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ABSTRACT. This paper deals with an analytical model of a rigid rotor supported by 
hydrodynamic journal bearings where the plane separation technique together with the Artificial 
Neural Network (ANN) is used to predict the location and magnitude of the correction masses 
for balancing the rotor bearing system. The rotating system is modeled by applying the rigid shaft 
Stodola-Green model, in which the shaft gyroscopic moments and rotatory inertia are accounted 
for, in conjunction with the hydrodynamic cylindrical journal bearing model based on the 
classical Reynolds equation. A linearized perturbation procedure is employed to render the 

lubrication equations from the Reynolds equation, which allows predicting the eight linear force 
coefficients associated with the bearing direct and cross-coupled stiffness and damping 
coefficients. The results show that the methodology presented is efficient for balancing rotor 
systems. This paper gives a step further in the monitoring process, since Artificial Neural 
Network is normally used to predict, not to correct the mass unbalance. The procedure presented 
can be used in turbo machinery industry to balance rotating machinery that require continuous 
inspections. Some simulated results will be used in order to clarify the methodology presented.  

Key words: rigid balancing, rotor balancing, artificial neural network. 

RESUMO. Balanceamento de um rotor rígido, usando redes neurais artificiais para a 

predição das massas de correção. Este trabalho foi desenvolvido com o objetivo de empregar 

a técnica de balanceamento de separação de planos juntamente com Redes Neurais Artificiais 
(RNA) para a predição da localização e massas de correção para o balanceamento de um sistema 
rotor-mancal, para tal, foi empregado um modelo analítico consitituído por um rotor rígido 
apoiado em mancais hidrodinâmicos. O sistema rotativo foi modelado com base no modelo de 
eixo rígidos de Stodola-Green, no qual foram considerados o efeito girocópico e a inércia 
rotatória, além de um modelo de mancal hidrodinâmico cilíndrico baseado nas equações de 
Reynolds que permitiu a determinação de oito coeficientes lineares de força associados com os 
coeficientes de rigidez e amortecimento diretos e cruzados do mancal. Os resultados mostraram 
que a metodologia apresentada foi eficiente para o balanceamento de rotores. Este trabalho 
fornece grande contribuição para o processo de monitoramento, uma vez que Redes Neurais 
Artificiais normalmente são empregadas para identificação, e não para a correção do 
desbalanceamento. O procedimento apresentado pode ser empregado no balanceamento de 
turbomáquinas industriais, as quais necessitam de contínuas avaliações. Resultados simulados são 
apresentados com o objetivo de ilustrar metodologia de balanceamento proposta.  

Palavras-chave: balanceamento rígido, balanceamento, redes neurais artificiais. 

IIIIntroductionntroductionntroductionntroduction    

Rotor unbalance is a common source of 
vibration in turbomachinery. The rotor mass 
unbalance transmits rotating forces to the bearings 
and foundations. Such forces may damage the 
system and in some cases even affect other 
equipments in the vicinity. Rigid and flexible rotors 
can be balanced by specific balancing techniques. 
Plane separation technique is normally used for 
balancing rigid rotors, while Modal Balancing 
Method and Influence  Coefficient  Method can  be 

used for balancing flexible rotors (RAO, 1983; 

VANCE, 1988; CHILDS, 1993). Parkinson (1991) 

describes the unbalance vibration process, in 

addition to discussing about balancing techniques 

for rigid and flexible rotors. 

Artificial Intelligence (AI), especially Artificial 

Neural Network (ANN) techniques, has been used for 

monitoring and fault diagnostics of mechanical systems 

(PANTELELIS et al., 2000). For that, experimental or 

theoretical data can be used. Ganesan et al. (1995) 

applied ANN on diagnostics and instability control of 
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high-speed rotating systems using analytical model 

with great success. The results presented in Vyas and 

Satishkumar (2001) also showed the great capability of 

the artificial neural network in fault prediction found 

in rotating machines. Paya and Esat (1997) applied 

wavelet transform to preprocess six different types of 

vibration signals obtained from a model drive line, 

consisting of various interconnected rotating parts; 

from the preprocessed data, an ANN was used to 

determine the health condition of the system. The 

results showed that ANN using preprocessed data by 

wavelet transform was successfully in detection and 

classification of single and multiple faults. Samanta and 

Al-Balushi (2003) proposed a procedure for fault 

diagnosis of rolling element bearings through ANN. 

Time-domain vibration signals of the rotating 

machinery, considering the normal and defective 

bearing condition, were used as input of the ANN. 

The results presented the effectiveness of the ANN in 

condition monitoring and diagnostics of machines. In 

spite of the research published on monitoring and fault 

detection using artificial intelligence techniques, there 

are few studies in which such techniques are used to 

predict the correction masses for balancing mechanical 

systems. 

This paper deals with the balancing of a rigid 

rotor supported by hydrodynamic journal bearings 

by using plane separation technique and artificial 
neural networks. The rotating shaft model is based 

on the Stodola-Green model, which takes into 

account the shaft gyroscopic moments and rotational 

inertia. The bearing dynamic model is based on the 

perturbed lubrication equations derived from the 

classical Reynolds equation (LUND, 1987). The 
bearing model permits to predict eight bearing force 

coefficients, four stiffness and four damping 

coefficients, associated with the lateral rotor motion, 

including the cross-coupled dynamic force 

coefficients. An artificial neural network is trained 

using the unbalance responses of the rotor bearing 
system together with the correction masses provided 

by the plane separation balancing technique. After 

that, the artificial neural network is able to predict 

the correction masses when the unbalance responses 

are provided to neural network. 

Material and methodsMaterial and methodsMaterial and methodsMaterial and methods    

ModelModelModelModel    

The equations of the lateral motion for a rigid rotor 
can be obtained from the Lagrangian determined in 
terms of the Euler angles, as presented in Figure 1. 
Initially the body-fixed reference frame xyz and the 
space-fixed inertial frame XYZ are coincident. The 

order of the rotations for the Lagrangian is the 

following Vance (1988): a) α rotation about y; b) β 
rotation about x; c) ψ rotation about z. 

 

 

Figure 1. The Euler angles. 

The four degrees-of-freedom accounted for in 

the rigid rotor model describe the bending vibration. 

The Lagrangian composed by the translational and 

rotational kinetic energy for the rotor bearing system 

is given by Equation 1: 

 
2 2 2 2 21 1 1

( ) ( ) ( - 2 )
2 2 2t pL T M X Y I Iα β ω ωαβ= = + + + +&& & & &             (1) 

 
where: 

L is the shaft Lagrangian;  
T represents the rotor kinetic energy;  
M is the rotor mass;  
It is the transverse mass moment of inertia;  
Ip is the polar mass moment of inertia.  

The shaft rotating speed is given by ω. 
In this work, the rotor bearing system model 

considers the Stodola-Green shaft model in which 
a rigid rotor is supported by hydrodynamic 

journal bearings localized on Z = ± L/2, 

according to Figure 2. 
 

 

Figure 2. Rigid rotor. 

The equations of motion (Equation (2)) for the 

rotor bearing system are obtained using a Lagrangian 

formulation (VANCE, 1988), with X, Y, α e β as the 
generalized coordinates of the system and F and M 

as the generalized forces and moments, respectively. 
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The terms involving the polar mass moment of 

inertia (Ip) are known as gyroscopic moments. 
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The right-hand side (RHS) terms of Equation 

(2) represent the generalized forces and momentum 

acting on the rotor, which are due to the bearing 

reaction forces and to the centrifugal forces 

associated with the mass unbalance. 

The bearing reaction forces are computed from 

the classical Reynolds equation. A linearized 

perturbation procedure is applied on the Reynolds 

equation in order to render the zeroth- and first-

order lubrication equations, which are represented 

by Equations (3) and (4), respectively. These 

equations allow predicting the bearing dynamic 

force coefficients associated with the rotor lateral 

motions. A finite element procedure specially 

devised to compute the bearing dynamic force 

coefficients is used to render the eight stiffness and 

damping coefficients (FARIA, 2001). 
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The bearing dynamic reaction forces are 

calculated considering the velocity and displacement 

in the X and Y direction, respectively. The cross-

coupled stiffness (damping) coefficients are based on 

the fact that a displacement (velocity) in the X 

direction produces a force in the Y direction, and 

vice-versa. It is known (VANCE, 1988) that the 

cross-coupled stiffness coefficients have opposite 

sign (KXY = -KYX at concentric position), whereas the 

cross coupled damping coefficients have the same 

sign (CXY = CYX at concentric position). However, it 

is important to point out here that the coupled 

coefficients are normally ignored in general 

modeling formulations, although they have a strong 

influence in the rotor response. So, Equation (5) 

represents the generalized forces and moments due 

to the bearing damping and stiffness coefficients, 

including the coupled coefficients. 
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Therefore, the equations of motion for the system 

(Equation (6)) can be obtained substituting Equation (5) 
in (2) and including the generalized forces and moments 
caused by the rotor unbalance. The latter is represented 
by the RHS of Equation (6). 
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In the right-hand side of Equation (6), mi 

represents the discrete unbalance mass, ui represents 

the unbalance eccentricity and ψi represents the 

phase angle of the unbalance mass. The rotor 

element length is given by li. 

The bearing cross-coupled stiffness coefficients 

tend to reduce the system effective damping 

(VANCE, 1988). The larger is the cross-coupled 

stiffness, the smaller is the external damping acting 

on the rotor. Consequently, the rotor whirl 

amplitude tends to become very large when this 

reduction occurs. That stresses the importance of 

including all bearing force coefficients in the rotor 

modeling in order to avoid large deviations on the 

prediction of the unbalance response. 

IntegratIntegratIntegratIntegration of the equations of motionion of the equations of motionion of the equations of motionion of the equations of motion    

The fourth order Runge-Kutta integration method, 

as presented by Equation (8), can be used to obtain the 

time responses of the rotor bearing system, in terms of 

coordinates X, Y, α and β. The following expression 
applies to coordinate Y, but can be extended to the 

other coordinates straightforward. 
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The smaller the time increment considered (∆t), 

the better the resolution obtained for the time 

responses. From that, a Fast Fourier Transform (FFT) 

is used to give the responses of the system in the 

frequency domain.  

For the present study, the responses of the 

system are obtained for the center of the rotor and 

for the two journal bearings of the system. 

Balancing equationsBalancing equationsBalancing equationsBalancing equations    

A rigid rotor can be balanced by adding 

correction masses in any two balancing planes. One 

technique used for that is the plane separation 

technique. It is important to emphasize that, for 

rigid balancing, this technique can be applied only 

for speeds very below its first critical speed, typically 

between 100 and 600 rpm (RIEGER, 1988). Figure 

3 represents the mass eccentricity distribution along 

the shaft in which two balancing planes (Pb1 and 

Pb2) are defined.  
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Figure 3. Balancing planes. 

Equations (9) represent the force and moment 

equations, considering the balancing planes shown in 

Figure 3, obtained from the plane separation technique:  
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1R̂  and 2R̂  represent the bearing reaction forces 

at the two selected measuring planes and φ1 and φ2 

represent their phase angles. The solution of the 

system of Equations (9) will provide the correction 

masses (m1 and m2) and their respectively angular 
positions (

1bφ  and 
2bφ ), which will reduce the rotor 

unbalance response. The correction mass vectors are 

represented by the Equations (10) 
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Balancing methodologyBalancing methodologyBalancing methodologyBalancing methodology    

The novelty of the balancing methodology 
proposed in this work is the application of the artificial 

neural network to balance rotors. A neural network is a 
massively parallel, self-adaptive, interconnected 
network of basic elements called ‘neurons’. Neurons 
have a simple computational process but the 
interactions between them allow the ANN to learn 
from given input sets and their corresponding outputs 
(HAYKIN, 1999). A Multilayer Perceptron Network, 
as shown in Figure 4, has greater computational power 
when compared with one layer Neural Network. 

 
H idden Layer 

Input L ayer 

Input 

w eights 

O utput 
O utput Layer 

 

Figure 4. Multilayer Perceptron Network. 

The most commonly used Neural Network 
training algorithms are the Error Backpropagation 
and the Levenberg-Marquardt Algorithm. Error 
Backpropagation training algorithm attempts to 
minimize the square of the error obtained between 
the ANN output and the desired output, 
considering a descent gradient technique to change 
the synaptic weights. 

Two stages are necessary: training and validation. 
ANN is normally used only to detect the unbalance 
from the response levels, not to provide the 
correction masses to balance the rotating shaft. 

The training database considered contains the 

unbalance response obtained by mathematical 

modeling (Equation (6)) of the rotor bearing system 

and the correction masses given by any balancing 

process such as the plane separation technique 

(Equation (10)). For the validation process, the 

unbalance responses of the system are used as inputs 

and the correction masses are the outputs of the 

artificial neural network. 

In order to improve the ANN generalization 

capability, the input and output data need to be 

normalized. So, the polar input and output data are 

transformed to Cartesian data and after that, these 

Cartesian data are normalized. The normalization is 

performed according to Equation (11): 
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where: 

( )N x  and ( )N y  = x and y normalized coordinates; 
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( )R x  and ( )R y  = x and y coordinates to be 

normalized; 

miny  and maxy  = maximum and minimum 

values of the y coordinates; 

minx  and maxx  = maximum and minimum values 

of the x coordinates. 

Network designNetwork designNetwork designNetwork design    

There are a lot of possible ANN designs to be 
considered. Most of the researches dealing with rotor 
mass balancing include either a single or double hidden 
layers. For the study presented here, the best ANN 
design was obtained as described in Table 1. Two 
hidden layers with 20 neurons were used. 

Table 1. Artificial neural network design. 

Artificial Neural Network Design 

Layers input-output relationship 

xn(bearing 1)  

yn(bearing 1) xn(balancing plane 1) 

 yn(balancing plane1) 

xn(bearing 2)  

yn(bearing 2)  

 xn(balancing plane 2) 

xn(center of the rotor) yn(balancing plane 2) 

6 x n x n x 4 Input 

yn(center of the rotor) 

Output 

 

 

Artificial neural network parametersArtificial neural network parametersArtificial neural network parametersArtificial neural network parameters    

For the learning procedure the Levenberg-
Marquardt algorithm was employed (HAYKIN, 1999). 
The artificial neural network learning parameters used 
in this stage are described in Table 2. 

Table 2. Artificial neural network parameters. 

Artificial Neural Network Parameters 

transfer function sigmoid function 

rate of learning 0.05 

increase factor of learning 1.05 

performance goal 0.001 

momentum 0.075 

interactions 3,000 

 

Results and dResults and dResults and dResults and discussioniscussioniscussioniscussion    

In this study, the rotor bearing system was 
simulated using theoretical data. The rotor 
parameters employed in the modeling process are 
described in Table 3. The length and diameter are 
such that the rotor can be considered a rigid 
structure and the material employed simulates a 
common one found in the industry. 

Table 3. Rotor parameters. 

Rotor Parameters 

length (m) 0.6 

diameter (m)   0.05 

mass density(kg m-3) 7800 

The rotor is supported by two identical 

hydrodynamic journal bearings. The damping and 

stiffness dynamic coefficients of the bearings employed 

in system simulation are presented in Table 4. They 

were found solving the zero and first order Reynolds 

equations via finite element analysis (LUND, 1987). 

Table 4. Dynamic coefficients. 

Journal Bearings Dynamic Coefficients 

Stiffness Coefficients (N m-1) 

KXX KXY KYY KYX 

0.2310E+06 0.2449E+05 0.2020E+06 -0.2182E+05 

Damping Coefficients (N.s m-1) 

CXX CXY CYY CYX 

1.718E+03 1.672E+03 1.713E+03 1.672E+03 

 

From a random mass eccentricity distribution along 

the shaft, the response of the system is obtained using 

the parameters given in Table 3 and the dynamic 

coefficients given in Table 4, considering a balancing 

speed of 400 rpm. The unbalance responses are obtained 

at the rotor center and at the bearings. Figure 5 shows 

the synchronous whirl and frequency spectra for the 

center of the rotor. The same procedure was done for 

the bearings position and similar results were obtained.  
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Figure 5. The unbalance response. 

The database was generated using the unbalance 
responses of the system and the correction masses 
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given by the balancing process, according to the 
methodology described. From the database, the 
training and validation sets are obtained.  

The training set is composed by 200 elements in 

which the unbalance responses of the rotor bearing 

system are the input data and the correction masses are 

the output data. The convergence of the learning 

procedure was terminated at 0.1% error threshold. 

Twenty (20) unknown elements formed the validation 

set. These elements are the input data and correspond 

to the unbalancing responses provided to the network. 

So, the correction masses and angles (output data) are 

compared with the correct ones to check the quality of 

the generalization, as shown in Figures 6 and 7. 
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Figure 6. Correction mass – balancing plane 1. 

The results show that the artificial neural 

networks are able to predict the correction masses 

with satisfactory accuracy. In general, for the 

validation set used, the error was below 10% and 

only for 4 elements of the validation set there was an 

error above 5%. Nevertheless, the predictions 

obtained from these 4 elements when applied to the 

system balancing presented unbalance response 

reductions up to 74%. So, that confirms the great 

capability of the methodology presented. 
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Figure 7. Correction mass – balancing plane 2. 

ConclusionConclusionConclusionConclusion    

A rotor balancing methodology for rigid rotors 

supported on oil-lubricated journal bearings has 

been presented. That uses the unbalance response of 
the system, together with the Artificial Neural 

Network (ANN) to predict the correction data 

(masses and angles) to balance the system. That is 

performed in two stages: training and validation. 

The methodology proposed gives a step further in 

the balancing process using the ANN since the later 
is normally used only to detect the rotor unbalance, 

not to provide the corrective masses capable of 

minimizing the rotor vibration response. 

The full model of the rotating system together with 
the correction data obtained from the plane separation 
balancing technique presented satisfactory results and 
can be used to constitute the database that is employed 
to train the ANN. A full model description of the 
rotating system is important in order to obtain an 
accurate response prediction of the system, respective 
to the levels obtained. The rotor model must include 
the shaft gyroscopic effects and the bearing dynamic 
force coefficients, mainly the cross-coupled stiffness 
coefficients, in order to represent more efficiently real 
rotors supported on hydrodynamic journal bearings. 

The better ANN design for the system used was 

obtained using two hidden layers. The Levenberg-
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Marquardt training algorithm presented a good 

performance within the 0.1% error threshold, 

showing a satisfactory generalization during the 

validation stage. Even for generalization results 

around 10% error there was a reduction of the 

unbalance responses up to 74%. Therefore, it is 

possible to conclude about the efficiency of the 

balancing methodology proposed. 
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