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ABSTRACT. The Langmuir isotherm is a nonlinear regression model, being one of the most applied in 
adsorption studies. In this type of study, the data are collected over time, which can provide correlated 
errors; in addition, the collection is not always done in an equidistant way, which may influence the 
estimation of model parameters. One way of modelling the dependent errors in a regression model is to 
use an autoregressive process that assumes that the observations are performed at equidistant intervals. 
However, the definition of the independent variable is often performed at irregular intervals, causing a 
reduction of information obtained from the dataset. One possible improvement in the adjustment quality 
of these models is the use of the irregular autoregressive process. The objective of this work was to 
compare the estimates of isotherm parameters with different irregular and regular autoregressive error 
structures, considering the positive autocorrelation in different sample sizes, error autocorrelation values 
and positioning of non-equidistant observations. It was found that there is a need to respect the 
assumptions of the model. The irregular autoregressive model is more appropriate because it is mostly 
more precise and accurate, especially when non-equidistance occurs in the initial third. 
Keywords: nonlinear model; Monte Carlo simulation; estimators; precision; accuracy; autoregressive error. 

Isoterma de adsorção de langmuir com estruturas de erros autorregressivos regulares e 
irregulares 

RESUMO. A isoterma de Langmuir é um modelo de regressão não linear, sendo um dos mais aplicados 
em estudos de adsorção. Neste tipo de estudo os dados são coletados ao longo do tempo, o que pode 
proporcionar erros correlacionados, além disso, a coleta nem sempre é feita de forma equidistante, o que 
pode influenciar a estimação dos parâmetros do modelo. Uma forma de modelar os erros dependentes em 
um modelo de regressão é utilizar um processo autorregressivo que supõe que as observações sejam 
realizadas em intervalos equidistantes. Entretanto, a definição da variável independente muitas vezes é 
realizada em intervalos irregulares, ocasionando a redução de informações obtidas do conjunto de dados. 
Uma possível melhoria da qualidade do ajuste destes modelos é o uso do processo autorregressivo irregular. 
Este trabalho teve como objetivo comparar as estimativas dos parâmetros da isoterma com diferentes 
estruturas de erros autorregressivos, regulares e irregulares, considerando a autocorrelação positiva em 
diferentes tamanhos amostrais, valores de autocorrelação do erro e posicionamentos das observações não 
equidistantes. Verificou-se que há necessidade de se respeitar as pressuposições do modelo. O modelo 
autorregressivo irregular é mais indicado por ser, na maioria, mais preciso e acurado, principalmente 
quando a não equidistância ocorre no terço inicial. 
Palavras-chave: modelo não-linear; simulação Monte Carlo; estimadores; precisão; acurácia; erros autorregressivos. 

Introduction 

By adjusting a nonlinear regression model, it is 
assumed that the model errors are uncorrelated, that is, 
they are independent of each other. In addition, the 
errors must be identically distributed with normal 
distribution mean zero and constant variance. If there 
is correlation between the errors, it is said that they are 
auto correlated and the coefficient of autocorrelation ρ 
determines the degree of correlation existing, that is, it 
measures its co variability. 

When working with statistical modelling, the 
idea is that, when performing the adjustment of the 
usual model, it is verified whether it meets the 
assumptions of the regression methodology, which 
can be verified by graphical analysis of errors and 
confirmed analytically by tests of independence, 
normality and homogeneity of variances. If the 
dependence of errors is characterized, one way to 
adjust models with dependent errors, bypassing the 
problem of autocorrelation is to use time series 
techniques such as the autoregressive process, which 



Page 2 of 8 Cintra et al. 

Acta Scientiarum. Technology, v. 40, e37792, 2018 

in turn assumes that the observations are performed 
at equidistant intervals. However, in some studies, 
the definition of the independent variable is often 
performed at different or non-equidistant intervals. 
By ignoring this irregularity in the measurements, 
you can have, for example, the reduction of 
information obtained from the dataset with possible 
problems of super or underestimation of model 
parameters. An alternative to improve the quality of 
the adjustment is to consider the irregularity in the 
data collection by applying the irregular 
autoregressive process (Vasagam, Jagathnath, & 
Kollannavar, 2016).  

The Langmuir adsorption isotherm is a 
nonlinear model described by an equation that 
relates the volume of solute adsorbed to the 
concentration of the adsorbent in an adsorption 
phenomenon. Adsorption is a solid-fluid type mass 
transfer operation in which the ability of some solids 
to concentrate on their surface certain substances 
found in liquid or gaseous solutions is explored 
(Gomide, 1980). 

The Langmuir adsorption isotherm is expressed 
by the Equation 1:  

௜ݕ   = 1ܯܥܭ + ܥܭ + ௜ (1)ߝ

 
in which y is the amount of solute adsorbed, K is the 
affinity parameter between the adsorbent and the 
adsorbed solute and indicates the rate with which 
the adsorption reaches its maximum value. M is the 
parameter that indicates the maximum amount of 
solute that can be adsorbed; C is the concentration 
of adsorbent (or time) and ε is the random error 
associated with the model (εi~N(0,σ²).   

Every adsorbent surface has a limited adsorption 
capacity, becoming saturated when the limit is 
reached. In the Langmuir isotherm, this limit is 
given by parameter M, because as the concentration 
increases, the amount of solute adsorbed tends to M. 
The affinity parameter between the adsorbent and 
the adsorbed solute (K) indicates the rate at which 
the adsorption reaches its maximum value. The 
higher the value of K the faster is the saturation of 
the adsorbent surface. 

It can be noticed that, in many studies on 
adsorption where the modelling is performed by the 
Langmuir isotherm, errors can be correlated and in 
addition, data collection is not always performed on 
a regular basis. The autocorrelation of the errors and 
the irregularity in the measurements can influence 
the estimation of parameters of the model in 
question. 

The objective of this study was to compare 
estimates of the Langmuir isotherm parameters with 
different autoregressive error structures of order 1, 
regular and irregular, with different sample sizes, 
correlations and non-equidistance in the 
measurements of the independent variable using 
Monte Carlo simulation. The objective was also to 
evaluate the scenario ignoring the presence of 
autocorrelation. 

Autoregressive errors 

When adjusting a regression model in which the 
assumption of independence in waste is not met, 
using classical methods, they produce biased 
estimates. A regression model (Equation 1) in which 
autocorrelation is present is known as an 
autoregressive process and a way of representing 
how the new error becomes in a process of order 1 
is given by Equation 2. Where εi is given by 
Equation 2: 

 
௜ߝ   = ௜ିଵߝߩ − ௜ (2)ݑ

 
where: 
ρ is the coefficient of autocorrelation and ui an error 
term with the characteristics of the hypotheses of 
the regression model, with i =1,...,n.  

An autoregressive process is a regression of a 
variable by itself (Sartoris, 2003). When we have a 
lag of the variable, that is, when the value of εi and 
its immediately previous value are involved it is 
named AR(1). The estimation of the coefficient of 
autocorrelation ρ is performed by the method of the 
least squares, that is, it is sought ρ that minimizes 
the sum of squares of the errors. 

As it is generally not possible to collect data with 
equidistant measures, it is common in some studies 
to ignore this irregularity in the measurements and 
treat the data as if they were regular, which can 
introduce biases in the parameter estimates. 

An alternative is to use a method to analyse a 
time series with not equally spaced data. The 
authors1 consider a time series yt that can be 
decomposed as ݕ௧ = (ݐ)ܾ  ௧, where, b(t) is aߝ	+
function that represents the trend component and εt 
the random noise. To consider the irregularity in the 
data, the authors take {yt, ti}, a sample of yt. It is then 
defined ߝ௧೔ = ௧೔ݕ − ܾ௣(ݐ௜) and {ߝ௧೔,  ௜} is treated as aݐ
sample of ߝ௧. An autoregressive process of order 1 is 
defined for irregular data such as: 

Definition: A time series {ߝ௧೔,  ௜} is stationaryݐ
irregularly sampled if ߝ௧ is stationary and if for every 
t and ∆௜> ௧ା∆೔ߝ ,0 = ௧ߝ೔∆ߩ + ,௧ݑ)ݒ݋ܿ ௧ା∆೔~ܰ(0,1) andݑ ௜ା∆೔ in whichݑ೔∆ߪ (௦ݑ = 0 for each ݐ ≠  ݏ
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and ߪ∆೔ଶ = ଶߪ ቀଵିఘమ∆೔ଵିఘమ ቁ, for some σ > 0 (Vasagam, 

Jagathnath, & Kollannavar, 2016).   
In this work, the nonlinear Langmuir isotherm 

model (Equation 1) was used to represent the trend 
component and the irregularity in the data was 
previously defined for the simulation process. 

Thus, in the regression model in which the 
errors are irregular autoregressive (IS-AR(1)), ߝ௜ is 
given by Equation3: 

௜ߝ  = ௜ିଵߝ೔∆ߩ − ௜ݑ  (3)
 

where: 
Δi represents the interval between two subsequent 
observations and μi is a random variable with mean 
zero and constant variance σ². The estimation of the 
autocorrelation coefficient ρ is performed by the 
least squares method. 

Experimental part 

Monte Carlo simulation process 

The evaluation of different scenarios (120) in the 
estimation of the parameters of the nonlinear 
Langmuir Isotherm model was performed 
considering different sample sizes n ∈ {12, 30, 60, 
90}, different autocorrelation values of the errors ρ 
∈ {0.2; 0.5; 0.8} and different positioning of the 
non-equidistant observations, via Monte Carlo 
simulation. In order to allow non-equidistance, 
some points of the independent variable C were 
taken randomly, considering the order. For a better 
understanding, Figure 1 shows the parts of the 
independent variable where the data was taken. 
Nine situations were evaluated: withdraw 25, 50 and 
75% from the initial, central and final thirds of the 
data. 

The values of the parameters for the simulation 
process were K = 0.9 and M = 20 (Fungaro, 
Yamaura, & Graciano, 2010). Concentration values 
ranged from zero to ten mg L-1. 

One thousand simulations were performed for 
each of the scenarios using the program R (R Core 
Team, 2016). The adjustment procedures for the 
model with independent and correlated error 
structures were implemented through the gnls 
function of the nlme package (Pinheiro, Bates, 
DebRoy, & Sarkar, 2016). The random error was 
generated from a normal distribution with zero 
mean and standard deviation equal to two. 
Considering the parameterization presented in 
Equation 1, the errors contained a regular 
autoregressive structure of order 1 presented in 
Equation 2 and irregular autoregressive of order 1 

presented in Equation 3. In the case of irregular 
errors, possible problems were diagnosed when 
simulations involving ρ of small numerical value 
and the exponents of large values, making the 
computational process difficult. The solution found 
was to work with a linear transformation of the 
distances given by ߜ௜ = ∆೔୫୧୬	(∆೔) and use the optimize 

function of the R program stats package to calculate 
the value that minimizes the sum of squares of the 
errors by replacing Δi with ߜ௜. All simulations were 
followed in accordance with the Durbin-Watson test 
(p-value < 5%) and pacf and acf plot. 

 

 
Figure 1. Graphical representation of a Langmuir isotherm 
model with the concentration values separated by the parts: initial 
third, middle third and final third. 

Evaluation of parameters estimates and evaluators of 
adjustment quality 

The relative mean bias percentage (RMB) was 
used to verify the accuracy of the estimates of the 
parameters of the model studied, and the relative 
mean square error (RMSE) was used for the 
precision of the estimates. Their values were 
calculated respectively by the following Equation 4 
and 5 (Casella & Berger, 2010): 

ܤܯܴ  = ቆ∑ หഇ෡೔షഇหೞ೔సభ|ഇ| ቇ௦ × 100 (4)

ܧܵܯܴ = ቆ∑ ෠௜ߠ) − ଶ௦௜ୀଵ(ߠ |ߠ| ቇݏ × 100 
(5)

 
where: 
in which s is the number of simulations (s = 1000), 
θ is the value of the simulated parameter, that is, the 



Page 4 of 8 Cintra et al. 

Acta Scientiarum. Technology, v. 40, e37792, 2018 

value of ρ, K or M and ߠ෠௜ is the estimate of 
parameter θ  in the i-th simulation. 

In order to measure or evaluate the adjustment 
quality of the models with regular or irregular 
autoregressive errors, the Akaike (Akaike, 1974) 
ܥܫܣ) = ෠൯ߠ൫ܮ݃݋2݈− +  and the Bayesian (݌2
information (Schwarz, 1978) (ܥܫܤ = ෠൯ߠ൫ܮ݃݋2݈−  information criteria were used, in which p ((݊)݃݋݈݌+
is the number of parameters of the model, ܮ൫ߠ෠൯ is 
the maximum of the likelihood function, 
considering the parameter estimates and n is the 
sample size. 

Cases where AIC values are very close, for 
different models, Motulsky and Christopoulos 
(2003) recommended the use of Akaike's weight, 
which provides a probability that the model with the 
lowest AIC is the correct model. The probability is 

given by: ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ = ௘షబ.ఱ∆ಲ಺಴ଵା௘షబ.ఱ∆ಲ಺಴, in which ∆஺ூ஼= ஻ܥܫܣ − ஻ܥܫܣ ஺ beingܥܫܣ >  .஺ܥܫܣ

Results and discussion 

Evaluation of the parameter estimates 

In almost all sample sizes, the IS-AR(1) model 
was more accurate than the AR(1) model. This 
statement can be verified in all the results obtained. 
Figure 2 shows the graphical representation of the 
results referring to the accuracy of parameter K 
estimates. The graphs in the first column refer to ρ 
= 0.2, those in the second column to ρ = 0.5 and 
those in the third column to ρ = 0.8. It is observed 
that as autocorrelation increases, accuracy decreases, 
as well as, as the sample size increases, accuracy 
increases, regardless of the model. It is also noted 
that the lack of data in the initial third (Figure 2a) 
increases the RMB of the estimates. This occurrence 
is accentuated for sample size 12. A greater 
difference between the correlated and uncorrelated 
models is observed in the presence of higher 
correlation. 

Regarding the accuracy of the estimates of K, it is 
noted that, according to Figure 3, as autocorrelation 
increases, there is an increase of error. As the sample 
size increases, precision increases, regardless of the 
model, which was expected. In almost all sample 
sizes, the IS-AR(1) model was more accurate than 
the AR(1) model and it can be stated that the lack of 
data in the initial third decreases the precision of the 
estimates more than when the loss occurs in the 
other thirds. Convergence problems of the 
nonlinear estimation algorithm were observed more 
expressively for smaller samples and data losses in 
the initial third.  

Figure 4 presents the results regarding the 
accuracy of the estimates of M, which present 
behaviour similar to the estimates of K when there is 
an increase in autocorrelation, since accuracy 
decreases, and, as sample size increases, accuracy 
increases regardless of the model. However, when 
comparing the accuracy between the estimates of the 
AR(1) and the IS-AR(1) models, a small percentage 
difference in the RMB values is observed. Larger 
differences were observed between the correlated 
and uncorrelated models as the correlation increases. 
The region of data loss does not interfere with the 
estimates of RMB. 

As the sample size increases, accuracy increases, 
mainly in ρ = 0.2 and in ρ = 0.5, which was 
expected. Unlike parameter K, not always the 
IS-AR(1) model was more accurate than the AR(1) 
model. For a high correlation, accuracy was shown 
to be similar for all sample sizes. The correlated and 
uncorrelated models presented similarity for RMSE. 
As autocorrelation increases, there is an increase of 
error in parameter M (Figure 5). 

Comparison of the autoregressive models AR(1) and IS-
AR(1) with the model that does not consider 
autocorrelation 

In order to verify the importance of considering 
the presence of autocorrelation in the estimation 
process of the Langmuir isotherm parameters, the 
accuracy and precision obtained from the AR(1) and 
IS-AR(1) models were compared with those of the 
model which does not consider the presence of 
autocorrelation. 

Table 1 shows the mean values of RMB and 
RMSE obtained in the estimation of parameters K 
and in the three error structures. The incorporation 
of autocorrelation in the model presented more 
precise and more accurate estimates, mainly in 
parameter K. By not considering autocorrelation, the 
value of RMSE of parameter K estimation is, on 
average, 78% higher than the estimation when 
autocorrelation is considered and 9% higher in the 
estimation of parameter M. The results corroborate 
the studies done by the authors (Mazzini, Muniz, 
Silva, & Aquino, 2005; Pereira, Muniz, & Silva, 
2005; Mendes, Muniz, Silva, Mazzini, & Silva, 2009; 
Porter et al., 2010; Neto, Carvalho, & Mischan, 
2013), that considered the structure of 
autoregressive errors in the adjustment of nonlinear 
models and obtained more accurate estimates of 
parameters and more efficient adjustments when 
compared to the adjustment of the models without 
the presence of autocorrelation. 
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Figure 2. Representation of RMB (%) values of parameter K estimates at different autocorrelation values with 50% of data taken from: (a) 
initial third, (b) central third, and (c) final third. 

 
Figure 3. Representation of RMSE (sqrt) values of parameter K estimates in different autocorrelation values with 50% of the data taken 
from: (a) initial third, (b) central third, and (c) final third. 
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Figure 4. Representation of RMB (%) values of parameter M estimates at different autocorrelation values with 50% of the data taken 
from: (a) initial third, (B) central third, and (c) final third. 

 
Figure 5. Representation of RMSE (sqrt) values of parameter M estimates in different autocorrelation values with 50% of the data taken 
from: (a) initial third, (B) central third, and (C) final third. 
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Table 1. Comparison of mean values of RMB and RMSE(sqrt) 
for parameters K and M estimates. 

 Parameter IS-AR(1) AR(1) No correlated 

RMB (%) K 36.80 39.17 48.78 
M 8.78 8.83 9.36 

RMSE K 43.43 50.53 77.17 
M 22.14 22.10 24.14 

 

Adjustment quality assessment  

The mean AIC and BIC values of the 
autoregressive models AR(1) and IS-AR(1) were 
close. However, when the autoregressive models are 
compared with the model that does not consider 
autocorrelation, the first ones present smaller values 
in both the Akaike information criterion and the 
Bayesian information criterion, as observed in  
Table 2. Note that, as the sample size increases, the 
AIC and BIC values of the autocorrelation models 
distance themselves from the model that does not 
consider it. 

Table 2. Mean values of AIC and BIC of the three models 
studied by sample size. 

 n IS-AR(1) AR(1) No Correlated 

AIC 

90 317.14 316.90 342.61 
60 211.26 211.08 226.08 
30 105.42 105.24 110.32 
12 41.33 40.74 41.84 

BIC 

90 324.10 323.85 349.56 
60 216.99 216.81 231.81 
30 109.08 108.90 113.98 
12 42.23 41.65 42.75 

 

The results obtained are in agreement with the 
authors Prado, Savian, and Muniz (2013), who 
obtained close values for the Akaike information 
criterion in models with different structures of 
autoregressive errors. Other studies (Neto  
et al., 2013) concluded that adjustments in models 
with autoregressive error structure of order 1 in 
relation to models with independent error structures 
were shown to be better in the study of bovine 
animals’ growth, considering the Akaike (AIC) and 
the Bayesian (BIC) information criteria.  

Since the AIC values between the models AR(1) 
and IS-AR(1) are very close, the Akaike Weights 
values were calculated. The results varied between 
0.43 and 0.48 for the IS-AR(1) model and, 
consequently, 0.52 and 0.57 for the AR(1) model, 
that is, the probability of decision between the two  
models can be considered close and therefore, 
according to AIC, any of the models could be 
chosen. Thus, according to the results of accuracy 
and precision obtained in the simulation studies, the 
IS-AR(1) model is more adequate than the AR(1) 
model in most of the sample sizes studied for 
parameter K and similar for parameter M. 

Conclusion 

By adjusting the model with autoregressive error 
structures, considering the positive autocorrelation 
and non-equidistance in the independent variable, it 
is concluded that the estimates of parameter K of the 
irregular model (IS-AR(1)) are more precise and 
more accurate than estimates of the regular model 
(AR(1)) in practically all scenarios studied, 
regardless of the factors under study. It obtained 
similar behaviour for parameter M.  

Ignoring the presence of autocorrelation between 
the data in the Langmuir Isotherm produces an 
increase in bias and a decrease in the precision of its 
parameter estimates, manly in high correlated.  

The IS-AR(1) model is more appropriate for 
better estimation of parameter K of the isotherm. 

The results of the simulations of this study show 
that, if the presence of autocorrelation is identified, the 
IS-AR(1) and AR(1) models provide an improvement 
in the adjustment quality. From the AIC and BIC 
values obtained from the model that does not consider 
autocorrelation it is noticed that, mainly, in larger 
samples, the autocorrelation should not be ignored 
when the Langmuir isotherm model is adjusted. 

Excessive data loss and very high autocorrelation 
values hinder the nonlinear estimation process. 
Good estimates are reached when the sample 
number is greater than 30 and the autocorrelation is 
less than 0.5. 
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