
product multivariate calibration alternately to the reference methods, the potentiometry and Tillman's, 
respectively. In the developed multi-products models, different products were included (industrialized 
juices based on soya of different flavors and light). The linear partial least squares (PLS) method was used 
in the model construction and the outlier samples were evaluated. The accuracy at the 99% level, 
represented by the root mean square error of calibration (RMSEC) and prediction (RMSEP), was confirmed 
through the confidence ellipse, whereas the residuals presented random behavior, which indicates that 
the data fit a linear model. Sensitivity and analytical sensitivity presented adequate results in the 
determination of vitamin C and acidity, considering the concentration range used 0.83-16.83 mg 100 mL-1 
for vitamin C and 0.17-0.34 g 100 mL-1 for total acidity. The inverse of the analytical sensitivity shows that 
it is possible to distinguish samples with difference in vitamin C concentration of the order of 0.73 mg  
100 mL-1, and samples with difference in total acidity of the order of 6.1 x 10-3 g 100 mL- 1.The multi-
product PLS model present limits of detection and quantification for vitamin C of 2.43 and 7.36 mg  
100 mL-1, respectively. For total acidity, the limits of detection and quantification achieved were 0.02 and 
0.06 mg 100 mL-1, respectively. The values for residual prediction deviation (RPD) presented results within 
the range of values, which classify the models as satisfactory. In addition, the multi-product calibration is 
fast, because it does not require reagents/solvents and does not generate toxic waste, being an alternative 
to the conventional methods and being in agreement with the requirements of green chemistry. 
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Introduction 

Partial Least Squares (PLS) is a linear multivariate regression method developed in the 1960s by H. Wold 
for the economics area. It was only in the early 1980's that his son, S. Wold, together with H. Martens, 
started applications in the chemistry field (Sanchez, 2017). Currently, the multivariate calibration from the 
PLS method is consolidated for first-order data, i.e. when a vector of instrumental responses is available for 
each sample. 

The PLS regression is considered to have the least mathematical disadvantage compared to other 
multivariate regression methods such as Classical Least Squares (CLS), Multiple Linear Regression (MLR) or 
the Principal Components Regression (PCR). For instance: 1) For CLS application it is necessary to know the 
concentration of all species that contribute to the instrumental signal, which is most of the time impossible 
when working with complex matrices like food. 2) MLR contours the problem described by the CLS, 
however, for this regression method, it is necessary to have the number of samples larger than the number 
of variables. This is something difficult to access when working with spectroscopy, where many variables are 
considered in the development of the multivariate model. 3) PCR is a regression method that contours the 
problem presented by CLS and MLR. However, with PCR, no information about the reference method is 
employed in the dimensionality reduction of the instrumental matrix (Ferreira, Antunes, Melgo, & Volpe, 
1999; Ferreira, 2015). 

Multi-product multivariate calibration had its first scientific report in 1992 (Naes & Isaksson, 1992), and 
the second one in 1994 (Wang, Isaksson, & Kowalski, 1994). These works reported the possibility of 
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developing multivariate calibration and included, in the same model different types of products. These 
studies evaluated a set of different products that presented homogeneous responses. Furthermore, the main 
goal of these researches was to evaluate new algorithms to develop multivariate regression. A data set that 
did not present homogeneous responses was evaluated in a research performed in the year 2000 (Berzaghi, 
Shenk, & Westerhaus, 2000). However, in this latter work, the main objective was to evaluate the 
performance of the algorithm named Local. 

Micklander, Kjeldahl, Egebo, and N∅rgaard (2006) introduced the term multi-product calibration to the 
scientific world in the year 2006. The authors investigated the use of the PLS regression method, nonlinear 
regression using neural networks, and three variations of the Local algorithm in the development of multi-
product multivariate calibration models. The PLS method presented larger prediction to errors, which could 
maybe be justified by an inconsistent sampling representativeness, or by the absence of outliers when 
evaluating the developed model. 

The successful use of the PLS regression method in the development of multi-product multivariate 
calibration models is recent (Rambo, Amorim, & Ferreira, 2013; Santos, Março, & Valderrama, 2013; 
Santos, Lima, Março, & Valderrama, 2015; 2016). The use of the PLS method by the industrial sector 
has been growing and gaining more and more space. In this sense, the possibility of using this method 
of multivariate regression applied to different products becomes an interesting alternative in terms of 
time and practicality. 

Multivariate models maintenance can be laborious. Thus, the multi-product multivariate model has the 
advantages of saving time, robustness and practicality, considering the terms of keeping its maintenance. 
Moreover, another disadvantage is a large number of steps that the quality control analyst needs to perform with 
a single model. For example, in each analysis performed in a laboratory routine, a specific model is used for a 
small population of samples (a single product), and each sample should then be carefully identified, as well as the 
correct and specific model, in order for that product be properly chosen (Santos et al., 2013). 

Acidity and vitamin C are quality parameters, responsible for aroma, flavor, sensory and nutritional 
characteristics, as well as for the state of conservation of food (Venâncio & Martins, 2012). These 
parameters are used by the juice industry in the quality control of the final product. 

Industrialized juices have been gaining consumer preference because of their practicality. In this sense, fruit 
nectar – which is defined as an unfermented drink ready for consumption, that is obtained from the edible part of 
the fruit diluted in potable water, and that may or may not be added with sugars, acids (Santos et al., 2015) or soy. 
The soy juices preserve the desirable sensory characteristics of fruits, along with the functional properties of 
soybeans, such as the presence of bioactive compounds such as isoflavones. The isoflavones have beneficial 
effects to human health, such as: estrogenic, antiestrogenic activity (especially on the symptoms of the 
climacteric syndrome and osteoporosis), hypocholesteremic and anticarcinogenic activities (Lui, Aguiar, Alencar, 
Scamparini, & Park, 2003; Torrezan et al., 2004; Abreu, Pinheiro, Maia, Carvalho, & Sousa, 2007).  

Although these quality parameters have already been evaluated from multivariate multi-product 
calibration for fruit nectar, soybean industrialized juices present very different physicochemical aspects 
(opacity for example), which justifies an investigation into the determination of these parameters for this 
type of food sample. Therefore, the objective of this study was to propose the development of multivariate 
calibration models based on ultraviolet (UV) spectroscopy for the determination of the total acidity and 
vitamin C in soybean industrialized juices of different flavors, also including the light type. 

Material and methods 

Samples and reagents 

One hundred and twenty-six samples were acquired in the Campo Mourão – PR marketplaces: 
pineapple (21 samples), grape (18 samples), orange (9 samples), peach and apples (15 samples for each 
flavor), strawberry, passion fruit, light apple, light grape and light peach (6 samples for each flavor), 
tangerine, pomegranate, mango, papaya, lemon and light orange (3 samples for each flavor).  

Sodium hydroxide (Synth) and hydrochloric acid (Synth) were used to determine the total acidity. For 
vitamin C determination, we used ascorbic acid (Impex), 2,6-dichlorophenol indophenol, indigo carmine 
and 1% phenolphthalein (Sigma-Aldrich), metaphosphoric acid, glacial acetic acid and hydrochloric acid 
(Vetec), sodium bicarbonate, sodium hydroxide and potassium b (Alphatec). 
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Methods 

The total acidity (mg 100 mL-1) was determined, in triplicate, according to the Federation 
International des Producteurs de Jus de Fruit (2005) and to the methodology described by Santos  
et al. (2015).  

The vitamin C (mg 100 mL-1) was determined, in triplicate, according to the Association of Official 
Analytical Chemists (AOCS) and to the Tilmman’s Method (Latimer, 1990). Santos et al. (2016) are the 
responsible for describing this methodology in detail. The samples were previously diluted (300 μL sample: 
10 mL distilled water) and UV spectra (200 – 350 nm, steps of 1nm, Ocean Optics, model USB-650-UV-VIS) 
were obtained by using a 1mm quartz cuvette.  

The multi-product multivariate calibration was performed by using the Matlab R2007b and PLS-Toolbox 
5.2 (Eigenvector Research Inc.). The regression method used in the development of multi-product 
multivariate calibration was PLS. In the PLS, the X matrix contains the instrumental responses (UV spectra 
in this case) and the y vector contains the results for acidity and vitamin C (which is obtained by the 
reference methods). These ones are decomposed into two matrix products, a score matrix, and a loadings 
matrix. A least squares regression was obtained from the scores and loadings from X matrix against the 
scores from y vector. More detailed information on the PLS regression method, including a mathematical 
step-by-step, can be obtained in Ferreira (2015).  

The outliers were evaluated according to ASTM E-1655-05 (American Society for Testing and Materials 
[ASTM], 2005) during the model development. Outliers were identified based on leverage, unmodeled 
residuals in spectra and unmodeled residuals on the dependent variable (residual in y). 

Multi-product models were validated by calculating the parameters of merit: accuracy, Residual 
Prediction Deviation (RPD), sensitivity, inverse of analytical sensitivity (analytical sensitivity-1), limits of 
detection and quantification, according to the equations shown in Table 1 (Valderrama, Braga, & Poppi, 
2009; Santos et al., 2016). 

Results and discussion 

Multi-product models were developed based on PLS regression method. For this, the UV spectra of 
soybean juice samples were organized into a matrix. Figure 1 shows the spectra in the UV region for all 
analyzed samples. It was verified the need to apply the first derivative preprocessing to the  
spectra. This occurred probably due to the opaque color of the soybean juice samples, even after its 
dilution. 

Table 1. Equations for the parameters of merit. 

Parameters of merit Equation 

Accuracy 
ܲܧܵܯܴ = ඨ∑ ሺݕ௜ − ௜ሻଶ௡௩௜ୀଵݕ̂ ݒ݊  

ܥܧܵܯܴ = ඨ∑ ሺݕ௜ − ௜ሻଶ௡௖௜ୀଵ݊ܿݕ̂ − ܮܸ݊ + 1  

RPD 

௖௔௟ܦܴܲ = ܦ ௖ܲ௔௟ܴܦܴܲ ܸܥܧܵܯ௩௔௟ = ܦ ௩ܲ௔௟ܴܲܧܵܯ 

Sensitivity ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ = 1‖ܾ‖ 

Analytical Sensitivity ݕݐ݅ݒ݅ݐ݅ݏ݈݊݁ܵܽܿ݅ݐݕ݈ܽ݊ܣ = ‖ݔ‖ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ  

Analytical Sensitivity-1 ିݕݐ݅ݒ݅ݐ݅ݏ݈݊݁ܵܽܿ݅ݐݕ݈ܽ݊ܣଵ =  ݕݐ݅ݒ݅ݐ݅ݏ݈݊݁ܵܽܿ݅ݐݕ݈ܽ݊ܣ1

Limit of detection ݊݋݅ݐܿ݁ݐ݂݁݀݋ݐ݅݉݅ܮ =3.3ݔ ଵௌ௘௡௦௜௧௜௩௜௧௬ 

Limit of quantification ݊݋݅ݐ݂ܽܿ݅݅ݐ݊ܽݑݍ݂݋ݐ݅݉݅ܮ =10ݔ ଵௌ௘௡௦௜௧௜௩௜௧௬ 

nv is the number of samples in the validation set, yi is the reference value for the samples and ŷ is the value predicted by the model for 
the sample  i, nc is the number of samples in the calibration set, nVL is the number of latene variables, DPca l is the standard deviation 
of the reference values in the calibration set, DPval is the standard deviation of the reference values in the validation set, RMSECV is 

the Root Mean Square Error for Cross Validation, RMSEC is the Root Mean Square Error for Calibration, RMSEP is the Root Mean 
Square Error for Prediction, b is the regression coefficient vector obtained from the model, �x is the instrumental noise estimation. On 

the RMSEC equation, the ‘+1’ is added when the pre-processing is the mean center. 
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Figure 1. UV spectra of soybean juice samples. (A) Raw spectra. (B) Spectra after the first derivative. 

The calibration and validation data sets were composed by 94 and 32 samples, respectively, selected by 
the kenston algorithm (Kennard & Stone, 1969). The next step in the model development was the outlier 
detection, in order to improve the model’s quality. The outliers were identified based on data with extreme 
leverage, unmodeled residuals in spectral data and unmodeled residuals in the response obtained by the 
reference method. This procedure resulted in 80 and 76 calibration samples and, in 21 and 23 validation 
samples for models in the determination of total acidity and vitamin C, respectively. A detailed description 
of the samples identified as outliers, as well as the acidity and vitamin C values obtained through the 
reference methods can be seen in Appendix 1 and 2. 

Models were developed with mean center pre-processing and 10 latent variables (LVs), which were 
determined through the Root Mean Square Error for Cross-Validation in the contiguous block of nine 
samples. The accuracy of the models was evaluated by the Root Mean Square Error of calibration (RMSEC) 
and the Prediction (RMSEP), as shown in Table 2. 

RMSEC and RMSEP values are close and suggest that the number of LVs was properly chosen, i.e. it did 
not present overfit or even lack of fit. RMSEC values decrease with the increase in the LVs number. This 
occurs due to errors in spectra and concentrations included in the model adjust. In contrast, RMSECV and 
RMSEP occasionally increase when more LVs are included in the model. However, new samples that were 
not present in the calibration step will have a different behavior of random errors. Therefore, the calibration 
model does not ‘fit’ these errors to the same degree as the errors in samples employed in the calibration. In 
practice, obtaining the same values for these parameters is not easy and it is better than the RMSEC 
presents values slightly higher than the RMSEP, which suggests that this model is suitable for the random 
errors present in the samples that were not part of step calibration (Santos et al., 2013). 

The RMSEC and RMSEP are global parameters and they incorporate random and bias errors. Therefore, it 
is interesting to evaluate these results along with other accuracy indicators, such as the fit of the reference 
values against the predicted ones (correlation coefficient – Table 1). Also, the elliptical joint confidence 
regions (Valderrama et al., 2009) shown in Figure 2. It is observed that the ellipse contains the ideal point 
(1.0) for slope and intercept, respectively, which shows that the reference values and the PLS model are not 
significantly differenced at the 99% confidence level. It is possible to conclude also that the values for these 
parameters determined by titration (potentiometric or oxidation-reduction), and the values of total acidity 
and vitamin C determined by the multi-product PLS model do not present significant difference with 99% 
confidence. 

Correlation coefficient to the fit of the multiproduct model, presented by plotting the reference values 
against the estimated values, was 0.7188 for vitamin C and 0.7435 for total acidity. These values were 
considered satisfactory since previous research reported coefficient values around 0.7, when the reference 
method was the titration method (Valderrama, Braga, & Poppi, 2007a; 2007b; Ferreira, Pallone, & Poppi, 
2013; Santos et al., 2015; 2016). 
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Table 2. Multi-product model’s parameters of merit. 

Parameters of merit Vitamin C Total Acidity 

Accuracy 
RMSECa 2.5332 0.0218 
RMSEPa 1.6973 0.0199 

Correlation coefficient 0.7188 0.7435 
RPDcal 1.3 1.5 
RPDval 2.6 1.7 

Analytical sensitivity-1 a 0.7356 0.0061 
Limit of detectiona 2.4275 0.0200 

Limit of quantificationa 7.3561 0.0606 
a(mg 100 mL-1). 

 
Figure 2. Elliptical joint confidence regions at 99% for the slope and intercept of the regression of predicted concentrations versus 

reference experimental values using ordinary least squares. (A) Total acidity. (B) Vitamin C. (•) Point where the intercept is zero and 
the slope is one. 

The results presented in Table 2 and Figure 2 show that the multi-product PLS model results in more 
‘dispersed’ results for vitamin C, which may be justified by the fact that the vitamin C is oxidized quickly, 
when in the presence of oxygen. In addition, the titration method shows a color turning point that may be 
difficult to identify, especially in colored and cloudy samples, such as soybean juices. 

Figure 3 shows the residuals plot of the calibration and validation samples. The residuals distribution 
seems to present a random behavior, which reinforces that the data fit a linear model. 

RPD value of the calibration model for vitamin C showed close value to what is considered satisfactory 
and may be considered adequate in relation to the RPD value for the validation of this parameter. In the 
model to determine acidity, the RPD can be considered satisfactory for calibration and validation. According 
to the literature (Botelho, Mendes, & Sena, 2013), multivariate models are considered good models when 
they show values for RPD above 2.4. Models with RPD values between 2.4 and 1.5 are also satisfactory.  

The sensitivity and analytical sensitivity showed satisfactory results, taking into account the 
analytical range of the models, 0.83-16.83 mg 100 mL-1for vitamin C and 0.17-0.34 mg 100 mL-1 for total 
acidity. The analytical sensitivity-1 allows one to establish a minimum concentration difference that is 
discernible by the multi-product model. Thus, it is possible to distinguish samples with vitamin C 
concentration in the order of 0.73 mg 100 mL-1 and samples with total acidity in the order of 6.1 x 10-3 
mg 100 mL-1. 

Detection limit shows the lowest concentration of vitamin C and total acidity that can be detected but 
not necessarily accurately quantified. On the other hand, the limit of quantification shows the lowest 
concentration of vitamin C and total acidity that can be quantified with accuracy. In the multi-product 
model for vitamin C determination, the results indicate that the proposed multi-product model cannot 
accurately detect and quantify samples with vitamin C concentration below 2.43 and 7.36 mg 100 mL-1, 
respectively. 
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Figure 3. Residuals for the multi-product models. (A) Total acidity. (B) Vitamin C. (•) Calibration samples. (∗) Validation samples. 

Conclusion 

The results show that there is a favorable possibility of using a PLS model in the evaluation of the total 
acidity and vitamin C in different products (soybean juices with different flavors, and the light type of juice) 
simultaneously. Therefore, UV spectroscopy coupled with the PLS regression method allows the 
construction of multi-product calibration models. In addition, the multi-product models allow rapid 
quantification of the total acidity and vitamin C content and does not require the use of reagents/solvents. 
Thus, it does not generate toxic residues, which is an alternative to the conventional methods based on 
titration and being in accordance with the requirements of the green chemistry. However, we point out that 
the methodology could be improved (perhaps evaluating other spectral pre-processing types or different 
sample of dilutions) in order to obtain lower prediction errors. 
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Appendix 1. Outliers identification and total acid values obtained through reference method. 

No Flavor Total acidity (mg 100 mL-1)-Potentiometry Samples in calibration set Samples in validation set Outliers based on
1 light Peach  0.28 X  Residual in y 
2 light Peach  0.29 X   
3 light Peach 0.29 X   
4 Peach 0.22 X   
5 Peach 0.22 X   
6 Peach 0.22  X  
7 Peach 0.18 X   
8 Peach 0.19 X  Leverage 
9 Peach 0.19 X   

10 Peach 0.28 X   
11 Peach 0.28 X   
12 Peach 0.28 X   
13 Peach 0.25 X   
14 Peach 0.25  X  
15 Peach 0.25  X  
16 Pineapple 0.22 X   
17 Pineapple 0.22  X  
18 Pineapple 0.23  X  
19 Pineapple 0.21 X  Residual in y 
20 Pineapple 0.21 X   
21 Pineapple 0.21 X   
22 Pineapple 0.26  X  
23 Pineapple 0.26 X   
24 Pineapple 0.26 X   
25 Pineapple 0.19 X   
26 Pineapple 0.19 X   
27 Pineapple 0.19  X Residual in y 
28 Pineapple 0.27 X   
29 Pineapple 0.27 X   
30 Pineapple 0.27 X   
31 Pineapple 0.14 X   
32 Pineapple 0.13  X Residual in y 
33 Pineapple 0.14  X Residual in y 
34 Pineapple 0.32  X  
35 Pineapple 0.32 X   
36 Pineapple 0.32  X Residual in y 
37 Apple 0.24 X   
38 Apple 0.24 X   
39 Apple 0.24 X   
40 Apple 0.20 X   
41 Apple 0.20  X  
42 Apple 0.20 X   
43 Apple 0.15  X Residual in y 
44 Apple 0.15  X Residual in y 
45 Apple 0.15 X  Residual in y 
46 Apple 0.32 X   
47 Apple 0.32 X   
48 Apple 0.32  X  
49 Apple 0.25 X   
50 Apple 0.25  X  
51 Apple 0.24 X   
52 light Apple  0.24 X   
53 light Apple  0.24 X   
54 light Apple  0.24 X   
55 Apple 0.24  X Residual in y 
56 Apple 0.24  X  
57 Apple 0.24  X  
58 Lemon 0.21 X   
59 Lemon 0.22 X  Residual in y 
60 Lemon 0.22 X  Residual in y 
61 Pomegranate 0.27 X   
62 Pomegranate 0.27 X   
63 Pomegranate 0.27 X   
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64 Strawberry 0.27 X  Residual in y 
65 Strawberry 0.27 X   
66 Strawberry 0.27 X   
67 Strawberry 0.21 X   
68 Strawberry 0.21 X   
69 Strawberry 0.21 X   
70 Grape 0.30 X   
71 Grape 0.30 X   
72 Grape 0.30  X Residual in y 
73 Grape 0.25  X  
74 Grape 0.26  X  
75 Grape 0.26 X   
76 light Grape 0.16 X   
77 light Grape 0.16  X Residual in y 
78 light Grape 0.17  X Residual in y 
79 Grape 0.24 X   
80 Grape 0.24 X   
81 Grape 0.24 X   
82 Grape 0.19 X  Residual in y 
83 Grape 0.19 X   
84 Grape 0.19 X   
85 Grape 0.36 X   
86 Grape 0.36  X Residual in y 
87 Grape 0.35 X  Residual in y 
88 Grape 0.17 X   
89 Grape 0.17 X   
90 Grape 0.17 X   
91  light Grape 0.23 X   
92 light Grape 0.23 X   
93 light Grape 0.23 X   
94 light Orange 0.28 X   
95 light Orange 0.29  X Residual in y 
96 light Orange 0.29 X   
97 Orange 0.19 X   
98 Orange 0.19  X Leverage 
99 Orange 0.19  X Leverage 

100 Orange 0.34 X   
101 Orange 0.33 X   
102 Orange 0.34 X   
103 Orange 0.19  X Residual in y 
104 Orange 0.19 X   
105 Orange 0.19 X   
106 Passion fruit 0.17 X   
107 Passion fruit 0.17 X   
108 Passion fruit 0.17 X   
109 Passion fruit 0.23 X   
110 Passion fruit 0.23 X   
111 Passion fruit 0.24 X   
112 Peach 0.20 X   
113 Peach 0.20 X   
114 Peach 0.20 X   
115 light Peach 0.24 X   
116 light Peach 0.24 X   
117 light Peach 0.24 X  Residual in y 
118 Papaya 0.28 X   
119 Papaya 0.28 X   
120 Papaya 0.28  X Residual in y 
121 Mango 0.24 X   
122 Mango 0.24 X  Residual in y 
123 Mango 0.24 X   
124 Tangerine 0.22 X   
125 Tangerine 0.22  X  
126 Tangerine 0.22  X  
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Appendix 2. Outliers identification and vitamin C values obtained through reference method. 

No 
 

Flavor 
Vitamin C (mg 100 mL-1) 

Titration 
Samples in calibration set Samples in validation set Outliers based on 

1  light Peach  9,60 X   
2  light Peach  9,44 X   
3  light Peach 9,60 X   
4  Peach 12,32 X   
5  Peach 12,16 X   
6  Peach 12,32  X  
7  Peach 26,24 X  Leverage/ Residual in y 
8  Peach 26,56 X  Leverage 
9  Peach 26,72 X   

10  Peach 1,60 X   
11  Peach 1,60 X  Residual in spectrum 
12  Peach 1,60 X   
13  Peach 4,16 X   
14  Peach 3,84  X  
15  Peach 4,32  X  
16  Pineapple 4,96 X   
17  Pineapple 5,44  X  
18  Pineapple 5,44  X  
19  Pineapple 1,76 X   
20  Pineapple 1,60 X  Residual in y 
21  Pineapple 1,60 X   
22  Pineapple 11,33  X  
23  Pineapple 11,00 X   
24  Pineapple 11,00 X   
25  Pineapple 15,67 X   
26  Pineapple 16,00 X   
27  Pineapple 15,50  X Residual in y 
28  Pineapple 1,83 X   
29  Pineapple 2,33 X   
30  Pineapple 2,17 X   
31  Pineapple 4,00 X  Residual in y 
32  Pineapple 4,50  X  
33  Pineapple 4,17  X  
34  Pineapple 10,17  X  
35  Pineapple 10,67 X   
36  Pineapple 10,67  X  
37  Apple 6,50 X   
38  Apple 7,67 X   
39  Apple 7,67 X   
40  Apple 10,50 X   
41  Apple 11,00  X  
42  Apple 11,00 X  Residual in y 
43  Apple 0,83  X  
44  Apple 1,00  X  
45  Apple 1,00 X   
46  Apple 9,50 X   
47  Apple 9,33 X   
48  Apple 9,33  X Residual in y 
49  Apple 2,33 X   
50  Apple 2,33  X  
51  Apple 2,50 X   
52  light Apple  1,00 X   
53  light Apple  0,83 X   
54  light Apple  1,00 X   
55  Apple 0,83  X Residual in y 
56  Apple 1,00  X Residual in y 
57  Apple 1,00  X Residual in y 
58  Lemon 7,50 X   
59  Lemon 7,17 X  Residual in y 
60  Lemon 7,67 X   
61  Pomegranate 2,33 X   
62  Pomegranate 3,00 X   
63  Pomegranate 2,67 X   
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64  Strawberry 9,33 X   
65  Strawberry 9,67 X   
66  Strawberry 9,17 X   
67  Strawberry 16,83 X  Residual in y 
68  Strawberry 17,17 X  Residual in spectrum/ Residual in y
69  Strawberry 16,83 X   
70  Grape 10,33 X   
71  Grape 10,17 X   
72  Grape 10,33  X  
73  Grape 0,83  X  
74  Grape 1,00  X  
75  Grape 0,83 X   
76  light Grape 12,16 X   
77  light Grape 11,84  X Residual in y 
78  light Grape 12,16  X Residual in y 
79  Grape 8,33 X   
80  Grape 8,83 X   
81  Grape 8,67 X   
82  Grape 9,50 X   
83  Grape 9,00 X   
84  Grape 9,17 X   
85  Grape 7,04 X   
86  Grape 7,36  X  
87  Grape 7,04 X   
88  Grape 8,32 X  Residual in y 
89  Grape 9,12 X   
90  Grape 9,12 X   
91   light Grape 1,44 X   
92  light Grape 1,44 X   
93  light Grape 1,28 X   
94  light Orange 1,44 X   
95  light Orange 1,12  X  
96  light Orange 1,28 X   
97  Orange 28,50 X  Residual in y 
98  Orange 28,67  X Leverage/ Residual in y 
99  Orange 28,50  X Leverage/ Residual in y 

100  Orange 6,83 X   
101  Orange 6,50 X  Residual in y 
102  Orange 6,83 X  Residual in y 
103  Orange 16,83  X  
104  Orange 16,33 X   
105  Orange 16,83 X   
106  Passion fruit 11,00 X   
107  Passion fruit 10,83 X  Residual in y 
108  Passion fruit 11,00 X   
109  Passion fruit 16,17 X   
110  Passion fruit 16,17 X   
111  Passion fruit 16,00 X   
112  Peach 12,00 X  Residual in spectrum 
113  Peach 12,00 X   
114  Peach 12,17 X  Residual in y 
115  light Peach 44,33 X  Residual in y 
116  light Peach 44,50 X   
117  light Peach 44,33 X   
118  Papaya 7,00 X   
119  Papaya 7,33 X   
120  Papaya 7,00  X  
121  Mango 11,00 X   
122  Mango 11,00 X   
123  Mango 11,17 X   
124  Tangerine 4,17 X  Residual in y 
125  Tangerine 4,33  X  
126  Tangerine 4,17  X  

 


