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ABSTRACT. In this paper we analyzed the complexity of the time series of wind speed in Petrolina, Brazil 
at heights of 25 and 50 m. We applied the sample entropy (SampEn) method on wind speed temporal 
series for each month of 2010, in order to analyze the intra-annual variability of complexity for wind 
dynamics and its relation with the wind potential. The results showed that wind speed fluctuations are 
more regular when comparing consecutive data sequences over one hour periods. Although the average 
wind speed was higher at 50m, indicating higher wind potential, the values of SampEn were also higher 
between June and September indicating a greater complexity of wind dynamics and consequently lower 
efficiency in wind energy capture. In the months of February, October, and November, when the average 
wind speed exceeded the minimum value for generation of wind power (3.5 m s-1) at both heights, the 
average wind speed increased and the entropy decreased with height. This indicates a higher wind 
potential and more regularity of wind dynamics at a height of 50 m, both favorable for wind energy 
production. For the rest of the year the wind power generation was possible only at height of 50 m. 
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Introduction 

Wind power is one of the most rapidly growing renewable energy sources because of its high efficiency 
and low pollution. The participation of wind power in US electricity production is projected to be 20% until 
2030 (Lindenberg, 2009) and 12% until 2020 in Europe (Van Hulle et al., 2009). Wind energy production in 
Brazil increased from 22 MW in 2003 to 602 MW in 2009 as the result of the government Program for 
Incentive of Alternative Electric Energy Sources (Programa de Incentivo às Fontes Alternativas de Energia 
Elétrica - Proinfa), which was created in 2002 to stimulate the electricity generation from wind power, 
biomass, and small hydroelectric plants (Dutra & Szklo, 2008). It will contribute significantly to the 
electricity supply, especially during the dry season in the Northeast of Brazil, where the temporal variation 
of the wind potential shows complementarity with the flows of the São Francisco River. However, large scale 
integration of wind power into electricity grid is still challenging due to intermittency and high spatio-
temporal variability of wind speed, and there is a constant effort in the development of new more accurate 
models for wind speed and wind power forecasting (Jung & Broadwater, 2014). 

The evaluation of the wind potential at certain locations requires a detailed statistical analysis of the 
wind speed and its frequency distribution. Although various probability models for description of wind 
speed were proposed and evaluated (Jung & Broadwater, 2014), in most cases Weibull and Rayleigh 
distributions were shown to be suitable for wind energy analysis (Lima & Bezerra Filho, 2010; Rocha, Sousa, 
Andrade, & Silva, 2012; Pishgar-Komleh, Keyhani, & Sefeedpari, 2015; Ozay & Celiktas, 2016; Wais, 2017). 
In addition to this classical approach, the analysis of the dynamical structure (complexity) of wind speed can 
provide valuable information about stochastic processes that generate its temporal and spatial variability, 
which is important for the planning of wind energy production and for development and evaluation of 
predictive theoretical and computational models for wind speed and wind power. 

During the last decades, various complexity measures such as fractal dimension, multifractal spectra, 
Lyapunov exponents, and entropies were developed to quantify complexity in real-world time series. These 
have been widely used to study the complexity of atmospheric phenomena, including wind speed (Millán, 
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Rodríguez, Ghanbarian-Alavijeh, Biondi, & Llerena, 2011; Chang et al., 2012; Li & Zuntao, 2014; Telesca, 
Lovallo & Kanevski, 2016; Xavier et al., 2018). Among these methods, approaches that rely on entropy are 
particularly interesting due to their simplicity, lack of intensive computations, and robustness for short 
non-stationary and noisy data. 

In this work we applied Sample Entropy method (Richman & Moorman, 2000) to evaluate the complexity 
of wind speed time series in Petrolina, which is considered one. of most promising locations for wind energy 
production in Pernambuco, Brazil (Silva, Alves, Cavalcanti, & Dantas, 2002). We analyzed intra-annual 
variability of wind dynamical complexity by calculating entropy values for each month during the year 2010, 
and investigated the relation between complexity and wind power potential.  

Material and methods 

Data 

The data used in this work are wind speed temporal series recorded at Sonda (Sistema Nacional de 
Organização de Dados Ambientais) in Petrolina, Brazil for 09° 04' 08" S latitude, 40° 19' 11 O longitude, and 
altitude of 387 m. The Sonda station belongs to National System for Environmental Data and was 
implemented by the National Institute of Space Research (Inpe- Instituto Nacional de Estudos Espaciais) to 
provide a physical infrastructure and the human resources to raise and improve the database of solar and 
wind energy resources in Brazil. The data was obtained from Inpe and are available at the electronic address 
<http://sonda.ccst.inpe.br/basedados/petrolina.html>. As one year long measurement of data from an 
observation station is sufficient in order to determine the wind power potential and project feasibility (Köse, 
2004), we chose the most complete dataset: series of 10 min. observations recorded at heights 25 and 50 m 
in the year 2010 (roughly 52000 data points) which are shown in Figure 1. 

Sample entropy 

Sample entropy (SampEn) was introduced by Richman and Moorman (2000), as a modification of the 
Approximate entropy (ApEn) method (Pincus, 1991). Both methods evaluate the complexity of short non-
stationary signals by examining time series for similar epochs, where more frequent and similar epochs (i.e. 
increased regularity in the time series) lead to lower values of sample entropy. SampEn (m, r, N) is defined as 
the negative natural logarithm of the conditional probability that two sequences (within the time series) 
which are similar for m points remain similar at the next point, where self-matches are not included (in 
contrary with ApEn) in calculating the probability.  

Sample entropy algorithm can be described as follows (Richman & Moorman, 2000): 
i) For a time series of length N , Njju ,...,1),( = , we form 1+−mN  vectors of length m, 
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Figure 1. Original wind speed (m s-1) series recorded at the Petrolina station at heights of 25 (A) and 50 m (B). 
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It can be shown that Am(r) / Bm(r) = A/B where A is the number of forward matches of length m+1 and B is 
the number of forward matches of length m. The quantity A/B is precisely the conditional probability that 
two sequences within a tolerance r for m points remain within r of each other at the next point and SampEn 
(m,r,N) can be expressed as -1n(A/B) (Richman & Moorman, 2000). It is the negative natural logarithm of 
the conditional probability that two sequences similar for m points remain similar at the next point, where 
self-matches are not included in calculating the probability. SampEn statistics agrees much better with 
theory than ApEn statistics when applied on random numbers with known probabilistic character. The 
record length has less effects on SampEn than on ApEn, although both have residual bias for very short 
record lengths as a result of non-independence of the templates (Richman & Moorman, 2000). 

Sample entropy method was used in analyzing physiological processes (Costa, Henriques, Munshi, Segal, 
& Goldberger, 2014), geophysical signals (Hernández-Pérez, Guzman-Vargas, & Ramírez-Rojas, 2010), 
hydrological (Chou, 2014) and financial time series (Alvarez-Ramirez, Rodriguez, & Alvarez, 2012).  

Results and discussion 

The results of the descriptive statistics are presented in Table 1. The power of the wind per unit area is 
given by P(v)=1/2pv3 , where P (Wm - 2) is the power per unit area, p kg m-3) is the air density, and v (ms - 1) 
is the wind speed (Safari & Gasore, 2010). For most wind turbines, the range of cut-in wind speed (the speed 
at which the turbine starts producing the energy) is 3.5 – 423.5 m s-1. It is seen from Table 1 that at 25 m, 
the average wind speed is above cut in level from June to November, and during the whole year at 50 m. At 
both heights, the average wind speed is the highest (with lowest variation) in September indicating the most 
favorable period of year for energy generation. Santos, Silva, and Moisés (2013) analyzed seasonal variability 
of wind speed in Northeast Brazil and also found that the highest wind speed were recorded in winter (June, 
July, August) and spring (September, October, November). Lima and Bezerra Filho (2010) have also 
demonstrated the existence of seasonality in wind speeds in the semiarid NEB region (Triunfo) with 
maximum values in the months of July to November and minimums in March and April.  
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Table 2 presents the SampEn values for m = 2 to m = 6 (representing the sequences with 2 to 6 
consecutive data - consecutive 10 min. observations for intervals of 20 min. up to 1 hour) of the wind speed 
at heights of 25 and 50 m for each month of 2010. The results provide additional information on wind 
dynamics that may be relevant for wind power production. The entropy values decrease with m, indicating a 
greater regularity (greater predictability) of the wind speed when the sequences of consecutive 10 min. 
values are considered during the intervals of 1 hour. 

For June, July, August, and September the average wind speed is above cut-in level at both heights, 
however the entropy values are higher at 50 m indicating lower regularity in wind dynamics. This property 
can be considered as unfavorable for wind power generation at 50 m compared to 25 m, contrary to the 
average speed that is greater at 50 m indicating greater wind potential. For months February, October, and 
November the average wind speed is above cut-in level at both heights, and the entropy values are smaller 
at 50m, indicating greater regularity of the series. Both measures (average speed and entropy) indicate 
favorable conditions for wind power generation at 50 m. For other months (January, March, April, and 
December) the average wind speed at 25 m is below cut-in level meaning that here is no wind power 
production, while at 50 m, the average speed is above cut-in level, and the entropy values are lower both 
indicating favorable conditions for wind energy production. Ahmed and Mandic (2011) analyzed high 
frequency wind velocity data recorded using a 3D ultrasonic anemometer and found that for vertical 
component and east-west horizontal component the entropy increases with speed.  

As a natural turbulent process wind is an extremely complex phenomenon and its spatial and temporal 
variability is less understood than for other atmospheric variables. Different factors contribute to surface wind 
speed variability such as the surface pressure gradient, vertical temperature gradient, surface friction which is 
directly related to surface roughness, synoptic-scale wind patterns (cyclones and anticyclones) and finally human 
activities such as urbanization (Klink, 1999). Better understanding of the nature of underlying stochastic process 
that generate complexity of wind variability requires the use of different methods, classical and emergent, as 
each provide the information about different aspects of such a process. Being a well established method in 
complex system science which can evaluate the level of regularity of temporal series, Sample Entropy analysis 
can contribute (along with classical statistical methods that are primarily based on the evaluation of mean wind 
speed and wind energy potential) to better planning of use of wind energy as it provides the information about 
the complexity and regularity of temporal fluctuations of wind speed.   

Table 1. Descriptive statistics for wind speed (m s-1) temporal series recorded in Petrolina during the year 2010. 

Month 
Minimum Maximum Average Standard deviation Coefficient of variation 

25m 50m 25m  50m 25m 50m 25m  50m 25m  50m 
January 0.00 0.00 9.85 11.40 3.24 4,26 1.31 1.56 0.40 0.37 

February 0.12 0.00 10.71 13.13 3.76 4,88 1.41 1.65 0.38 0.34 
March 0.00 0.00 8.83 10.77 2.86 3,82 1.33 1.67 0.46 0.44 
April 0.00 0.09 8.87 11.73 3.20 4,38 1.14 1.37 0.36 0.31 
May 0.00 0.01 8.45 10.76 3.32 4,55 1.09 1.36  0.33 0.30 
June 0.07 0.00 8.54 10.82 4.00 5,35 1.53 1.73 0.38 0.32 
July 0.00 0.67 8.74 10.65 4.22 5,64 1.42 1.50 0.34 0.26 

August 0.13 0.01 9.03 11.38 4.53 5,96 1.38 1.51 0.30 0.25 
September 0.99 0.78 9.27 12.04 4.87 6,27 1.33 1.52 0.27 0.24 

October 0.44 0.00 10.40 11.91 3.83 4,96 1.42 1.74 0.37 0.35 
November 0.00 0.00 8.49 11.15 3.81 4,94 1.23 1.44 0.32 0.29 
December 0.00 0.00 12.11 14.30 2.79 3,62 1.34 1.64 0.48 0.45 

Table 2. Sample Entropy (m = 2, ..., 6; r = 0, 20) for wind speed temporal series recorded in Petrolina during the year 2010. 

Month 
m=2 m=3  m=4  m=5 m=6 

25m  50m 25m  50m 25m  50m 25m  50m 25m  50m 
January 1.21   1.16 1.15 1.12 1.11 1.08 1.19 1.06 1.09 1.05 

February 1.21 1.20 1.18 1.17 1.14 1.12 1.11 1.08 1.11 1.09 
March 1.26 1.17 1.21 1.13 1.17 1.08 1.14 1.02 1.08 1.01 
April 1.23  1.18 1.18 1.12 1.14 1.08 1.11 1.03 1.03 1.00 
May 1.24 1.22 1.16 1.18 1.11 1.14 1.04 1.10  1.02 1.04 
June 1.08 1.11 1.00 1.03 0.95 0.98 0.89 0.91 0.86 0.87 
July 1.12 1.20 1.04 1.13 0.97 1.05 0.91 1.00 0.87 0.97 

August 1.25 1.28 1.17 1.21 1.12 1.15 1.07 1.11 1.03 1.08 
September 1.35 1.34 1.26 1.27 1.18 1.20 1.11 1.15 1.05 1.11 

October 1.21 1.15 1.15 1.11 1.09 1.08 1.05 1.07 1.02 1.02 
November 1.32 1.29 1.27 1.23 1.23 1.20 1.19 1.19 1.18 1.15 
December 1.21 1.13 1.17 1.09 1.12 1.05 1.09 1.01 1.07 1.00 
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Conclusion 

The results showed of SampEn analysis of wind speed in Petrolina that: i) Wind dynamics is more regular 
when considering consecutive 10 min. values at 1 hour intervals, indicating this temporal scale as better for 
forecasting models and ii) Although wind potential is higher at 50 m, in some periods, entropy values were 
also indicating less regular dynamics, which is unfavorable condition for the operation of wind turbines and 
consequently there is less efficiency in the capture of wind energy for wind electricity production.  
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